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Abstract
As organizations in government and industry increasingly rely on digitized data and networked computer sys-
tems, they face a growing risk of exposure to cyber attacks. Automated methods such as machine learning based
malware detection algorithms have helped analysts to sift through large amounts of data. However, it is still too
expensive to always run the best algorithms when massive amounts of new data are generated every day.

In this work, we demonstrate the benefits of leveraging uncertainty estimation when multiple algorithms
with different strengths and costs are used as a part of a larger machine learning malware detection system. In
particular, we introduce a novel method in which cheaper machine learning algorithms can choose to defer to
costlier models when their own predictions are uncertain and the more expensive model is expected to do well.

We first use this method to detect specific capabilities in executable files, then extend it to general malware
detection. In both cases, we are able to maintain high accuracy while minimizing the use of the more costly
algorithms. With capability detection, we achieve an average 99.9% of correctly labeled capabilities for half the
computational cost of using the expensive model throughout. For general malware detection, using this method
to strategically balance the use of static and dynamic analysis saves a year’s worth of compute time.
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1. Introduction

As evidenced by current events, malware is a serious threat to companies, governments, schools, and
even health care systems. It has cost billions in damages [1, 2] and even taken lives [3]. As computer
networks grow in size, so do the challenges cybersecurity professionals face in securing them. With more
connected devices, more users, and more complex systems, the volume of malware attack opportunities
increases exponentially. It’s clear, then, that automated malware detection is absolutely crucial, but the
sheer volume of incoming data can make it very computationally challenging. Many anti-virus (AV)
vendors see over 2 million new malicious files each month [4], and benign files on a network tend to
outnumber malicious files at a ratio of 80:1 [5].

The collection and release of malware datasets has allowed for a vast array of machine learning
(ML) based malware detection (MLMD) algorithms to be developed with the goal of classifying new
files as benign (not malware) or malicious (malware) [6]. Traditionally, anti-virus systems used static
and signature-driven systems (i.e., systems that looked for specific software known to be malicious) to
detect malware [7]. More recently, dynamic software analysis has become increasingly popular. This
involves running evaluated software in a secure environment to directly observe whether or not it
behaves maliciously. Egele et al. [8] provide a survey on challenges, features, techniques, and tools for
dynamic malware analysis.
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Using machine learning to automate static and dynamic analysis enables faster investigation of more
files and allows human analysts to focus on “hard” samples. While powerful, anti-virus and dynamic
analysis tools have limitations. In particular, these methods can be time consuming when the data
volume and velocity are high [9], with certain methods such as dynamic analysis having particularly high
computational cost. Unsurprisingly, these algorithms also vary widely in their strengths, weaknesses,
and costs, both in terms of model execution and especially feature extraction.

Recent works have demonstrated the benefits of incorporating uncertainty quantification in MLMD
systems. Leveraging uncertainty allows for better identification of model errors, uncovering of new
malware families, predictive performance under extreme false positive constraints, and out of distribu-
tion data detection [10, 11, 12]. These previous works have focused exclusively on static analysis based
malware detection using a single ML algorithm.

In the following sections, we introduce a novel method in which cheaper ML algorithms can choose
to defer to costlier models under two conditions: their own predictions are uncertain, and the more
expensive model is likely to do well. We note that the main contribution of this paper is this deferral
methodology; the determination of computational expense can vary from use case to use case.

Despite this variation, we find that by using uncertainty quantification combined with auxiliary
prediction targets, we can consistently minimize compute costs while maximizing overall system
accuracy. Specifically, we estimate uncertainty using Bayesian and ensembling approaches, and we
train the cheaper algorithms to predict the success of the more expensive algorithms. The result is an
easy to implement approach that is applicable to a wide variety of AV systems.

We first use this approach to speed up capability detection in executable files, using CAPA as the
expensive model and MalConv as the cheaper one. We then show that this approach can improve
general malware detection, where the cheaper model uses static analysis and the expensive model uses
dynamic analysis. By using the expensive models only as-needed, we are able to improve accuracy
while minimizing the use of more costly algorithms.

2. Related Work

The majority of the existing research on malware detection with machine learning has focused on
the automation of static malware analysis. Raff et al. [13] introduce MalConv, a convolutional neural
network for malware detection that operates on the raw byte sequences of files. Raff et al. [14] develop
a new approach to temporal max pooling that improves MalConv’s memory and computational costs.

Understanding when a machine learning model is uncertain about its prediction is critical in high-risk
applications such as cyber defense. However, the modeling of uncertainty is generally missing from
the machine learning for malware literature. Three recent works have demonstrated the benefits of
incorporating uncertainty quantification in MLMD systems. In particular, leveraging uncertainty allows
for the identification of model errors, the uncovering of new malware families, improved predictive
performance under extreme false positive constraints, and better out-of-distribution data detection
[10, 11, 12].

We note that these previous works have focused exclusively on static analysis based malware detection
using a single ML algorithm. In the current work, we explore the benefits of uncertainty estimation
in settings where multiple, diverse algorithms with different strengths and costs are used as part of a
larger MLMD system.

2.1. Uncertainty Estimation

The Bayesian framework allows for the principled modeling of uncertainty in machine learning and
decision making [15]. Within this framework, probabilities represent degrees of belief, as opposed to
the frequentist interpretation of probabilities as long-run frequencies [16]. Bayesian inference uses
Bayes’ Theorem to update beliefs (represented in the form of probability distributions) when new data
is observed.



In the context of machine learning, a Bayesian update takes the following form, where 𝜃 represents
model parameters, 𝐷 represents the data, and 𝑀 represents the model class:

𝑃 (𝜃|𝐷,𝑀) =
𝑃 (𝐷|𝜃,𝑀)𝑃 (𝜃|𝑀)

𝑃 (𝐷|𝑀)

𝑃 (𝜃|𝐷,𝑀) is the posterior belief about the model parameters given the data, 𝑃 (𝐷|𝜃,𝑀) is the likeli-
hood of the data given the model parameters, 𝑃 (𝜃|𝑀) is the prior belief about model parameters, and
𝑃 (𝐷|𝑀) is the marginal likelihood or evidence. These are related by Bayes’ rule.

For prediction, the posterior predictive can be computed as follows, where 𝐷 is the training data
and 𝐷* is the test data: 𝑃 (𝐷*|𝐷) =

∫︀
𝑃 (𝐷*|𝐷, 𝜃)𝑃 (𝜃|𝐷)𝑑𝜃. When data points are conditionally

independent given model parameters, then 𝑃 (𝐷*|𝐷, 𝜃) = 𝑃 (𝐷*|𝜃), and we can write:

𝑃 (𝐷*|𝐷) =

∫︁
𝑃 (𝐷*|𝜃)𝑃 (𝜃|𝐷)𝑑𝜃

The posterior predictive is an example of Bayesian model averaging [17], a posterior weighted average
of 𝑃 (𝐷*|𝜃).

As exact Bayesian inference cannot be done for Bayesian deep learning models, approximate inference
methods need to be used.

A straightforward approach is to use a Laplace approximation to model the posterior over neural
network weights as a Gaussian [18, 19]. Ritter et al. [20] construct a Kronecker factored Laplace
approximation to the posterior. Kristiadi et al. [21] add uncertainty units to a pre-trained network. The
units are trained post-hoc using an uncertainty-aware loss. This addition improves uncertainty under a
Laplace approximation.

Proper Markov Chain Monte Carlo (MCMC) methods will always perfectly sample from the posterior
given enough time. The MCMC method of choice is Hamiltonian Monte Carlo (HMC) as described in
Neal [22] under the name “hybrid Monte Carlo.” Betancourt [23] provides an in-depth introduction to
HMC. While HMC is notoriously difficult to tune, methods such as the No-U-Turn Sampler of Hoffman
and Gelman [24] attempt to automate the tuning. While considered the gold standard, HMC isn’t
scalable because the method requires gradient computations that use the entire dataset.

As MCMC is hard to scale and tune in practice, variational inference is often used instead [25, 26]. This
converts the integration problem into an optimization problem, where the posterior is approximated
using a simpler variational distribution. In particular, the exact posterior 𝑝(·|𝐷) is approximated by a
variational approximation 𝑞(·) by minimizing the Kullback-Leibler divergence:

𝑞* = argmin
𝑞∈𝑄

KL(𝑞(·)||𝑝(·|𝐷))

𝑞* = argmin
𝑞∈𝑄

∫︁
𝑞(𝜃) log

𝑞(𝜃)

𝑝(𝜃|𝐷)
𝑑𝜃

𝑞* = argmin
𝑞∈𝑄

∫︁
𝑞(𝜃) log

𝑞(𝜃)𝑝(𝐷)

𝑝(𝜃,𝐷)
𝑑𝜃

𝑞* = argmin
𝑞∈𝑄

log 𝑝(𝐷)−
∫︁

𝑞(𝜃) log
𝑝(𝜃,𝐷)

𝑞(𝜃)
𝑑𝜃

The log 𝑝(𝐷) term does not depend on 𝑞, so it can be dropped from the optimization, and the subtracted
term that remains is called the evidence lower bound (ELBO).1 So the optimization becomes

𝑞* = argmax
𝑞∈𝑄

ELBO(𝑞)

1ELBO is a lower bound since the KL divergence is always positive, and as a result log 𝑝(𝐷) ≥ ELBO.



The scaling of Bayesian methods to sizeable datasets has largely been made possible by stochastic
variational inference [27]. Black box automatic stochastic variational inference methods [28, 29, 30, 31]
that only require the specification of the model log-likelihood have improved the usability and adoption
of Bayesian methods, and have sped up model iteration. Variational inference for neural networks
was first introduced in the early 1990’s [32]. Graves [33] revived interest in the topic by introducing a
stochastic variational method for inference in neural networks, which was later improved by Blundell
et al. [34].

Gal and Ghahramani [35], Gal [36] introduce an easy to implement approach to variational inference
in Bayesian neural networks. In particular, they show that a neural network with dropout [37, 38] is
equivalent to an approximation of a deep Gaussian process [39], and training with dropout effectively
performs variational inference for the deep Gaussian process model. For reference, dropout is a technique
commonly used to reduce overfitting in neural networks by randomly dropping units during training,
applied before every weight layer. Leaving dropout on at test time allows for sampling from the posterior
distribution. This is the approach used for the Bayesian MalConv model [12] that we will use as the
cheaper, static model in our experiments.

Two different kinds of uncertainty can be measured [36]. The first, aleatoric uncertainty, is a result
of inherent stochasticity in the input data. More training data will not reduce the aleatoric uncertainty
associated with a prediction, as this uncertainty is caused by noise in the prediction time input data.
The second, epistemic uncertainty, is caused by a lack of training data resembling the prediction time
input data. In regions of the input space that lack training data, model parameters are less constrained
and different model parameter settings that produce diverse and potentially conflicting predictions can
be comparably likely under the posterior.

For classification tasks where aleatoric and epistemic uncertainty don’t need to be differentiated,
uncertainty can be measured using the predictive distribution entropy:

𝐻[P(𝑦|𝑥,𝐷)] = −
∑︁
𝑦∈𝐶

P(𝑦|𝑥,𝐷) logP(𝑦|𝑥,𝐷)

Aleatoric uncertainty can be measured using expected entropy:

𝑢alea = EP(𝜃|𝐷)𝐻[P(𝑦|𝑥, 𝜃)]

Mutual information can be used to measure epistemic uncertainty:

𝑢epis = 𝐼(𝜃, 𝑦|𝐷,𝑥) = 𝐻[P(𝑦|𝑥,𝐷)]− EP(𝜃|𝐷)𝐻[P(𝑦|𝑥, 𝜃)]

Monte Carlo estimates that are obtained by sampling from the posterior can be used to approximate
the terms of these equations for our Bayesian models [40]. In particular, P(𝑦|𝑥,𝐷) ≈ 1

𝑇

∑︀𝑇
𝑖=1 P(𝑦|𝑥, 𝜃𝑖)

and EP(𝜃|𝐷)𝐻[P(𝑦|𝑥, 𝜃)] ≈ 1
𝑇

∑︀𝑇
𝑖=1𝐻[P(𝑦|𝑥, 𝜃𝑖)], where the 𝜃𝑖 are samples from the posterior over

models, and 𝑇 is the number of samples. For ensemble models which are not explicitly Bayesian
(because each ensemble member receives the same weight), uncertainties can be computed in a similar
way. In this case, the 𝜃𝑖 are no longer samples from a posterior, but multiple independent trainings
of a model with 𝑇 different random seeds. In our experiments, we measure overall uncertainty using
predictive entropy.

2.2. Learning to Reject/Defer

Rejection Learning is a framework where a machine learning model can reject a data point at prediction
time and choose to not make a prediction if it is not confident or is uncertain [41, 42, 43, 44, 45].
Importantly, Rejection Learning does not take into account any downstream models nor decision
makers that will process rejected data points.

Madras et al. [46] extends and generalizes this idea with Adaptive Rejection Learning, also known
as Learning to Defer. Unlike Rejection Learning, Learning to Defer allows models to learn to adapt



to the strengths, weaknesses, and biases of downstream decision makers and models. Mozannar and
Sontag [47] use the method of Madras et al. [46] as a baseline and also tackle the problem of Learning
to Defer. They provide a particularly good toy example of why the rejector and classifier need to be
trained jointly. Similarly, Wilder et al. [48] introduce methods to optimize teams consisting of humans
and ML algorithms.

Our approach differs from that of Madras et al. [46] in two ways. First, their approach can be seen as
a mixture of Bernoullis: a binary deferral decision gating variable is used to both express uncertainty
and to try to predict which model will have a lower loss. Our approach, on the other hand, explicitly
decouples uncertainty from the prediction of a downstream model’s performance. This separation
allows for an easier interpretation of the reasons for a deferral decision, and in many cases likely results
in an easier learning problem. Second, the Bayesian uncertainty approach described in Appendix F
of Madras et al. [46] uses only uncertainty to reject, and, unlike our work, does not provide a way to
incorporate the prediction of a downstream model’s performance.

2.3. Active Feature Acquisition

An area related to Learning to Defer is active feature acquisition, the sequential decision process of
whether to query more features or not under budget constraints. Gao and Koller [49] introduce an
active classification process that combines multiple classifiers and features at test time using an instance-
specific decision path. Similarly, Saar-tsechansky et al. [50] use Value of Information to rank feature
acquisition options. There are many ways to measure the value of information, including information
gain, classification loss, and decision robustness [51]. Active feature acquisition is useful not only for
minimizing costs, but also for applications such as fairness. For instance, Noriega-Campero et al. [52]
discuss active feature acquisition in the context of fair classification.

Xu et al. [53, 54] develop algorithms that select features individually for each test data point and
reduce trees of classifiers into more efficient cascades of classifiers. Des Jardins et al. [55] construct
a cascaded ensemble of classifiers to selectively acquire missing features at both train and test time.
Wang et al. [45] develop Prediction Cascades, which use additional augmenting classifiers that evaluate
the distributional output of the earlier classifier and estimate its uncertainty. Many cascade methods
have an assumed ordering of cascade members, so are unable to adaptively reorder members based on
the specific datum at hand. Gao and Koller [49] differs by balancing expected classification gain with
computational cost. Observations are selected dynamically based on previous observations to achieve
instance-specific decision paths.

Cascades are not the only approach, however; Xu et al. [56] don’t use a cascade of classifiers,
instead choosing to extend stage-wise regression. They incorporate feature extraction cost into the
objective during training, which minimizes test-time computation. Active feature acquisition can also
be formulated as a Markov Decision Process [57, 58, 59] which allows for techniques from reinforcement
learning to be used.

We note that active feature acquisition is likely excessive for our malware detection use case, as we
have two classifiers with a clear ordering of static analysis then dynamic analysis.

More broadly, this problem is fundamentally related to the task of estimating the value of information
[60]; that alone is a highly multidisciplinary problem that is rooted in Information Theory [61]. Behrens
et al. [62] show evidence that humans modulate their learning rates based on environment volatility
and uncertainty, and in a way that can be predicted by a Bayesian learner. This supports the hypothesis
of Bayesian reasoning in humans.

Feltham [60] provide a formal framework for measuring the value of information in the context of
accounting. In particular, they develop a framework to calculate the expected payoff for an information
system from the perspective of the decision maker. Future research could include building off of this
work in information theory by developing bespoke measures and cost functions that are applicable to
cyber security and malware detection.



3. Data and Models

For malware and benign samples, we use the EMBER2018 dataset, which consists of portable executable
files (PE files) scanned by VirusTotal in or before 2018 [63]. The dataset contains 600,000 labeled
training samples and 200,000 labeled testing samples, with an equal number of malicious and benign
samples in both sets. The malicious samples are also labeled by malware family using AVClass [64].
The train/test split in the data is temporal. For each sample, EMBER2018 includes vectorized features
which encode general file information, header information, imported functions, exported functions,
section information, byte histograms, byte-entropy histograms, and string information [63]. There are
also 1.1TB of raw PE files that are not available as part of EMBER2018; these can be downloaded via
VirusTotal.

Following the methodology of Nguyen et al. [11], we use a dropout Bayesian MalConv model [12]
when working with raw binaries, and an LGBM model [65] for the EMBER extracted features. We also
develop a model for dynamic analysis logs, and extract capabilities in the executable files. The latter is
done using CAPA, with the SMDA recursive disassembler as a backend. 2

For a comparison of computational costs, a 16 sample Bayesian MalConv model can process an
average of about 51.2 EMBER2018 files per second on a NVIDIA Tesla P100 GPU. This is about 0.02
seconds per file for feature extraction, prediction, and sampling. The EMBER features take on average
about 0.09 seconds to extract per file. CAPA feature extraction takes about 45.75 seconds per model
on average. Finally, running dynamic analysis on a file takes an average of 526 seconds, or 8 minutes
and 46 seconds. Note that these exclude the downstream prediction model, so the actual cost is slightly
higher. In other words, running MalConv on a file is over 26, 300 times faster than running a dynamic
analysis model.

We note that we do not use larger datasets such as SoReL-20M of Harang and Rudd [66] due to the
considerable computational cost. Running 20 million files through dynamic analysis would take over
333 years!

3.1. Dynamic Analysis Features and Model

We use a proprietary dynamic execution sandbox provided by a United States based Software Security
company. The dynamic analysis tool uses libvirt to work with QEMU3 to manage Virtual Machines
(VMs) running Windows 7 32-bit.

The dynamic analysis tool puts a sample into the VM, starts a custom monitoring application, runs
the sample, saves the monitor’s log file, and pulls the log from the VM to the host. Then, the tool kills
the VM image and creates a new one from a template. This way, the VM is clean for every sample.

These dynamic analysis logs were featurized with a domain knowledge-driven approach similar
to that of Anderson and Roth [63]. The dynamic analysis engine captures broad information about
DNS, registry, file, process, and security events from the dynamic execution of the sample. These
events contain raw information which we used to extract features for each file. The features include
event subtype counts, event subtype information counts, number of unique processes by user, PID
counts by user, event key frequencies, count of registry bytes written, registry key path information,
timing information, authentication signature information, hashed event message, hashed command
line information, and counts of unnamed events. We then train a LGBM model on top of these features.

We note that it is possible that some executables did not exhibit all their behavior or functionality
during dynamic analysis. This could happen for a number of reasons. It could be because they were
not in the proper environment. For instance, if the executable targets a specific Windows build, it may
fail to run anywhere else. It might also not have access to all the resources needed for execution. The
executable might not run if it can’t connect to the internet, or to its command-and-control server. It’s
also possible that the executable has some built-in, anti-reverse engineering techniques. In that case, it
might wait a few days before executing, for example.

2https://github.com/mandiant/capa
3https://www.qemu.org/



The point is, some malicious files may not act malicious during dynamic analysis. This means that
even though dynamic analysis is more expensive than static analysis, it does not always result in better
malware detection when used in isolation. We will show that judiciously running dynamic analysis on
a subset of files will both improve malware detection accuracy and keep analysis costs low.

4. Predicting Capabilities in Executable Files

While most Machine Learning approaches to malware have focused on the detection of maliciousness,
there has been less work on the identification of specific behaviors, which is a critical component to
malware analysis [67].

We investigated the prediction of CAPA outputs using an 8 sample Bayesian MalConv model, as well
as an 8 sample LGBM ensemble trained on the EMBER features. For prediction targets, we used the
350 CAPA rules from the Mandiant standard collection 4, plus a target for failures, for a total of 351
non-exclusive labels for each file.

Figure 1 shows detection accuracy for each CAPA rule for both MalConv and the LGBM model. We
note that accuracy is high across rules, suggesting that CAPA may not need to be run for all samples
when outcomes can be predicted. The LGBM model is consistently more accurate than MalConv across
rules, but requires more expensive feature extraction. Figure 2 shows the area under the receiver
operating characteristic curve (AUC) for each CAPA rule, for both MalConv and the LGBM model.
While LGBM generally does better than MalConv in terms of AUC, MalConv is better in the worst case.

Running CAPA is no small feat. CAPA is more than 2200 times more expensive than MalConv in
terms of time, mainly due to the costs associated with disassembly. We can drastically reduce these
computational costs by using CAPA exclusively when a prediction model, such as MalConv or LGBM,
is highly uncertain. Specifically, CAPA should only deal with files for which the uncertainty is above
some threshold.

Figure 3 shows the performance of such an approach for various uncertainty thresholds. The results
show that we can achieve an average 99.9% of correctly labeled rules while running CAPA on less than
half of the data.

The thresholds are measured by predictive entropy, and correspond to the proportion of the test
data that is sent to CAPA. To simulate real world deployment of such a system, we plot two types of
uncertainty thresholds: ideal and actualized. Ideal thresholds are those needed for the 99.9% average
across all files; actualized are those chosen using a validation set. The validation and test sets were
temporally split into samples first seen in November 2018 and December 2018, respectively.

We note that the ideal and actualized uncertainty thresholds are very close, and that compute time
spent on CAPA extraction can be cut by more than half. This leads to substantial gains in a deployed
production setting, where it is not feasible to run CAPA on all of the data.

In especially computationally-constrained settings, it might not be possible to run CAPA at all. In
these cases, MalConv alone can achieve a 98% average of correctly labeled CAPA rules. This result
suggests that MalConv is capable of learning features that are predictive of capabilities in executables.

5. Deferring to More Expensive Models

Dynamic malware analysis is more expensive than static malware analysis. Human malware analysis is
more expensive than automated malware analysis. Ideally, we would like to minimize the analysis cost
needed to determine if a file is malicious or benign. In other words, we want to run cheap, automated
static analysis first, and only run more expensive analysis (such as dynamic analysis) if the static analysis
model is uncertain. Additionally, we want to train the static model to be adaptive to the dynamic model’s
strengths and weaknesses. Even if uncertain, the static model should guess if the dynamic model will
perform worse given the type of data being predicted on.

4https://github.com/mandiant/capa-rules
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Figure 1: Detection accuracy for each CAPA rule for both MalConv and the LGBM model. The LGBM model
is consistently more accurate than MalConv, but also more expensive.

Figure 4 shows the performance using Bayesian MalConv as the static model against various predictive
entropy thresholds, which represent different total runtimes. Following the naming conventions
from Madras et al. [46], “reject” means letting the dynamic model predict when Bayesian MalConv’s
uncertainty is above a certain threshold; “defer” means letting the dynamic model predict only when
Bayesian MalConv’s uncertainty is above a certain threshold, and when it guesses that the dynamic
model will make the correct prediction.

To enable the Bayesian MalConv model to defer, we train it with two equally-weighted prediction
tasks: the malware classification task, and the prediction of whether or not the dynamic model will be
accurate on the sample. Algorithm 1 describes the training procedure for the Defer approach, algorithm
2 describes the deployment time prediction procedure for the Reject approach, and algorithm 3 describes
the deployment time prediction procedure for the Defer approach. PyTorch is used to develop all of
our code [68], the Adam optimizer with default recommended settings is used for training in all of our
experiments [69], and a single NVIDIA Tesla P100 GPU was used.

Thresholds are chosen using a validation set. In Figure 4, we plot the actualized uncertainty thresholds
that maximize malware detection accuracy. The validation and test sets are split into samples from
November 2018 and December 2018 respectively. We also plot the accuracy achieved by an ensemble
model, which averages the predictions of the MalConv and dynamic models together. Unsurprisingly,
the ensemble model outperforms both MalConv and the dynamic model used in isolation. However,
both MalConv and dynamic analysis need to be run on every single file in order to compute the ensemble



0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

LGBM AUC

M
al

C
on

v
A

U
C

CAPA Prediction AUCs By Rule

Figure 2: The AUC for each CAPA rule for both MalConv and the LGBM model. While LGBM generally does
better than MalConv, MalConv is better in the worst case.

Algorithm 1 Training procedure for the Defer approach.
1: 𝑓.𝑡𝑟𝑎𝑖𝑛(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) ◁ Train the dynamic model 𝑓 (including feature extraction) on dataset of

executables 𝑋𝑡𝑟𝑎𝑖𝑛, and maliciousness labels 𝑌𝑡𝑟𝑎𝑖𝑛.
2: 𝑃𝑡𝑟𝑎𝑖𝑛,𝑓 ← 𝑓.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑡𝑟𝑎𝑖𝑛) ◁ Compute dynamic model’s predictions, 𝑃𝑡𝑟𝑎𝑖𝑛,𝑓 .
3: 𝐼𝑡𝑟𝑎𝑖𝑛 ← (𝑃𝑡𝑟𝑎𝑖𝑛,𝑓 == 𝑌𝑡𝑟𝑎𝑖𝑛) ◁ Compute a new set of labels, 𝐼𝑡𝑟𝑎𝑖𝑛, corresponding to the

dynamic model’s success on individual files.
4: 𝑔.𝑡𝑟𝑎𝑖𝑛(𝑋𝑡𝑟𝑎𝑖𝑛, [𝑌𝑡𝑟𝑎𝑖𝑛, 𝐼𝑡𝑟𝑎𝑖𝑛]) ◁

Train the static model 𝑔 (including feature extraction) on dataset of executables, 𝑋𝑡𝑟𝑎𝑖𝑛, to predict
maliciousness labels, 𝑌𝑡𝑟𝑎𝑖𝑛, and the dynamic model’s success, 𝐼𝑡𝑟𝑎𝑖𝑛. The loss function used for
training is 𝑙𝑜𝑠𝑠 = 𝑐𝑒(𝑔.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑌 (𝑋𝑡𝑟𝑎𝑖𝑛), 𝑌𝑡𝑟𝑎𝑖𝑛) + 𝑐𝑒(𝑔.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝐼(𝑋𝑡𝑟𝑎𝑖𝑛), 𝐼𝑡𝑟𝑎𝑖𝑛), where 𝑐𝑒 is
the Cross Entropy Loss, 𝑔.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑌 predicts maliciousness, and 𝑔.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝐼 predicts the dynamic
model’s success.

predictions, so the cost is significantly higher.
We highlight that the rejection model with an actualized threshold achieves a test accuracy roughly

equal to that of the ensemble model, while requiring dynamic analysis to be run on only 13.2 percent of
the test data. This saves a year’s worth of compute time compared to the ensemble model. The defer
approach achieves a higher accuracy than that of the ensemble, and only requires dynamic analysis to
be run on 17.3 percent of the test data.
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Figure 3: Performance with uncertainty-based rejection at various uncertainty thresholds. The x-axis
maps the percentage of the data that requires expensive analysis. The far right represents CAPA run-
ning on all the data, and the far left only uses cheaper predictive models (MalConv or LGBM).

Algorithm 2 Making predictions in deployment using the Reject approach. In this setting, the static
model 𝑔 is trained to predict only maliciousness.

1: 𝑌𝑝𝑟𝑒𝑑 ← 𝑔.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑌 (𝑋𝑡𝑒𝑠𝑡) ◁ Predict maliciousness using the static model on a deployment time
test input 𝑋𝑡𝑒𝑠𝑡.

2: 𝑈𝑝𝑟𝑒𝑑 ← 𝑔.𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑌 (𝑋𝑡𝑒𝑠𝑡) ◁ Compute the static model’s uncertainty (as measured by
predictive entropy) for its maliciousness prediction.

3: if 𝑈𝑝𝑟𝑒𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then ◁ If the static model’s uncertainty is above the desired threshold, make
a prediction using the dynamic model.

4: 𝑌𝑝𝑟𝑒𝑑𝑑𝑦𝑛𝑎𝑚𝑖𝑐
← 𝑓.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑡𝑒𝑠𝑡)

5: return 𝑌𝑝𝑟𝑒𝑑𝑑𝑦𝑛𝑎𝑚𝑖𝑐

6: else ◁ If the static model’s uncertainty is below the desired threshold, return the static model’s
prediction.

7: return 𝑌𝑝𝑟𝑒𝑑
8: end if

Even if the uncertainty threshold is set too high, accuracy with the deferral approach never dips
below that of the MalConv model. This confirms that MalConv is able to accurately predict when the
dynamic model will make a mistake. This, along with MalConv’s ability to accurately predict CAPA
outputs, suggests that MalConv is capable of uncovering useful features in binary data.

Finally, in Figure 5, we show a similar analysis, but instead of the dynamic model as the expensive
one, we use an LGBM model trained on EMBER features. In this case, running the more expensive
model on all of the data (the ensemble method) offers the best accuracy, but is also the most expensive
method by far. Both the reject and defer methods show the desired behavior of improving accuracy
while limiting compute costs.



Algorithm 3 Making predictions in deployment using the Defer approach.
1: 𝑌𝑝𝑟𝑒𝑑 ← 𝑔.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑌 (𝑋𝑡𝑒𝑠𝑡) ◁ Predict maliciousness using the static model on a deployment time

test input 𝑋𝑡𝑒𝑠𝑡.
2: 𝑈𝑝𝑟𝑒𝑑 ← 𝑔.𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑌 (𝑋𝑡𝑒𝑠𝑡) ◁ Compute the static model’s uncertainty (as measured by

predictive entropy) for its maliciousness prediction.
3: 𝐼𝑝𝑟𝑒𝑑 ← 𝑔.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝐼(𝑋𝑡𝑒𝑠𝑡) ◁ Predict dynamic model’s success using the static model.
4: if 𝑈𝑝𝑟𝑒𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝐼𝑝𝑟𝑒𝑑 == 1 then ◁ If the static model’s uncertainty is above the

desired threshold and the static model predicts that the dynamic model will be successful, make a
prediction using the dynamic model.

5: 𝑌𝑝𝑟𝑒𝑑𝑑𝑦𝑛𝑎𝑚𝑖𝑐
← 𝑓.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑡𝑒𝑠𝑡)

6: return 𝑌𝑝𝑟𝑒𝑑𝑑𝑦𝑛𝑎𝑚𝑖𝑐

7: else ◁ Else, return the static model’s prediction.
8: return 𝑌𝑝𝑟𝑒𝑑
9: end if
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Figure 4: Performance with Bayesian MalConv as the cheap model that runs on all files, followed by a more
expensive dynamic model. Both “Reject” and “Defer” require MalConv’s uncertainty to be above a certain
threshold before turning to the dynamic model, but “Defer” also needs MalConv to predict that the dynamic
model is likely to succeed.
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Figure 5: The performance with Bayesian MalConv as the cheap model, followed by LGBM on EMBER features
as the expensive model, for various predictive entropy thresholds.



6. Conclusions

We have shown that cheaper static analysis features can be used to predict the outcomes of more
expensive disassembly based analysis. We have also developed a dynamic analysis model that is
complementary to static analysis models. In both cases, we showed how uncertainty can be used to
minimize compute costs. Future work should explore chaining together a larger number of algorithms
and approaches, examine more refined measures of cost, and assess applicability in other areas of cyber
security.
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