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Abstract  
This paper investigates the use of traditional AI and generative AI techniques in enhancing the 
work of legal professionals. We propose an approach that applies a combination of AI 
techniques, traditional AI augmented with generative models for automating some of the 
laborious tasks in contract drafting. With the launches of advanced AI models such as ChatGPT, 
legal professionals are anticipating how such technologies can streamline their works. We first 
introduce how these models generate text contents given a user prompt. Then we propose some 
practical approaches in “prompt writing” which enable better and more coherent contract 
clauses to be generated. As privacy is typically a great concern in using ChatGPT in 
professional domains, we also explore the feasibility and effectiveness of using on-premises 
Large Language Models (LLMs) such as “Vicuna” as practical alternatives that may address 
the privacy issues while producing acceptable performance in contract drafting. Since AI 
generated clauses may not match the strict legal requirements or even be incorrect, we propose 
an approach to evaluate the clauses with traditional AI by using sentence transformers to 
retrieve similar clauses from a trusted source and perform automatic content similarity analysis. 
Experimental results using the public dataset LEDGAR showed that LLMs are useful tools for 
contract clause drafting and the automated comparison results can work as hints or 
recommendations that users can consider to revise and enhance the generated clauses, hence 
simplifying the task of contract drafting by legal professionals in an augmented intelligence 
manner. 
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1. Introduction 

Contracts are legally binding between parties 
and sets out the agreement between them of their 
respective rights and obligations. They are usually 
written in text format and contain clauses setting 
out specific terms and conditions that capture their 
agreement. The textual nature of contracts 
presents a great potential for using natural 
language processing (NLP) to contribute and 
assist the drafting process. But unlike other NLP 
tasks, words and phrases in contracts must be 
carefully used to precisely, unambiguously, and 

accurately capture the agreement between the 
parties and this pose a great challenge to 
researchers. 

In general, contract drafting typically 
involves a two-step process [1], as follows:  

 
 Selecting a contract template which 

contains clauses that match with the 
situation or context of the specific 
agreement being entered into; and 

 Modifying the clauses to capture the 
specific context and details agreed 
between the parties. 

 
These tasks require manual effort and domain 

knowledge, especially the second task which 
needs particularized information, accurate 
understanding and sophisticated thought-process. 
With the recent launches of ChatGPT [2] and 
some LLMs such as LLaMA [3], contracts can be 
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generated automatically, given a user description 
(known as prompt) which consists of the contract 
context and the requirements. This paper focuses 
on: (a) generation of clauses with LLMs, and (b) 
identifying the aforementioned aspects in the 
clauses. Task (b) is very significant because the 
clauses obtained from (a), or contract templates, 
may not be usable, or cannot meet specific needs 
and circumstances, and require amendments. 
Moreover, LLMs are almost invariably viewed as 
“black box”, and the outputs are less explainable. 
For example, there is a phenomenon called 
hallucination that LLMs output results are not 
realistic, do not follow user given context or 
match any data patterns that it has been trained on. 
There is a need to identify any missed aspects or 
extraneous aspects in order to help users to 
improve the quality of the clauses and reduce risks. 

To the best of our knowledge, this may be the first 
effort towards safe use of generative AI by 
performing post-validation of the machine-
generated contract clauses using machine learning 
approaches. 

Figure 1 describes the overall process of our 
proposed method for analyzing raw clauses. 
Detailed description is given in Section 5.  

The rest of this paper is organized as follows: 
Section 2 reviews the related work. Section 3 
introduces the working principles of LLMs and 
Section 4 illustrates practical prompts that can be 
used to generate clauses. Section 5 describes the 
approach for analyzing and comparing generated 
clauses against similar clauses retrieved from a 
trusted source. Section 6 introduces the used 
dataset and evaluation methods and presents the 

Figure 1: Analysis of an input clause by comparing with similar clauses from a trusted repository. 
Step 1: Use a sentence transformer to convert the input clauses to vector representation and extract
similar clauses from the clause repository by means of cosine similarity. Step 2: Extract the 
keyphrases for both the input clause and the extracted clauses. Then convert them to vectors by 
using the sentence transformer. Step 3: Perform clustering on keyphrase vectors coming from the 
extracted clauses. Then compare the input clause vectors with the clusters and obtain “Involved
Clusters” (clusters having the input clause keyphrases around), “Missed Clusters (No input clause 
keyphrase is found around), and ”Extra Keyphrases” input clause keyphrases that do not fall in 
any clusters). 



experimental results. Section 7 presents the 
conclusions.  

2. Related work 

Contract clause generation has become one of 
the research focuses when transformer decoders 
[4] are introduced. Aggarwal et al. [5] proposed 
CLAUSEREC framework for clause type and 
clause content recommendation. It predicts the 
clause type and generate the corresponding 
content that users can consider to add to an 
incomplete contract. In their work, the 
recommended clauses are generated by a 
transformer decoder based on the vector 
representations of the clause type and the 
incomplete contract. Joshi et al. [6] further 
enhanced this work by identifying similar 
contracts and adding the similar contract 
representations to the clause generation process. 

Regarding clause keyphrases (including 
keywords) identification, [7] investigated the 
performance of various traditional machine 
learning approaches including logistic regression, 
SVMs [8] and manually written rules. On the 
other hand, [9] introduced a BERT based model 
called ALeaseBERT fine-tuned on lease 
agreements for the extraction of specified types of 
keyphrases and red flags, if exist.  

Unlike the aforementioned work, this paper 
explores the feasibility of using LLMs to generate 
contract clauses which have much larger model 
sizes, compared to BERT [10], and trained on 
huge amount of public domain data or internet 
data and fine-tuned on large amount of various 
tasks data, not solely fine-tuned on datasets 
containing contract precedents. Our clause 
analysis work is also different from the above 
work. Apart from extracting the keyphrases, from 
individual clauses, the extracted keyphrases are 
further clustered so that keyphrases with different 
wordings but having similar meanings can be 
grouped together. This process enables clause 
comparison to be carried out more effectively, not 
just depending on the spelling of words. 

3. Large language models (LLMs) 

The main task of a language model is to model 
the generation of languages. Most recent LLMs 
are based on the neural network architectures 
called Transformers [4]. They are trained on huge 
amounts of text data which enables them to 
capture the long range dependencies within text 

and hence generate coherent content such that the 
generated texts are closely related to each other. 
This is usually done in the way that the model 
predicts the next word based on the previously 
generated words such that the generated content is 
grammatically correct and coherent. Figure 2 
shows two generated sentences: “How are you” 
and “How do you ……”. The generation process 
is probabilistic. Even when the first word “How” 
is the same for the two sentences, the second word 
can be different. Depending on the text that is 
sampled, the second word can be some other word 
that is commonly found following the word 
“How”. In order to train the language models to 
be grammatically correct, a huge dataset of 
sentences is required.  

Having just grammatically correct language 
models may not be useful. People prefer the 
generated content to be coherent and closely 
related to user given prompts. The desired 
generation of the word 𝒘𝒏  can be described as  

 
𝑃(𝑤௡|𝑤௡ିଵ, 𝑤௡ିଶ, … , 𝑝𝑟𝑜𝑚𝑝𝑡 ), (1) 

 
where 𝑤௡ିଵ, 𝑤௡ିଶ, …  are the previously 
generated words and prompt is the text string that 
contains:  
 
1. User instruction, 
2. Context, and 
3. Examples. 
 

Figure 3. illustrates an example that how a 
sentence “Planes have wings” to be generated, 
given the prompt “Write a sentence about a 
vehicle.”. This prompt only has the “user 
instruction” whereas context and examples are not 
given to the model. In order to train the language 
models to follow user instruction, a lot of labeled 
data (i.e. prompts with desired outputs) are 
required. Furthermore, for more sophisticated 
structural tasks such as the generation of a 
contract or a business plan, corresponding training 
data should be used for further training.  

Apart from different types of training data, the 
language models must be sufficiently large to 
follow the instructions and understanding the 
context and examples. Other factors that have 
significant impacts on the language model 
performance are the language model structure, 
constituting components, training methods, and 
the loss functions. Different models’ training 
methods and data can derive different 



implementations of the equation (1) and hence 
different text generation. Some efficient models 
such as the Vicuna [11] models, based on LLaMA, 
can be fine-tuned to have about 90% performance 
of the ChatGPT with just about 7% the number of 
parameters of ChatGPT.  

4. Prompt writing for generating 
legal contracts and clauses 

As most LLMs are capable of multiple tasks, 
such as sentiment classification, question and 
answering, information extraction, and text 
generation, users are required to provide the 
prompt to instruct models so that corresponding 
responses can be generated. There are few aspects 
that should be noted for writing a prompt: 

 

Figure 3: Example of using a prompt “write a sentence about a vehicle” to instruct a language model to generate a related 
sentence. “<start>” : is the sentence beginning tag. Step 1: Sample a word from a vocabulary, with words of vehicles having 
higher probabilities. The word “Planes” is sampled (marked with “*”). Step 2: Given the prompt and the first word “Planes”, 
words “fly”, “are”, “have” have higher probabilities to be the next word, and “have” is sampled. Step 3: Given the prompt 
and the sampled words “Planes” and “have”, the top probability next words are “wings”, “landing”, “engine” and the word 
“wings” is sampled. Step 4: Given the prompt and the sampled words “Planes”, “have” and “wings”, the words/punctuation 
with higher probabilities to be the next sampled entity are “to”, “and”, and “.”. The punctuation “.” is sampled in this case. 
Since a sentence is generated, the language model stops here. 

Figure 2: Generation of the sentences “How are you” and 
“How do you ……” by a language model. Each word is 
sampled from a vocabulary given the previously 
generated words. 



 Clear task description, 
 Style, 
 Fairness, no bias, ethical, and not 

harmful. 
For contract clause generation, prompts may be: 
 

Draft a legal clause for [task], or 
Draft a contract clause between [person1] 
and [person2] for [task] 
 

In the examples above, either using the word 
“draft” or “generate” is sufficient to indicate the 
type of the prompt. The words “legal” or “contract” 
should be included which enable the LLMs to use 
legal or contract styles. If users want to generate a 
clause that follow a list of specifics that form the 
context, the context should be included to the 
prompt as the following example. 

 
{{{context text}}} 
- Based on the previous information, draft 

a legal clause to [task] 
- The clause should include [entities] 

 
In the above clause, the text describing the context 
should be enclosed by “{{{” and “}}}”. It is 
because they help the LLMs to differentiate the 
context from other text. Also, if there are 
additional conditions augmented to the clauses, 
users should specify them in a clear format. 
 

5. Analysis and evaluation of the 
generated clauses 

As clauses the legally binding and define the 
rights, obligations, and agreements between the 
parties in the contract, they should be clearly and 
precisely drafted. In contrast, the generation of 
clauses with LLMs is a black box process which 
currently lacks explainability. The hallucination 
phenomenon of LLMs even makes the situation 
worse because models can generate results that 
are not related to the prompt. Thus, there is a need 
to validate the AI generated clauses to match the 
user requirements. A common and secure method 
is the human-in-the-loop [12] in which a legal 
professional intervenes in the generation process 
by either (a) revising the generated clauses 
directly or (b) revising the model input prompt 
and direct the model to regenerate the clauses and 
hope better clauses can be regenerated. This 
presupposes that the person revising the generated 
clause or making the final selection is 

knowledgeable. To assist the person revising or 
making the selection, we propose using a machine 
learning approach to identify various aspects of a 
clause and compare them with aspects obtained 
from clauses extracted from trusted sources. The 
benefit of this approach is that the differences, in 
aspects, between the generated clauses and 
selected clauses can be automatically identified 
This can help to revise the generated clauses to 
ensure consistency and quality with reference to 
the trusted source.  

 
Before introducing the proposed approach, 

we briefly describe 3 important tools that are used 
in the approach. 

 
1. Sentence transformers [13]: for 

identifying clauses with similar contents. 
We use it because it is fine tuned to 
perform similarity measure between two 
sentences. 

 
2. PatternRank [14]: extracting 

keyphrases from sentences. 
 
3. Uniform maniform approximation 

and projection (UMAP) [15]: for 
manifold approximation and projection. 

 

5.1. Sentence transformers 

Sentence transformers are based on Siamese 
neural networks for obtaining embeddings (i.e. 
vector representations) of sentences or paragraphs. 
A sentence transformer uses a pre-trained 
language model such as BERT or RoBERTa as its 
core neural network component and fine tune it 
with a large labeled dataset which enhances its 
capability to differentiate which relationship a 
pair of sentences should be, one of the following:  

 
1) Entailment, when the first sentence is true, 

the second sentence is also true; 
 
2) Neutral, the truth of the sentences is 

independent of each other; 
 
3) Contradiction, the sentences contradict 

with each other. 
 

After fine tuning, the sentence transformer 
can transform sentences to vectors such that 
sentences with similar contents will have vectors 



close to each other, whereas sentences with 
different contents will have vectors far apart from 
each other. Hence, given vector representations of 
a pair of sentences, the similarity can be evaluated 
by using cosine similarity. 

 

5.2. PatternRank 

PatternRank performs keyphrases extraction 
by finding the sub-phrases in a document that are 
the most similar to the input document itself. 

The working principle is that it first uses a 
sentence transformer to get a document-level 
vector representation and vector embeddings of 
N-gram phrases appearing in the input document. 
Then cosine similarity is used to find the top 
phrases that are most similar to the input 
documents.  

It basically is an enhancement of KeyBERT 
[16]. It allows user to define the patterns of 
phrases to be extracted instead of simple n-grams 
of pre-defined lengths. 

 

5.3. UMAP + DBSCAN 

Since the vectors produced from sentence 
transformers have relatively high dimension, 384 
dimensional vectors in our experiments.  
Performing clustering directly on the vectors with 
common algorithms such as K-Means may give 
non-satisfactory results because of the curse of 
dimensionality. First the vectors may be 
distributed in a low dimensional manifold space 
embedded in a high dimensional space. Secondly, 
the distance difference between nearest data 
points and farthest data points decreases as the 
dimension increases.   

UMAP is a tool for addressing high 
dimensional and manifold distributed data. The 
data are first non-linearly projected to a low 
dimensional space and then a density-based 
clustering (e.g., DBSCAN [17]) is performed. 

5.4. Clause analysis and evaluation 

Referring to Figure 1, an input clause is first 
obtained from a contract template or an LLM, and 
a set of similar clauses is obtained from a trusted 
sources (e.g., a repository of examined clauses) by 
using a sentence transformer and cosine similarity. 
Since the similar clauses are trusted and reliable 

clauses, they contain significant and desirable 
aspects that the user should check against with the 
input clause. In order to explicitly extract these 
aspects from the similar clauses, we propose to 
perform the following procedure: 

 
1. Extract keyphrases from the input clause 

and similar clauses separately by 
PatternRank. 

2. Use sentence transformer to transform all 
of the keyphrases to vectors. 

3. Perform a clustering solely on the vectors 
coming from similar clauses by UMAP 
and DBSCAN. 

4. Compute the distance between the 
keyphrase vectors of the input clauses to 
the cluster centers. 

5. Assign the keyphrase vectors of the input 
clause to cluster x if distance between the 
keyphrase vector and cluster x < 
threshold value. Those clusters 
containing the keyphrases from the input 
clause are labeled as Involved Clusters 
(Involved Aspects). 

6. Label the keyphrases as Extra 
Keyphrases if it cannot be assigned to 
any clusters. 

7. Clusters without keyphrase vector from 
the input clause are labeled as Missed 
Clusters (Missed Aspects), because the 
input clause has no keyphrase related to 
these clusters. 

 
Here we have made an assumption that an aspect 
of a clause is closely related to the keyphrases 
appearing in that clause. Individual clusters or 
groups of these keyphrases represent the aspects 
of the extracted similar clauses. Finally, user may 
augment the input clause with the aspects 
represented by Missed Clusters and to decide 
whether to preserve the Extra Keyphrases or not 
as they are not found in similar clauses.  

6. Experiments 

We investigate the quality of generated 
contract clauses by comparing them with the 
clauses of the trusted dataset LEDGAR [18]. The 
quality is assessed by using ROUGE F1 [19], 
precision, recall and F1. ROUGE F1 is a widely 
used tool for text content comparison, whereas 
precision, recall and F1 are used for assessing the 
extent of aspects to be addressed by the model 
generated clauses. They are evaluated as follows: 



 
1. ROUGE F1 score: For each machine 

generated clause, we compute the F1 
scores of ROUGE-1, ROUGE-2, and 
ROUGE-L with respect to the 15 
extracted similar clauses from 
LEDGAR, having cosine similarity > 
0.5. The means of the scores are reported. 

 
2. Precision, Recall, and F1: For each 

machine generated clause, we compute 
the precision, recall, and F1 with respect 
to the aspects derived from the 15 
extracted similar clauses from 
LEDGAR. The precision and recall are 
defined as follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=  
# 𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝐴𝑠𝑝𝑒𝑐𝑡𝑠 

# 𝑘𝑒𝑦𝑝ℎ𝑟𝑎𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑐𝑙𝑎𝑢𝑠𝑒
,   (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
# 𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝐴𝑠𝑝𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝐴𝑠𝑝𝑒𝑐𝑡𝑠
 .                      (3) 

 
In the experiments, we generate the clauses with 
ChatGPT and a local LLM called Vicuna which 
also has an interactive text input and output 
similar to ChatGPT. Since both models also 
generate the text of description of the tasks and 
legal disclaimers in addition to the generated 
clauses, we remove all these text before the 
evaluation.  

6.1. Data 

The public domain dataset LEDGAR was 
introduced by Tuggener et al. at 2020. It was 
crawled and scraped from the U.S. Securities and 
Exchange Commission filings (SEC filings) and 
contains contract clauses between years 2016-
2019. These contracts are mainly material 
contracts (called Exhibit-10) including 
shareholder agreements, employment agreements, 
and non-disclosure agreements. After data 
cleanup and preprocessing, the dataset contains 
60,540 contracts and a total of 846,274 clauses. 

6.2. ChatGPT, Vicuna and other 
component settings 

In the evaluation, the ChatGPT used is the 
March 23 version. For the Vicuna model, we use 
the “llama.cpp” to interact with the model because 

“llama.cpp” is a pure C/C++ implementation with 
the support for 4-bit quantization of the model. 
This allows the quantized Vicuna model to be 
assessed with a general 12GB RAM notebook, 
even without a GPU. These features are very 
desirable because people with privacy concern 
can have a ChatGPT-like application to be 
executed locally. The model we used is the fine-
tuned and 4-bit quantized 13B LLaMA model and 
the important program configuration parameters 
are given below: 

 
 Temperature: 0.7, 
 Top_k: 40, 
 Top_p: 0.8, 
 Repeat_penalty: 1.2, 
 Prompt context length: 2048, 
 

and use default values for other parameters. For 
the sentence transformer, the model used is all-
MiniLM-L6-v2,which transforms input sentences 
to 384 dimensional vectors. 

For PatternRank, top 10 ranked keyphrases are 
used. We also define a more complex POS 
patterns to extract various types of keyphrases in 
clauses: 
 

(<J.*|V.*>+<CC.*>)*<J.*|V.*>*<
N.*>+ 

 
For UMAP, number of neighbors is set to 5, 
minimum distance between two projected data 
points is 0.0 and the projected dimension is 5. For 
the DBSCAN, default parameters are used except 
the minimum samples to form a cluster is set to 4. 

6.3. Clause generation 

The test clauses are generated manually by 
using the ChatGPT’s and Vicuna’s interactive 
interfaces. We generated the clauses for a house 
rental agreement and a sales agreement with the 
prompts shown in Table 1. In the table, a simple 
context “For a house rental agreement:” is only 
given for the 1st prompt. The LLMs can refer back 
to the context for the rest prompts. We had tested 
the generation of a total of 9 clause types for the 
rental agreement. Similarly, for the sales 
agreement, the 1st prompt has a context “For a 
sales agreement:” and a total of 8 clause types are 
generated. For each clause type, we generate 5 
sample clauses. Hence, there are in total 85 model 
generated clauses for testing. For ChatGPT, 
multiple samples are obtained by regeneration 



whereas for Vicuna, the samples are obtained by 
changing the randomization seed. 

 
Table 1: The prompts used to generate 9 types of contract 
clauses for a house rental agreement. E.g., For generating the 
3rd type clauses, the prompt used is “Draft a legal clause for 
security deposit”. 

1st prompt For a house rental agreement: 
draft a legal clause for the term 
of agreement 

Other 
prompts 

Draft a legal clause for the 
[clause type] 

clause types 
for other 8 
prompts 

 rent and payment method 
 security deposit 
 late payment of rent 
 utilities of the property 
 maintenance and damages of 

the property 
 occupancy and sublease of 

the property 
 miscellaneous provisions for 

the agreement 
 government law 

 

6.4. Results 

Table 3 summarizes the mean ROUGE F1 
scores of the generated clauses for a house rental 
agreement and a sales agreement, using the 
prompts given in Table 1 and 2, respectively. The 
results shows that the scores are relatively low. 
The low values point out that the vocabulary and  

 
Table 2: The prompts used to generate 8 types of contract 
clauses for a sales agreement. E.g., For generating the 4-th 
type clauses, the prompt used is “Draft a legal clause for 
inspection and acceptance”. 

1st prompt For a sales agreement: draft a 
legal clause for the term of 
agreement 

Other 
prompts 

Draft a legal clause for 
[clause type] 

Clause types 
for other 7 
prompts 

 product(s) subject to sale 
 delivery of the product(s) 
 inspection and acceptance 
 price and payment 
 mechanical warranty 
 force majeure 
 termination 

 
 

the styles used in the generated clauses are 
different from the extracted similar clauses. It is 
expected as the LLMs are pre-trained on 
tremendous amount of text, in additional to legal 
text. Moreover, the generated clauses are just 
based on the simple prompts and thus the clauses 
are generated for general situations. This means 
that the requirement of attorneys to review and 
tailor clauses to the specific circumstances of the 
parties involved is still necessary.  

Table 4 shows the mean precision, mean 
recall and mean F1 score of the LLM generated 
clauses for the two agreements. The results show 
that considerable aspects of the related and trusted 
clauses are addressed by the generated clauses. 
This indicated LLM generated clauses can cater 
for many aspects of contract clauses and can be 
used as an initial point for drafting clauses, even 
there are still some enhancements required. When 
comparing the performance of the ChatGPT and 
Vicuna, it is quite clear that the precision of the 
ChatGPT on the tasks is significantly higher than 
Vicuna, given that the Recall values are similar. 
This is also expected as model size of ChatGPT is 
much larger than that of Vicuna. 

Finally, Tables 5 and 6 show two samples 
(one for ChatGPT and one for Vicuna) to illustrate 
the generated clauses, derived aspects, Involved 
Aspects, Missed Aspects, and Extra Keyphrases. 
With this information, users can consider to revise 
their clauses, if necessary. 
 
Table 3: Mean ROUGE F1 scores of the LLM generated 
clauses for a house rental agreement and a sales agreement. 

House Rental Agreement 
Model Mean 

ROUGE-1 
Mean 

ROUGE-2 
Mean 

ROUGE-L 
ChatGPT 0.32 0.10 0.28 

Vicuna 0.32 0.11 0.28 
 

Sales Agreement 
Model Mean 

ROUGE-1 
Mean 

ROUGE-2 
Mean 

ROUGE-L 
ChatGPT 0.30 0.09 0.25 

Vicuna 0.29 0.09 0.25 



Table 4: Mean Precision, Recall, and F1 scores of the LLM 
generated clauses for a house rental agreement and a sales 
agreement. 
 

House Rental Agreement 
Model Mean 

Precision 
Mean 
Recall 

Mean 
F1 

ChatGPT 0.77 0.61 0.68 
Vicuna 0.60 0.62 0.61 

 
Sales Agreement 

Model Mean 
Precision 

Mean 
Recall 

Mean 
F1 

ChatGPT 0.72 0.59 0.65 
Vicuna 0.60 0.61 0.58 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 5: The clause generated with the prompt “draft a legal clause for the late payment of the rent” using ChatGPT. The 
derived aspects (using similar clauses from LEDGAR dataset), Involved Aspects, Missed Aspects, and Extra Keyphrases are 
illustrated. 

Model Prompt: draft a legal clause for the late payment of the rent 
ChatGPT Tenant acknowledges that the timely payment of rent is of the essence of this agreement. If Tenant fails 

to pay rent in full on or before the due date specified in this agreement, Tenant shall be considered in 
default under this agreement. If rent is not paid on or before the due date, Tenant shall be subject to a late 
fee of [insert late fee amount or percentage] per day until the rent is paid in full. The late fee shall be in 
addition to any other charges or damages owed by Tenant under this agreement. If Tenant fails to pay 
rent within [insert number of days] days after the due date, Landlord may, at Landlord's sole discretion, 
give Tenant a notice of termination of this agreement, and Tenant shall vacate the premises within [insert 
number of days] days from the date of the notice. In addition to any other remedies available under 
applicable law, the Landlord may also seek damages for any unpaid rent or other amounts owed by Tenant 
under this agreement. Tenant acknowledges that the late payment of rent may cause the Landlord to incur 
additional costs and expenses, including but not limited to, late fees, legal fees, and other costs associated 
with collecting rent. Tenant agrees to indemnify and hold harmless the Landlord from any and all such 
costs and expenses incurred by the Landlord as a result of Tenant's failure to pay rent in a timely manner. 
 
Involved Aspects: 0, 1, 8, 9, 10, 11, 13 
Missed Aspects: 2, 3, 4, 5, 6, 7, 12 
Extra Keyphrases: “unpaid rent” 

Aspect 0 'late payment', 'subsequent late payments', 'first late payment' 
Aspect 1 'late charges', 'pay such late charge', 'late charge therefor' 
Aspect 2 'pay landlord', 'compensates landlord', 'costs landlord' 
Aspect 3 'incur costs', 'attorney fees', 'accounting charges' 
Aspect 4 'additional minimum rent', 'additional rent', 'basic lease terms' 
Aspect 5 'rent payment', 'rent adjustment deposits', 'real property taxes',  
Aspect 6 'default rate', 'overdue amount', 'overdue payment' 
Aspect 7 'installment', 'bear interest', 'pay such interest' 
Aspect 8 'notice', 'written notice', 'foregoing notice' 
Aspect 9 'grant tenant', 'tenant', 'gives tenant notice' 
Aspect 10 'liquidated damages', 'damage', 'actual damages' 
Aspect 11 'due date', 'applicable due date' 
Aspect 12 'payment', 'creditor relationship', 'future payments' 
Aspect 13 'grace period', 'cure period', 'month period'  

 
  



 
Table 6: The clause generated with the prompt “draft a legal clause for force majeure” using Vicuna.  

Model Prompt: Draft a legal clause for force majeure 
Vicuna Neither party shall be liable to the other for any delay or failure to perform its obligations under this Sales 

Agreement if such delay or failure arises from circumstances beyond its control, including but not limited 
to acts of God, fire, flood, earthquake, riot, civil commotion, war, invasion, act of government, sabotage, 
labor shortages, or failures of the Internet. If either party is prevented from performing any obligation by 
such circumstances, it shall give prompt notice thereof to the other party and make a reasonable effort to 
minimize the impact of such events on its performance. 
 
Involved Aspects: 0, 1, 2, 3, 4, 8, 10 
Missed Aspects: 5, 6, 7, 9 
Extra Keyphrases: 'give prompt notice', ‘God’ 

Aspect 0 'agreement', 'written notice' 
Aspect 1 'delays', 'manufacturer delays', 'excusable delay' 
Aspect 2 'failure', 'causing cessation', 'communication failures' 
Aspect 3 'affected party', 'parties', 'other party' 
Aspect 4 'obligations', 'respective obligations', 'payment obligations' 
Aspect 5 'liability', 'damages', 'negligence' 
Aspect 6 'circumstance', 'present or future law', 'event' 
Aspect 7 'limitation', 'governmental action', 'governmental regulation' 
Aspect 8 'labor troubles', 'work stoppages', 'labor difficulties' 
Aspect 9 'terrorism', 'including disruption', 'cyber attack' 
Aspect 10 'limitation earthquakes', 'earthquake', 'severe weather conditions' 

7. Conclusions 

The launch of ChatGPT and the emergence of 
LLMs have tremendous impacts, both as an 
opportunity and as a threat, on different aspects of 
digital transformation. In this paper, we introduce 
the underlying working principle and investigate 
their performance on contract clause drafting. We 
also propose an approach to enhance these clauses 
by using a trusted contract clause source. 
Experimental results show that the generated 
clauses are usable as they can address a significant 
number of related aspects that usually appear in 
clauses of practical contracts. 
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