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Abstract

Trauma patients are commonly severely injured people that require systematic evaluation and rapid
response. This paper presents work in progress for an explainable, late fusion and Deep Learning-
based prediction system for interventions in Intensive Care Units (ICU) by employing neurosumbolic
Explainable Artificial Intelligence (XAI) techniques.
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1. A Neural-Symbolic XAl Intervention Prediction System

There are many causes of trauma-related deaths that need immediate intervention within the
first hour of arrival to a trauma center. There are limited Clinical Decision Support Systems
(CDSS) for predicting ICU interventions for patients such as an interpretable deep learning
system [1]. Interpretability discovers the cause and effect behind the decisions, while the XAI
provides a human-understandable way. Current CDSS mainly focus on the interpretability,
while our work targets explainability by involving user engagement in an interactive way.
Our methodology focuses on the early prediction of interventions in ICUs by fusing the
multimodal input with regards to the patient. A late fusion architecture is adopted based on
a Deep Learning architecture that is illustrated in Figure 1. LSTMs are selected as classifiers
for predicting different interventions, namely need for mechanical ventilation, vasopressor
administration and transfusion (red blood cell, fresh frozen plasma, and platelet). However,
Explainability is prerequisite for the development of Artificial Intelligence (AI)-based CDSS.
Inspired from an interactive learning approach [2], complex conceptual explanations and
interactive learning are incorporated in our system. A Long Tensor Network (LTN) [3] imple-
mentation is adopted where the individual classifiers of Figure 1 are mapped to LTN predicates.
In LTN, there is a First-Order Logic Knowledge Base (K) containing a set of axioms, namely
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Figure 1: Late fusion classification
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Figure 2: Interactive XAl architecture

logical rules. The logical domain concepts are mapped to tensors (Real Logic) that are saved in
K. The main objective is a logical-based loss function that satisfy the K axioms (SatAgg) to the
greatest degree. The users can participate in the learning process by defining the constraints as
axioms to be saved in K and adding new logical rules until satisfaction is reached.
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