
Applying Large Language Models for Enhancing Contract Drafting

Kwok-Yan Lam

1, Victor C.W. Cheng
2 and Zee Kin Yeong

3

1 Nanyang Technological University, Singapore
2 TAU Express Pte Ltd, Singapore
3 Singapore Academy of Law, Singapore

Abstract
This paper investigates the use of traditional AI and generative AI techniques in enhancing the
work of legal professionals. We propose an approach that applies a combination of AI
techniques, traditional AI augmented with generative models for automating some of the
laborious tasks in contract drafting. With the launches of advanced AI models such as ChatGPT,
legal professionals are anticipating how such technologies can streamline their works. We first
introduce how these models generate text contents given a user prompt. Then we propose some
practical approaches in “prompt writing” which enable better and more coherent contract
clauses to be generated. As privacy is typically a great concern in using ChatGPT in
professional domains, we also explore the feasibility and effectiveness of using on-premises
Large Language Models (LLMs) such as “Vicuna” as practical alternatives that may address
the privacy issues while producing acceptable performance in contract drafting. Since AI
generated clauses may not match the strict legal requirements or even be incorrect, we propose
an approach to evaluate the clauses with traditional AI by using sentence transformers to
retrieve similar clauses from a trusted source and perform automatic content similarity analysis.
Experimental results using the public dataset LEDGAR showed that LLMs are useful tools for
contract clause drafting and the automated comparison results can work as hints or
recommendations that users can consider to revise and enhance the generated clauses, hence
simplifying the task of contract drafting by legal professionals in an augmented intelligence
manner.

Keywords
LLMs, ChatGPT, clause recommender, contract drafting, hallucination, AI safety

1. Introduction

Contracts are legally binding between parties
and sets out the agreement between them of their
respective rights and obligations. They are usually
written in text format and contain clauses setting
out specific terms and conditions that capture their
agreement. The textual nature of contracts
presents a great potential for using natural
language processing (NLP) to contribute and
assist the drafting process. But unlike other NLP
tasks, words and phrases in contracts must be
carefully used to precisely, unambiguously, and

accurately capture the agreement between the
parties and this pose a great challenge to
researchers.

In general, contract drafting typically
involves a two-step process [1], as follows:

 Selecting a contract template which

contains clauses that match with the
situation or context of the specific
agreement being entered into; and

 Modifying the clauses to capture the
specific context and details agreed
between the parties.

These tasks require manual effort and domain

knowledge, especially the second task which
needs particularized information, accurate
understanding and sophisticated thought-process.
With the recent launches of ChatGPT [2] and
some LLMs such as LLaMA [3], contracts can be

In: Proceedings of the Third International Workshop on Artificial
Intelligence and Intelligent Assistance for Legal Professionals in
the Digital Workspace (LegalAIIA 2023), held in conjunction with
ICAIL 2023, June 19, 2023, Braga, Portugal.

 kwokyan.lam@ntu.edu.sg (K.Y. Lam),
 victor.cheng@tauexpress.com (V.C.W. Cheng).

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

generated automatically, given a user description
(known as prompt) which consists of the contract
context and the requirements. This paper focuses
on: (a) generation of clauses with LLMs, and (b)
identifying the aforementioned aspects in the
clauses. Task (b) is very significant because the
clauses obtained from (a), or contract templates,
may not be usable, or cannot meet specific needs
and circumstances, and require amendments.
Moreover, LLMs are almost invariably viewed as
“black box”, and the outputs are less explainable.
For example, there is a phenomenon called
hallucination that LLMs output results are not
realistic, do not follow user given context or
match any data patterns that it has been trained on.
There is a need to identify any missed aspects or
extraneous aspects in order to help users to
improve the quality of the clauses and reduce risks.

To the best of our knowledge, this may be the first
effort towards safe use of generative AI by
performing post-validation of the machine-
generated contract clauses using machine learning
approaches.

Figure 1 describes the overall process of our
proposed method for analyzing raw clauses.
Detailed description is given in Section 5.

The rest of this paper is organized as follows:
Section 2 reviews the related work. Section 3
introduces the working principles of LLMs and
Section 4 illustrates practical prompts that can be
used to generate clauses. Section 5 describes the
approach for analyzing and comparing generated
clauses against similar clauses retrieved from a
trusted source. Section 6 introduces the used
dataset and evaluation methods and presents the

Figure 1: Analysis of an input clause by comparing with similar clauses from a trusted repository.
Step 1: Use a sentence transformer to convert the input clauses to vector representation and extract
similar clauses from the clause repository by means of cosine similarity. Step 2: Extract the
keyphrases for both the input clause and the extracted clauses. Then convert them to vectors by
using the sentence transformer. Step 3: Perform clustering on keyphrase vectors coming from the
extracted clauses. Then compare the input clause vectors with the clusters and obtain “Involved
Clusters” (clusters having the input clause keyphrases around), “Missed Clusters (No input clause
keyphrase is found around), and ”Extra Keyphrases” input clause keyphrases that do not fall in
any clusters).

experimental results. Section 7 presents the
conclusions.

2. Related work

Contract clause generation has become one of
the research focuses when transformer decoders
[4] are introduced. Aggarwal et al. [5] proposed
CLAUSEREC framework for clause type and
clause content recommendation. It predicts the
clause type and generate the corresponding
content that users can consider to add to an
incomplete contract. In their work, the
recommended clauses are generated by a
transformer decoder based on the vector
representations of the clause type and the
incomplete contract. Joshi et al. [6] further
enhanced this work by identifying similar
contracts and adding the similar contract
representations to the clause generation process.

Regarding clause keyphrases (including
keywords) identification, [7] investigated the
performance of various traditional machine
learning approaches including logistic regression,
SVMs [8] and manually written rules. On the
other hand, [9] introduced a BERT based model
called ALeaseBERT fine-tuned on lease
agreements for the extraction of specified types of
keyphrases and red flags, if exist.

Unlike the aforementioned work, this paper
explores the feasibility of using LLMs to generate
contract clauses which have much larger model
sizes, compared to BERT [10], and trained on
huge amount of public domain data or internet
data and fine-tuned on large amount of various
tasks data, not solely fine-tuned on datasets
containing contract precedents. Our clause
analysis work is also different from the above
work. Apart from extracting the keyphrases, from
individual clauses, the extracted keyphrases are
further clustered so that keyphrases with different
wordings but having similar meanings can be
grouped together. This process enables clause
comparison to be carried out more effectively, not
just depending on the spelling of words.

3. Large language models (LLMs)

The main task of a language model is to model
the generation of languages. Most recent LLMs
are based on the neural network architectures
called Transformers [4]. They are trained on huge
amounts of text data which enables them to
capture the long range dependencies within text

and hence generate coherent content such that the
generated texts are closely related to each other.
This is usually done in the way that the model
predicts the next word based on the previously
generated words such that the generated content is
grammatically correct and coherent. Figure 2
shows two generated sentences: “How are you”
and “How do you ……”. The generation process
is probabilistic. Even when the first word “How”
is the same for the two sentences, the second word
can be different. Depending on the text that is
sampled, the second word can be some other word
that is commonly found following the word
“How”. In order to train the language models to
be grammatically correct, a huge dataset of
sentences is required.

Having just grammatically correct language
models may not be useful. People prefer the
generated content to be coherent and closely
related to user given prompts. The desired
generation of the word 𝒘𝒏 can be described as

𝑃(𝑤௡|𝑤௡ିଵ, 𝑤௡ିଶ, … , 𝑝𝑟𝑜𝑚𝑝𝑡), (1)

where 𝑤௡ିଵ, 𝑤௡ିଶ, … are the previously
generated words and prompt is the text string that
contains:

1. User instruction,
2. Context, and
3. Examples.

Figure 3. illustrates an example that how a
sentence “Planes have wings” to be generated,
given the prompt “Write a sentence about a
vehicle.”. This prompt only has the “user
instruction” whereas context and examples are not
given to the model. In order to train the language
models to follow user instruction, a lot of labeled
data (i.e. prompts with desired outputs) are
required. Furthermore, for more sophisticated
structural tasks such as the generation of a
contract or a business plan, corresponding training
data should be used for further training.

Apart from different types of training data, the
language models must be sufficiently large to
follow the instructions and understanding the
context and examples. Other factors that have
significant impacts on the language model
performance are the language model structure,
constituting components, training methods, and
the loss functions. Different models’ training
methods and data can derive different

implementations of the equation (1) and hence
different text generation. Some efficient models
such as the Vicuna [11] models, based on LLaMA,
can be fine-tuned to have about 90% performance
of the ChatGPT with just about 7% the number of
parameters of ChatGPT.

4. Prompt writing for generating
legal contracts and clauses

As most LLMs are capable of multiple tasks,
such as sentiment classification, question and
answering, information extraction, and text
generation, users are required to provide the
prompt to instruct models so that corresponding
responses can be generated. There are few aspects
that should be noted for writing a prompt:

Figure 3: Example of using a prompt “write a sentence about a vehicle” to instruct a language model to generate a related
sentence. “<start>” : is the sentence beginning tag. Step 1: Sample a word from a vocabulary, with words of vehicles having
higher probabilities. The word “Planes” is sampled (marked with “*”). Step 2: Given the prompt and the first word “Planes”,
words “fly”, “are”, “have” have higher probabilities to be the next word, and “have” is sampled. Step 3: Given the prompt
and the sampled words “Planes” and “have”, the top probability next words are “wings”, “landing”, “engine” and the word
“wings” is sampled. Step 4: Given the prompt and the sampled words “Planes”, “have” and “wings”, the words/punctuation
with higher probabilities to be the next sampled entity are “to”, “and”, and “.”. The punctuation “.” is sampled in this case.
Since a sentence is generated, the language model stops here.

Figure 2: Generation of the sentences “How are you” and
“How do you ……” by a language model. Each word is
sampled from a vocabulary given the previously
generated words.

 Clear task description,
 Style,
 Fairness, no bias, ethical, and not

harmful.
For contract clause generation, prompts may be:

Draft a legal clause for [task], or
Draft a contract clause between [person1]
and [person2] for [task]

In the examples above, either using the word
“draft” or “generate” is sufficient to indicate the
type of the prompt. The words “legal” or “contract”
should be included which enable the LLMs to use
legal or contract styles. If users want to generate a
clause that follow a list of specifics that form the
context, the context should be included to the
prompt as the following example.

{{{context text}}}
- Based on the previous information, draft

a legal clause to [task]
- The clause should include [entities]

In the above clause, the text describing the context
should be enclosed by “{{{” and “}}}”. It is
because they help the LLMs to differentiate the
context from other text. Also, if there are
additional conditions augmented to the clauses,
users should specify them in a clear format.

5. Analysis and evaluation of the
generated clauses

As clauses the legally binding and define the
rights, obligations, and agreements between the
parties in the contract, they should be clearly and
precisely drafted. In contrast, the generation of
clauses with LLMs is a black box process which
currently lacks explainability. The hallucination
phenomenon of LLMs even makes the situation
worse because models can generate results that
are not related to the prompt. Thus, there is a need
to validate the AI generated clauses to match the
user requirements. A common and secure method
is the human-in-the-loop [12] in which a legal
professional intervenes in the generation process
by either (a) revising the generated clauses
directly or (b) revising the model input prompt
and direct the model to regenerate the clauses and
hope better clauses can be regenerated. This
presupposes that the person revising the generated
clause or making the final selection is

knowledgeable. To assist the person revising or
making the selection, we propose using a machine
learning approach to identify various aspects of a
clause and compare them with aspects obtained
from clauses extracted from trusted sources. The
benefit of this approach is that the differences, in
aspects, between the generated clauses and
selected clauses can be automatically identified
This can help to revise the generated clauses to
ensure consistency and quality with reference to
the trusted source.

Before introducing the proposed approach,

we briefly describe 3 important tools that are used
in the approach.

1. Sentence transformers [13]: for

identifying clauses with similar contents.
We use it because it is fine tuned to
perform similarity measure between two
sentences.

2. PatternRank [14]: extracting

keyphrases from sentences.

3. Uniform maniform approximation

and projection (UMAP) [15]: for
manifold approximation and projection.

5.1. Sentence transformers

Sentence transformers are based on Siamese
neural networks for obtaining embeddings (i.e.
vector representations) of sentences or paragraphs.
A sentence transformer uses a pre-trained
language model such as BERT or RoBERTa as its
core neural network component and fine tune it
with a large labeled dataset which enhances its
capability to differentiate which relationship a
pair of sentences should be, one of the following:

1) Entailment, when the first sentence is true,

the second sentence is also true;

2) Neutral, the truth of the sentences is

independent of each other;

3) Contradiction, the sentences contradict

with each other.

After fine tuning, the sentence transformer
can transform sentences to vectors such that
sentences with similar contents will have vectors

close to each other, whereas sentences with
different contents will have vectors far apart from
each other. Hence, given vector representations of
a pair of sentences, the similarity can be evaluated
by using cosine similarity.

5.2. PatternRank

PatternRank performs keyphrases extraction
by finding the sub-phrases in a document that are
the most similar to the input document itself.

The working principle is that it first uses a
sentence transformer to get a document-level
vector representation and vector embeddings of
N-gram phrases appearing in the input document.
Then cosine similarity is used to find the top
phrases that are most similar to the input
documents.

It basically is an enhancement of KeyBERT
[16]. It allows user to define the patterns of
phrases to be extracted instead of simple n-grams
of pre-defined lengths.

5.3. UMAP + DBSCAN

Since the vectors produced from sentence
transformers have relatively high dimension, 384
dimensional vectors in our experiments.
Performing clustering directly on the vectors with
common algorithms such as K-Means may give
non-satisfactory results because of the curse of
dimensionality. First the vectors may be
distributed in a low dimensional manifold space
embedded in a high dimensional space. Secondly,
the distance difference between nearest data
points and farthest data points decreases as the
dimension increases.

UMAP is a tool for addressing high
dimensional and manifold distributed data. The
data are first non-linearly projected to a low
dimensional space and then a density-based
clustering (e.g., DBSCAN [17]) is performed.

5.4. Clause analysis and evaluation

Referring to Figure 1, an input clause is first
obtained from a contract template or an LLM, and
a set of similar clauses is obtained from a trusted
sources (e.g., a repository of examined clauses) by
using a sentence transformer and cosine similarity.
Since the similar clauses are trusted and reliable

clauses, they contain significant and desirable
aspects that the user should check against with the
input clause. In order to explicitly extract these
aspects from the similar clauses, we propose to
perform the following procedure:

1. Extract keyphrases from the input clause

and similar clauses separately by
PatternRank.

2. Use sentence transformer to transform all
of the keyphrases to vectors.

3. Perform a clustering solely on the vectors
coming from similar clauses by UMAP
and DBSCAN.

4. Compute the distance between the
keyphrase vectors of the input clauses to
the cluster centers.

5. Assign the keyphrase vectors of the input
clause to cluster x if distance between the
keyphrase vector and cluster x <
threshold value. Those clusters
containing the keyphrases from the input
clause are labeled as Involved Clusters
(Involved Aspects).

6. Label the keyphrases as Extra
Keyphrases if it cannot be assigned to
any clusters.

7. Clusters without keyphrase vector from
the input clause are labeled as Missed
Clusters (Missed Aspects), because the
input clause has no keyphrase related to
these clusters.

Here we have made an assumption that an aspect
of a clause is closely related to the keyphrases
appearing in that clause. Individual clusters or
groups of these keyphrases represent the aspects
of the extracted similar clauses. Finally, user may
augment the input clause with the aspects
represented by Missed Clusters and to decide
whether to preserve the Extra Keyphrases or not
as they are not found in similar clauses.

6. Experiments

We investigate the quality of generated
contract clauses by comparing them with the
clauses of the trusted dataset LEDGAR [18]. The
quality is assessed by using ROUGE F1 [19],
precision, recall and F1. ROUGE F1 is a widely
used tool for text content comparison, whereas
precision, recall and F1 are used for assessing the
extent of aspects to be addressed by the model
generated clauses. They are evaluated as follows:

1. ROUGE F1 score: For each machine

generated clause, we compute the F1
scores of ROUGE-1, ROUGE-2, and
ROUGE-L with respect to the 15
extracted similar clauses from
LEDGAR, having cosine similarity >
0.5. The means of the scores are reported.

2. Precision, Recall, and F1: For each

machine generated clause, we compute
the precision, recall, and F1 with respect
to the aspects derived from the 15
extracted similar clauses from
LEDGAR. The precision and recall are
defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝐴𝑠𝑝𝑒𝑐𝑡𝑠

𝑘𝑒𝑦𝑝ℎ𝑟𝑎𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑐𝑙𝑎𝑢𝑠𝑒
, (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝐴𝑠𝑝𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝐴𝑠𝑝𝑒𝑐𝑡𝑠
 . (3)

In the experiments, we generate the clauses with
ChatGPT and a local LLM called Vicuna which
also has an interactive text input and output
similar to ChatGPT. Since both models also
generate the text of description of the tasks and
legal disclaimers in addition to the generated
clauses, we remove all these text before the
evaluation.

6.1. Data

The public domain dataset LEDGAR was
introduced by Tuggener et al. at 2020. It was
crawled and scraped from the U.S. Securities and
Exchange Commission filings (SEC filings) and
contains contract clauses between years 2016-
2019. These contracts are mainly material
contracts (called Exhibit-10) including
shareholder agreements, employment agreements,
and non-disclosure agreements. After data
cleanup and preprocessing, the dataset contains
60,540 contracts and a total of 846,274 clauses.

6.2. ChatGPT, Vicuna and other
component settings

In the evaluation, the ChatGPT used is the
March 23 version. For the Vicuna model, we use
the “llama.cpp” to interact with the model because

“llama.cpp” is a pure C/C++ implementation with
the support for 4-bit quantization of the model.
This allows the quantized Vicuna model to be
assessed with a general 12GB RAM notebook,
even without a GPU. These features are very
desirable because people with privacy concern
can have a ChatGPT-like application to be
executed locally. The model we used is the fine-
tuned and 4-bit quantized 13B LLaMA model and
the important program configuration parameters
are given below:

 Temperature: 0.7,
 Top_k: 40,
 Top_p: 0.8,
 Repeat_penalty: 1.2,
 Prompt context length: 2048,

and use default values for other parameters. For
the sentence transformer, the model used is all-
MiniLM-L6-v2,which transforms input sentences
to 384 dimensional vectors.

For PatternRank, top 10 ranked keyphrases are
used. We also define a more complex POS
patterns to extract various types of keyphrases in
clauses:

(<J.*|V.*>+<CC.*>)*<J.*|V.*>*<
N.*>+

For UMAP, number of neighbors is set to 5,
minimum distance between two projected data
points is 0.0 and the projected dimension is 5. For
the DBSCAN, default parameters are used except
the minimum samples to form a cluster is set to 4.

6.3. Clause generation

The test clauses are generated manually by
using the ChatGPT’s and Vicuna’s interactive
interfaces. We generated the clauses for a house
rental agreement and a sales agreement with the
prompts shown in Table 1. In the table, a simple
context “For a house rental agreement:” is only
given for the 1st prompt. The LLMs can refer back
to the context for the rest prompts. We had tested
the generation of a total of 9 clause types for the
rental agreement. Similarly, for the sales
agreement, the 1st prompt has a context “For a
sales agreement:” and a total of 8 clause types are
generated. For each clause type, we generate 5
sample clauses. Hence, there are in total 85 model
generated clauses for testing. For ChatGPT,
multiple samples are obtained by regeneration

whereas for Vicuna, the samples are obtained by
changing the randomization seed.

Table 1: The prompts used to generate 9 types of contract
clauses for a house rental agreement. E.g., For generating the
3rd type clauses, the prompt used is “Draft a legal clause for
security deposit”.

1st prompt For a house rental agreement:
draft a legal clause for the term
of agreement

Other
prompts

Draft a legal clause for the
[clause type]

clause types
for other 8
prompts

 rent and payment method
 security deposit
 late payment of rent
 utilities of the property
 maintenance and damages of

the property
 occupancy and sublease of

the property
 miscellaneous provisions for

the agreement
 government law

6.4. Results

Table 3 summarizes the mean ROUGE F1
scores of the generated clauses for a house rental
agreement and a sales agreement, using the
prompts given in Table 1 and 2, respectively. The
results shows that the scores are relatively low.
The low values point out that the vocabulary and

Table 2: The prompts used to generate 8 types of contract
clauses for a sales agreement. E.g., For generating the 4-th
type clauses, the prompt used is “Draft a legal clause for
inspection and acceptance”.

1st prompt For a sales agreement: draft a
legal clause for the term of
agreement

Other
prompts

Draft a legal clause for
[clause type]

Clause types
for other 7
prompts

 product(s) subject to sale
 delivery of the product(s)
 inspection and acceptance
 price and payment
 mechanical warranty
 force majeure
 termination

the styles used in the generated clauses are
different from the extracted similar clauses. It is
expected as the LLMs are pre-trained on
tremendous amount of text, in additional to legal
text. Moreover, the generated clauses are just
based on the simple prompts and thus the clauses
are generated for general situations. This means
that the requirement of attorneys to review and
tailor clauses to the specific circumstances of the
parties involved is still necessary.

Table 4 shows the mean precision, mean
recall and mean F1 score of the LLM generated
clauses for the two agreements. The results show
that considerable aspects of the related and trusted
clauses are addressed by the generated clauses.
This indicated LLM generated clauses can cater
for many aspects of contract clauses and can be
used as an initial point for drafting clauses, even
there are still some enhancements required. When
comparing the performance of the ChatGPT and
Vicuna, it is quite clear that the precision of the
ChatGPT on the tasks is significantly higher than
Vicuna, given that the Recall values are similar.
This is also expected as model size of ChatGPT is
much larger than that of Vicuna.

Finally, Tables 5 and 6 show two samples
(one for ChatGPT and one for Vicuna) to illustrate
the generated clauses, derived aspects, Involved
Aspects, Missed Aspects, and Extra Keyphrases.
With this information, users can consider to revise
their clauses, if necessary.

Table 3: Mean ROUGE F1 scores of the LLM generated
clauses for a house rental agreement and a sales agreement.

House Rental Agreement
Model Mean

ROUGE-1
Mean

ROUGE-2
Mean

ROUGE-L
ChatGPT 0.32 0.10 0.28

Vicuna 0.32 0.11 0.28

Sales Agreement
Model Mean

ROUGE-1
Mean

ROUGE-2
Mean

ROUGE-L
ChatGPT 0.30 0.09 0.25

Vicuna 0.29 0.09 0.25

Table 4: Mean Precision, Recall, and F1 scores of the LLM
generated clauses for a house rental agreement and a sales
agreement.

House Rental Agreement
Model Mean

Precision
Mean
Recall

Mean
F1

ChatGPT 0.77 0.61 0.68
Vicuna 0.60 0.62 0.61

Sales Agreement

Model Mean
Precision

Mean
Recall

Mean
F1

ChatGPT 0.72 0.59 0.65
Vicuna 0.60 0.61 0.58

Table 5: The clause generated with the prompt “draft a legal clause for the late payment of the rent” using ChatGPT. The
derived aspects (using similar clauses from LEDGAR dataset), Involved Aspects, Missed Aspects, and Extra Keyphrases are
illustrated.

Model Prompt: draft a legal clause for the late payment of the rent
ChatGPT Tenant acknowledges that the timely payment of rent is of the essence of this agreement. If Tenant fails

to pay rent in full on or before the due date specified in this agreement, Tenant shall be considered in
default under this agreement. If rent is not paid on or before the due date, Tenant shall be subject to a late
fee of [insert late fee amount or percentage] per day until the rent is paid in full. The late fee shall be in
addition to any other charges or damages owed by Tenant under this agreement. If Tenant fails to pay
rent within [insert number of days] days after the due date, Landlord may, at Landlord's sole discretion,
give Tenant a notice of termination of this agreement, and Tenant shall vacate the premises within [insert
number of days] days from the date of the notice. In addition to any other remedies available under
applicable law, the Landlord may also seek damages for any unpaid rent or other amounts owed by Tenant
under this agreement. Tenant acknowledges that the late payment of rent may cause the Landlord to incur
additional costs and expenses, including but not limited to, late fees, legal fees, and other costs associated
with collecting rent. Tenant agrees to indemnify and hold harmless the Landlord from any and all such
costs and expenses incurred by the Landlord as a result of Tenant's failure to pay rent in a timely manner.

Involved Aspects: 0, 1, 8, 9, 10, 11, 13
Missed Aspects: 2, 3, 4, 5, 6, 7, 12
Extra Keyphrases: “unpaid rent”

Aspect 0 'late payment', 'subsequent late payments', 'first late payment'
Aspect 1 'late charges', 'pay such late charge', 'late charge therefor'
Aspect 2 'pay landlord', 'compensates landlord', 'costs landlord'
Aspect 3 'incur costs', 'attorney fees', 'accounting charges'
Aspect 4 'additional minimum rent', 'additional rent', 'basic lease terms'
Aspect 5 'rent payment', 'rent adjustment deposits', 'real property taxes',
Aspect 6 'default rate', 'overdue amount', 'overdue payment'
Aspect 7 'installment', 'bear interest', 'pay such interest'
Aspect 8 'notice', 'written notice', 'foregoing notice'
Aspect 9 'grant tenant', 'tenant', 'gives tenant notice'
Aspect 10 'liquidated damages', 'damage', 'actual damages'
Aspect 11 'due date', 'applicable due date'
Aspect 12 'payment', 'creditor relationship', 'future payments'
Aspect 13 'grace period', 'cure period', 'month period'

Table 6: The clause generated with the prompt “draft a legal clause for force majeure” using Vicuna.

Model Prompt: Draft a legal clause for force majeure
Vicuna Neither party shall be liable to the other for any delay or failure to perform its obligations under this Sales

Agreement if such delay or failure arises from circumstances beyond its control, including but not limited
to acts of God, fire, flood, earthquake, riot, civil commotion, war, invasion, act of government, sabotage,
labor shortages, or failures of the Internet. If either party is prevented from performing any obligation by
such circumstances, it shall give prompt notice thereof to the other party and make a reasonable effort to
minimize the impact of such events on its performance.

Involved Aspects: 0, 1, 2, 3, 4, 8, 10
Missed Aspects: 5, 6, 7, 9
Extra Keyphrases: 'give prompt notice', ‘God’

Aspect 0 'agreement', 'written notice'
Aspect 1 'delays', 'manufacturer delays', 'excusable delay'
Aspect 2 'failure', 'causing cessation', 'communication failures'
Aspect 3 'affected party', 'parties', 'other party'
Aspect 4 'obligations', 'respective obligations', 'payment obligations'
Aspect 5 'liability', 'damages', 'negligence'
Aspect 6 'circumstance', 'present or future law', 'event'
Aspect 7 'limitation', 'governmental action', 'governmental regulation'
Aspect 8 'labor troubles', 'work stoppages', 'labor difficulties'
Aspect 9 'terrorism', 'including disruption', 'cyber attack'
Aspect 10 'limitation earthquakes', 'earthquake', 'severe weather conditions'

7. Conclusions

The launch of ChatGPT and the emergence of
LLMs have tremendous impacts, both as an
opportunity and as a threat, on different aspects of
digital transformation. In this paper, we introduce
the underlying working principle and investigate
their performance on contract clause drafting. We
also propose an approach to enhance these clauses
by using a trusted contract clause source.
Experimental results show that the generated
clauses are usable as they can address a significant
number of related aspects that usually appear in
clauses of practical contracts.

8. Acknowledgement

This research / project is supported by the
National Research Foundation, Singapore and
Infocomm Media Development Authority under
its Trust Tech Funding Initiative. Any opinions,
findings and conclusions or recommendations
expressed in this material are those of the author(s)
and do not reflect the views of National Research
Foundation, Singapore and Infocomm Media
Development Authority.

9. References

[1] D. Simonson, D. Broderick, J. Herr, The
extent of repetition in contract language, in:
Proceedings of the Natural Legal Language
Processing Workshop 2019, Association for
Computational Linguistics, Minneapolis,
Minnesota, 2019, pp. 21–30.

[2] ChatGPT, personal communication, March
23, 2023.

[3] H. Touvron et al., LLaMA: Open and
efficient foundation language models,
arXiv:2302.13971, 2023. URL:
https://arxiv.org/abs/2302.13971.

[4] A. Vaswani et al., Attention is all you need,
in: Proceedings of Neural Information
Processing Systems, 2017, pp. 5998-6008.

[5] V. Aggarwal et al., A Clause
Recommendation Framework for AI-aided
Contract Authoring, in: Proceedings of the
2021 Conference on Empirical Methods in
Natural Language Processing, 2021, pp.
8770-8776.

[6] S. Joshi et al., Investigating strategies for
clause recommendation, Legal Knowledge
and Information Systems, 2022.
doi:10.3233/FAIA220450.

[7] I. Chalkidis, A. Michos, Extracting contract
elements, in: Proceedings of the 16th Edition
of the International Conference on Artificial

Intelligence and Law, 2017, pp. 19-28. doi:
10.1145/3086512.3086515.

[8] N. Cristianini, J. Shawe-Taylor, An
Introduction to Support Vector Machines and
other kernel-based learning methods,
Cambridge University Press, 2000.

[9] S. Leivaditi, J. Rossi, E. Kanoulas, A
benchmark for lease contract review,
arXiv:2010.10386, 2020. URL:
https://arxiv.org/abs/2010.10386.

[10] J. Devlin et al., BERT: Pre-training of deep
bidirectional transformers for language
understanding, arXiv:1810.04805v2, 2019.
URL: https://arxiv.org/abs/1810.04805v2.

[11] W. L. Chiang et al., Vicuna: An open-source
chatbot impressing GPT-4 with 90%
ChatGPT quality, 2023. URL:
https://vicuna.lmsys.org.

[12] Wikipedia contributors, Human-in-the-loop,
Wikipedia, The Free Encyclopedia, 2023.
URL:
https://en.wikipedia.org/w/index.php?title=
Human-in-the-loop&oldid=1145872129

[13] N. Reimers, I. Gurevych, Sentence-BERT:
Sentence embeddings using Siamese BERT-
Networks, in: Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th
International Joint Conference on Natural
Language Processing, Association for
Computational Linguistics, 2018, pp. 3982-
3992.

[14] T. Schopf, S. Klimek, F. Matthes,
PatternRank: Leveraging pretrained
language models and part of speech for
unsupervised keyphrase extraction, in:
Proceedings of the 14th International Joint
Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge
Management, 2022, pp. 243-248. doi:
10.5220/0011546600003335.

[15] L. McInnes, J. Healy, J. Melville, UMAP:
Uniform Manifold Approximation and
Projection for Dimension and Reduction,
arXiv:1802.03426, 2018. URL:
https://arxiv.org/abs/1802.03426.

[16] M. Grootendorst, KeyBERT: Minimal
keyword extraction with BERT, Zenodo,
2020. doi: 10.5281/zenodo.4461265.

[17] M. Ester et al., A density-based algorithm for
discovering clusters in large spatial databases
with noise, in: Proceedings of the 2nd
International Conference on Knowledge
Discovery and Data Mining, 1996, pp. 226-
231.

[18] D. Tuggener et al., LEDGAR: A large-scale
multi-label corpus for text classification of
legal provisions in contracts, in: Proceedings
of the 12th Language Resources and
Evaluation Conference, 2020, pp. 1235-1241.

[19] C. Y. Lin, ROUGE: A package for automatic
evaluation of summaries, In: Text
Summarization Branches Out, Association
for Computational Linguistics, Barcelona,
Spain, 2004, pp. 74-81.

