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Abstract
Medication change is very important to know the medical history of a patient. Most of the clinical
notes are in unstructured format and in addition to that due to its narrative nature expert human
annotators are needed to interpret the events, which is quite expensive. In this work, we present an
end-to-end model for the task of automatic extracting and classifying the medication change events from
a clinical note. We propose a joint learning model trained with adaptive sample weighting loss which
incorporates the use of clinical contextual embedding and static embeddings. Our proposed system
obtained competitive performance on CMED dataset (n2c2 challenge 2022) for contextual medical event
detection and classification.
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1. Introduction

Clinical NLP has benefited by the advancement in the field of Natural Language Processing and
Information Retrieval. Several shared tasks involving automatic extraction and annotations of
medical concepts and events have been organized by BioCreative 1, and NLP clinical Challenges
(n2c2) in the past years to encourage the research on clinical textual data such as Electronic
health records (EHRs). EHRs contains unstructured data which are a rich source of information
and are essential to design custom healthcare pathways for precision medicine. The narrative
nature of EHRs often make complicates the extraction and classification of clinical events. The
arrival of transformer [1] architectures has provided new directions on clinical NLP applications
allowing to extract finer contextual aspects of events in these notes.
The n2c2 2022 challenge2 track-1 problem statement consisted of 3 tasks, namely (a) med-

ication extraction, (b) event classification and (c) context classification. For a given clinical
note, the system is required to extract any mentioned medicine name, then classify whether it
is associated to a medication_change referred to as Disposition (otherwise NoDisposition or
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Undetermined), in which case it has to further classify the context of the medication change
event based on the following longitudinal dimensions: Action, Negation, Actor, Temporality
and Certainty.

2. Related Works

Several approaches including machine learning [2, 3] and deep learning [4, 5] have been explored
to medical entities extraction and context classification.

Rule-based [6] and machine learning based models [2, 3] such as Decision Tree, Naïve Bayes,
and SVM encounter difficulties because of out-of-vocabulary entities, unbalanced datasets,
indirect state changes and subtle difference between different class definitions. While, deep-
learning based methods such as hybrid model using RNNs and residual network [4]; multitask
learning [5] suffermostly ambiguity caused bywriting styles (such asmisspellings, abbreviations,
inconsistent tense usage) in EHRs.

We, therefore, propose CME2 network for extracting and identifying medication change event
by using static and contextual embeddings to incorporate domain and contextual information.
In this work, our main contribution are:

1. Joint end-to-end learning model for event extraction and context identification;
2. We treat the context classification as multiclass classification problem and propose use of

Adaptive Sample Weighting for end-to-end model learning.

3. Experimental Setup
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Figure 1: Schematic Pipeline of the
CME2 Net

Dataset We used the provided CMED dataset [7] and
it consisted of a training set of 350 clinical notes, a
development set of 50 clinical notes and a test set of
100 clinical notes. It is relevant to note that the train
and dev set have a similar average length distribution;
977 on train and 947 on dev respectively. The longest
clinical note in train + dev has a length of 4265. The test
set had average note length of 901 words and longest
note contained 2887 words.

Approach Our joint learning model is based on a
pipeline (Fig.1) whose architecture of consists of two
encoder modules i.e. static embeddings [8] (FastText,
Glove and POS-Tagging-scheme) and contextual em-
bedding module (BERT-based), a feature concatenation
layer, and two separate linear head layers. The first
head is responsible for the medication extraction and
event classification, while the second head determines
the context information for any detected Disposition
event cases by the first linear head.



Prior to main experiments, we performed a model selection via the 1st task using BERT-base-
cased, Bio-ClinicalBERT [9], and BioELECTRA [10]. We found Bio-ClinicalBERT model to be
the best among the three models and we further used it for rest of our experiments.

Loss with adaptive sample weighting We perform the joint training by using an additive
weighted cross-entropy loss function denoted by:

L(ℒ1, ℒ2) = 𝒦1ℒ1 +𝒦2ℒ2 (1)

Here, 𝒦1 and 𝒦2 indicates the softmax weights of the losses. We use AdamW optimizer for
training the model. For medication extraction and event classification is represented by ℒ1
and that for the context classification task is represented byℒ2. Eachℒ𝑗 corresponds to the
weighted cross-entropy loss (CE) which is inspired by [11] and is denoted by:

ℒ𝑗 =
𝑁
∑
𝑖=1

(−𝑦𝑖ln(𝑝𝑖)) ∗ (1− < 𝑝𝑖 >)0.1 (2)

Here, 𝑝𝑖, 𝑦𝑖 refers to the prediction probability and labels respectively. The calculated value
(1− < 𝑝𝑖 >)0.1 do not participate in gradient descent as they are detached from the computational
graph and are treated as constants. We hypothesize this to be similar to hard negative mining
[12] in computer vision, thereby we force the model to learn a good generalization, by putting
more focus on the under-confident examples.

Metrics For medication extraction task (task1), Lenient F1 score was used as the primary
evaluation metric. For event classification (task2), macro f1 score and for context classification
task(task3) F1-score was used.

4. Results

Model Task1 Task2
ClinicalBERT 0.9753 0.8513
+ biLSTM rf. + FT Head1 0.9749 0.8495
+ biLSTM rf. + FT BiLSTM 0.9758 0.8434
+ biLSTM rf. + FT Complete 0.9326 0.8598
+ biRNN rf. + FT Head1 0.9768 0.8524
+ biRNN rf. + FT biRNN 0.9753 0.8482
+ biRNN rf. + FT Complete 0.9742 0.8522

Table 1: Effect of RNN-LSTM refinement (rf.)

With 𝒦2=0, we perform the follow-
ing mentioned tests (a) RNN-LSTM re-
finement [4] for medication extraction
task; (b) Effect of word embedding(WE),
dropout(DP), class weights(CW) and
sentence-truncation(ST); (c) Effect of us-
ing bidirectional LSTM layer on word
embeddings and upsampling. Using the
obtained best model, we run the joint
training for the entire model.

4.1. Dev experiments

RNN-LSTM refinement As shown in Table 1, our base model Bio-ClinicalBERT obtained
a lenient F1-score of 0.9753 for task 1 and a macro lenient F1-score 0.8513 for task 2. When



Model Task1 Task2
ClinicalBERT 0.9753 0.8513
+ LSTM + CE(1,0) 0.9769 0.8451
+LSTM + WE + CE(1,0) 0.9690 0.8548

+DP(0.5)+WE+CE(0.5,0.5) 3 0.9757 0.8150
+DP(0.5) +WE+ CE(0.5,0.5)+UPSAMPLING 0.9758 0.8636
+WE+ CE(0.33,0.67)+UPSAMPLING 4 0.9762 0.8980

Table 3
Effect of using additional bi-LSTM layer and upsampling on development set

bi-LSTM layer is added to the base model, the F1 score for task 1 slightly increased to 0.9758
but macro F1 for task 2 decreased to 0.8434. Similarly, when bi-RNN layer is added to the base
model the F1-score for task 1, remains unchanged but the macro F1-score for task 2 decreased
to 0.8482.

Model Task1 Task2
ClinicalBERT 0.9753 0.8513
+ DP(0.2) 0.9743 0.8377
+ DP(0.2) + ST 0.9768 0.8233
+ DP(0.2) + CW + ST 0.9739 0.8238
+ DP(0.2) + WE 0.9684 0.8529
+ DP(0.2) + WE + ST 0.9751 0.8355
+ DP(0.2) + WE + CW + ST 0.9723 0.8212
+ DP(0.5) + WE 0.9792 0.8702
+ DP(0.5) + WE + ST 0.9722 0.8443
+ DP(0.5) + WE + CW + ST 0.9724 0.8277

Table 2: Effect of word embedding(WE), dropout(DP),
class weights(CW) and sentence-
truncation(ST) on development set

Effect of word embedding Next, we
tried different combinations of dropout
{0.2, 0.5}, adding static word embedding
(WE) layer, assigning class weights (CW)
and sentence truncation (ST) (refer Table
2). We observed that sentence trunca-
tion and using class weights did not im-
prove the results. We then added static
word embeddings, for which we used
Glove and FastText embeddings trained
on Open Access Case Reports [8]. We
observed that adding word embeddings
and dropout rate of 0.5 increased the F1
score for task 1 to 0.9792 and the macro
F1-score for task 2 to 0.8702.

Effect of using bidirectional LSTM layer We added additional biLSTM over static word
embeddings which gave an F1 score of 0.9769 on task 1 and 0.8451 on task 2 which did not
improve the model results. From all the combinations which we tried on top of Bio-ClinicalBERT,
the best was using a dropout of 0.5 with additional static word embedding encoder layer. Now,
we trained the model with cross entropy loss with (𝒦1,𝒦2)=(0.5,0.5) which give F1 score of
0.9757 , 0.8150 and 0.5144 on task 1,2 and 3 respectively. We then perform the model training
with upsampling (refer Table 3) and we observe that the it enhances the performance on
the three tasks. Post-evaluation, we perform an additional model run with upsampling and
(𝒦1,𝒦2)=(0.33,0.67) where we notice that model performance is increased as it obtains F1 score
of 0.9762, 0.8980 and 0.5857 on the three tasks respectively.

3Our submitted system
4Post-evaluation system



Task(s) Metric Max Min CME2 Net Overall Rank
NER Strict F1 0.9716 0.0913 0.9588

2nd
R
1

Lenient F1 0.9846 0.0945 0.9831
NER + Event Lenient micro F1 0.9225 0.2170 0.9101

3rd
Lenient macro F1 0.8348 0.2666 0.8186

E2E Combined Lenient F1 0.6647 0.0219 0.6145* 2nd

R
2

Event Lenient micro F1 0.9379 0.4243 0.9272
4th

Lenient macro F1 0.8673 0.2663 0.8417
Event+Context Combined Lenient F1 0.6766 0.0046 0.6504 2nd

R
3 Context Combined Lenient F1 0.7297 0.0209 0.6912* 2nd

Table 4
Overall Model Performance on test set in comparison all systems submitted at n2c2 2022 Track-1
challenge; *- scores correspond to post-evaluation system result

4.2. Test experiments results

Our best submitted system obtained 0.9831 Lenient F1-score on medication extraction task
(task 1) and 0.9588 F1-score for strict matching obtaining overall second position. With the
gold labels for task 1, our best submission obtained 0.9272 F1-score on event classification for
strict matching to obtain fourth position. Finally, our post-evaluation system obtained 0.6912
F1-score on context classification to obtain overall second position on the leaderboard.

5. Discussion

Error analysis on development set : We observe that our model is able to extract 962 out
of the 1010 medication names exactly. The medication instances where the model was not
successful included mainly “Insulin NPH” and “contrast dye” which were detected separately. If
some medication is agglomerated such as “lipitor20”, the model extracts it entirely. Medication
brand names such as “CARDURA” , “Lamictal” were also observed to be problematic. Other
examples include “Lisinopril/HCTZ”, “Ca 600/vit D” where the model detects the medication
separately. We also observed cases where certain medication occurred multiple times in the
document and the model tagged them differently. This can be attributed the tagging inconsis-
tency problem in NER. Out of 201 cases, our model classified 167 event instances correctly. For
the misclassification, we noticed that 2/3rd cases where model confuses between Undetermined
and Disposition/UnDisposition classes which can be attributed local context of the medication.
Although, we observe that our models misclassifies 70 times out of 167 context dimensions.
Further, we notice that out of 70 misclassification5, model struggles the most with Action (43
times), Certainty and Temporality (17 times), Actor (13 times) and the least with Negation
(4 times). For Action, the error can be attributed to the fact that often medication is mentioned
as a list or patient history that are the source of error. The narrative of the clinical report often
gets confusing with Start or UniqueDose, similarily for Certainty, Hypothetical and Conditional

5Note: Detected medication change has to be annotated for all the five contextual dimensions by the model, a single
mis-classification may involve overlap of multiple errors



situation get confusing. In case of Actor, the model often confuses as the Patient/Physician
were mentioned before in the text. It is also interesting to note, model was able to predict action
in colloquial language usage such as “inc”/ “taper off” whereas gold annotation marked them
wrong.

6. Conclusion

In this work, we proposed CME2 network, a joint learning model for identification and contex-
tual classification for medication change in clinical notes, as part of the n2c2 challenge. For
future work , we would like to look into multilabel setting for the medication change context
classification to explore the possibility of multiple context annotation and look into methods to
incorporate more context information in the clinical note.
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