
Bayesian Exploration in Deep Reinforcement Learning
Ludvig Killingberg1, Helge Langseth1

1Norwegian University of Science and Technology, Høgskoleringen 1, 7034 Trondheim, Norway

Abstract
Posterior sampling of value functions can give efficient exploration for value-based reinforcement
learning algorithms. We introduce BayesianExplore (BE), a posterior sampling-based method
for reinforcement learning based on Bayesian function-space variational inference over stochastic
processes. This Bayesian formalism allows us to formalize domain knowledge as a prior over
the value function. Our approach, therefore, provides an alternative to reward shaping with the
added benefit that the algorithm keeps seeking an optimal policy in the original environment
instead of the one with altered rewards. We show that BE produces state-of-the-art efficiency
in exploration with flat priors, and that it is easy to significantly improve performance by
incorporating domain knowledge using simple priors.

Keywords
Bayesian deep learning, reinforcement learning

1. Introduction
A reinforcement learning environment is modelled as a Markov decision process (MDP)
𝑀 = ⟨𝒮,𝒜, 𝑅, 𝑃, 𝑃0, 𝛾⟩, where 𝒮 is the state space and 𝒜 is the set of available actions.
At time 𝑡 = 0 a state 𝑠0 is sampled from the distribution 𝑃0(·). At each time-step an
action 𝑎𝑡 ∼ 𝜋(·|𝑠𝑡) is selected and the agent transitions to a new state 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡, 𝑎𝑡).
A scalar reward 𝑟𝑡 ∼ 𝑅(𝑠𝑡, 𝑎𝑡) is observed. As the agent and environment interact in a
sequence of time steps, a history of observations ℋ𝑡 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, . . . , 𝑠𝑡, 𝑎𝑡, 𝑟𝑡)
is collected. The goal is to find a policy 𝜋⋆, such that sampling actions 𝑎 ∼ 𝜋*(·|𝑠)
maximises the expected accumulated and discounted future reward, 𝐽𝜋 := E

[︀∑︀∞
𝑡=0 𝛾

𝑡𝑟𝑡
]︀
,

where the expectation is taken over the policy, transition, and reward distributions. An
efficient agent must be able to learn from the data it collects, but since the data is
dependent on the policy, it must also prioritize exploring states and actions that the
agent can learn from.

Related to 𝐽𝜋 is the 𝑄-function, 𝑄𝜋(𝑠0, 𝑎0), defined as the expected reward of
taking action 𝑎0 in state 𝑠0 and then following policy 𝜋 thereafter: 𝑄𝜋(𝑠0, 𝑎0) :=
E

[︀∑︀∞
𝑡=0 𝛾

𝑡𝑟𝑡|𝑆0 = 𝑠0, 𝐴0 = 𝑎
]︀
. Q-learning amounts to learning the 𝑄-function from ℋ𝑡.

The regret of a policy 𝜋 is 𝐽𝜋*−𝐽𝜋, the loss in the expected reward obtained by following
𝜋 instead of following the optimal policy 𝜋*. Now, a learning algorithm’s efficiency in
exploration can be measured by its cumulative regret over time.

NAIS 2023: The 2023 symposium of the Norwegian AI Society, June 14-15, 2023, Bergen, Norway.
$ ludvig.killingberg@ntnu.no (L. Killingberg); helge.langseth@ntnu.no (H. Langseth)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ludvig.killingberg@ntnu.no
mailto:helge.langseth@ntnu.no
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

One exploration strategy often employed in Q-learning algorithms to date is the 𝜖-
greedy approach, where one chooses 𝑎* = arg max𝑎∈𝒜𝑄

𝜋(𝑠, 𝑎) with probability 1 − 𝜖
or selects 𝑎 uniformly from 𝒜 with probability 𝜖. While 𝜖-greedy exploration ensures
exploration of the domain, its regret bound grows linearly with time, and is therefore
provably inefficient.

A very simple test-bed for exploration strategies in reinforcement learning is the
multi-armed bandit problem. The state is void in this problem formulation, rendering 𝒮,
𝑃 , 𝑃0 vacuous and 𝑟𝑡 a function only of 𝑎𝑡. There are several (asymptotically) optimal
algorithms for this problem, and one of the simplest ones is Thompson sampling [1].
Thompson sampling approximates a posterior distribution of the mean reward for each
action. The next action 𝑎𝑡 is decided by sampling rewards for each action from these
posterior distributions and selecting the action that gave the highest sampled reward.
Posterior sampling methods have also been shown to behave efficiently with respect to
cumulative regret [2] on general MDPs.

Fortunato et al. [3] introduced NoisyNet as a means for balancing exploration and
exploitation. They used a neural network to represent the 𝑄-function and extended their
model with stochastic weights such that each weight 𝑤(𝑙)

𝑖𝑗 has an added perturbation
sampled from a noise distribution with standard deviation 𝜎

(𝑙)
𝑖𝑗 . After initializing 𝑤 and

𝜎 such that the network has sufficient stochasticity for exploration, both parameters are
learned using standard backpropagation. Fortunato et al. [3] apply NoisyNet to three
reinforcement learning algorithms: DQN, Dueling DQN, and A3C, and show improved
performance on all of them. Later, NoisyNet was used in the Rainbow algorithm [4],
a combination of six extensions to the DQN algorithms [3, 5, 6, 7, 8, 9], that shows
state-of-the-art performance across 57 Atari games.

A limitation of NoisyNet is that the initial uncertainty in the value or policy function is
crucial for exploration. If the uncertainty is too high, the algorithm will struggle to learn
anything, while if the uncertainty is too low, there is nothing incentivizing exploration
and the algorithm will not explore new trajectories. The learning approach in NoisyNet
is similar to variational inference schemes such as Bayes by backprop [10], where the
weights of a neural network model are assumed to be normally distributed with mean
𝜇

(𝑙)
𝑖𝑗 and standard deviation 𝜎

(𝑙)
𝑖𝑗 . However, while the objective of Bayes by backprop is

to approximate 𝑝(𝑤|𝒟), the posterior distribution over the weights after seeing a fixed
dataset 𝒟, the weights in NoisyNet are not given a prior distribution, and the learning,
therefore, does not result in a posterior distribution over 𝑤. Consequently, NoisyNet does
not have the same optimality guarantee on total regret as methods that approximate a
posterior over the value functions [2], and the exploration could stop prematurely if the
standard deviations 𝜎 decline too quickly during learning. In posterior sampling-based
methods, we can fit the initial uncertainty to a prior distribution. This would mean
that with an appropriate prior, network parameter initialization is not as critical to
performance. Another advantage of posterior sampling is that it can provide a natural
way to incorporate domain knowledge. Prior knowledge can be used to create informative
prior distributions for value or policy functions.

In this paper, we will therefore introduce BayesianExplore (BE), a fully Bayesian

extension of NoisyNet. The key idea is to use a Bayesian deep network to represent the
posterior distribution over 𝑄(𝑠, 𝑎) given the history ℋ𝑡, and thereafter use Thompson
sampling as a means to efficiently balance exploration and exploitation. To allow prior
knowledge to be efficiently encoded, we use function-space variational inference, meaning
that the model does not learn the posterior distribution over the parameters, but rather
the posterior process over the output of the model. BE relates to Q-learning in this
paper, but we note that the key idea would also apply to policy-based methods.

We summarize our contributions as follows:

• We introduce BayesianExplore, a fully Bayesian Q-learning method for reinforcement
learning;

• We give initial results comparing BE to NoisyNet, showing competitive results;
• We show how simple heuristics can be efficiently encoded as functional priors;
• We show that these priors can significantly improve learning efficiency.

2. Background
Before we delve into the background, we need to define some notation. Most of the
theory will be based on stochastic processes. The stochastic process we are interested
in generates value functions for an MDP and exists on the associated probability space.
It can be written as {𝑄(𝑠,𝑎) : (𝑠,𝑎) ∈ 𝒮 × 𝒜}. For any sample 𝜔 ∈ Ω, 𝑄(·, ·, 𝜔) is a
sample function mapping 𝒮 ×𝒜 → R. To simplify notation in the following subsections
we will denote (𝑠,𝑎) ∈ 𝒮 × 𝒜 by 𝑥 ∈ 𝒳 , the sample functions as 𝑓 : 𝒳 → R, and the
associated process as ℱ . We will use f1:𝑁 for a collection of 𝑁 sample-functions. Next,
f(𝑥) and {f(𝑥),𝑥 ∈ X} denote the process evaluated at single point 𝑥 and the set of
points {𝑥 ∈ X}, respectively. The marginal process at the set X = {𝑥𝑖}𝑛𝑖=1 ∈ 𝒳 𝑛 is
with a slight abuse of notation denoted by ℱ(X), and we evaluate a likelihood using
the notation 𝑃 (𝑦|ℱ(X)). For instance, if ℱ is a Gaussian process (GP) with mean 𝜇(𝑥)
and covariance 𝑘(𝑥,𝑥′), f1:𝑁 is a collection of 𝑁 realizations from that Gaussian process,
ℱ(X) is the multivariate Gaussian obtained at X with associated parameters, f(𝑥) is a
univariate Gaussian with given mean and standard deviation, and 𝑃 (𝑦|ℱ(X)) evaluates
the likelihood of 𝑦 under the Gaussian jointly defined by ℱ(X).

2.1. Noisy Networks
NoisyNet can be viewed as a stochastic process represented by a neural network with
stochastic weights. We will define its sampling distribution as 𝑓 ∼ 𝜌𝜑, where a sample
function 𝑓 now realizes a neural network to represent the Q-function 𝑄(𝑠, 𝑎). This
means that NoisyNet can model stochastic policies, and Fortunato et al. [3] show through
empirical analysis that the NoisyNet policy sometimes converges to a non-deterministic
policy. Nevertheless, they also point out that there always exists a deterministic optimal
policy for the mean squared error loss in DQN. Deep neural networks used as function
approximations in Q-learning were labeled DQN by Mnih et al. [11]. Later, Mnih et al.
[12] made a significant improvement to the learning stability of their original DQNs by

0 10 20 30

50

100

150

200

Thousand frames

M
ea

n
sc

or
e

Cartpole

0 100 200 300 400 500
−200

−175

−150

−125

−100

Thousand frames

M
ea

n
sc

or
e

MountainCar

0 500 1000 1500 2000

−200

−100

0

100

200

Thousand frames

M
ea

n
sc

or
e

LunarLander
BayesianExplore

NoisyNet

Figure 1: Comparison of learning curves of BE (with flat prior) and NoisyNet-DQN on Cartpole,
MountainCar, and LunarLander with score averaged over 100 episodes. Performance is evaluated every
episode for Cartpole, every 10th episode for MountainCar, and every 50th episode for LunarLander.

introducing a target network. The target network has the same structure as the regular
network, and the weights are copied over from the regular network every 𝑇− timesteps.
The target network is used to calculate the target Q-value for the temporal difference
(TD) error. Having a more stationary target is shown to improve the stability of training.
This was a substantial improvement, as training the DQN was previously unstable.

2.2. Functional Variational Bayesian Neural Networks
Consider a supervised learning problem, where we desire a parameterized function
𝑔𝑤 : 𝒳 → 𝒴 to map an input 𝑥 ∈ 𝒳 to a target 𝑦 ∈ 𝒴. If we train a Bayesian neural
network with stochastic weights 𝑤 to represent 𝑔𝑤, the standard procedure is to assume
that the dataset 𝒟 with datapoints (𝑥,𝑦) is given, and proceed by defining a prior
distribution 𝑝(𝑤) over the weights [13, 10, 14, 15]. After defining 𝑝(𝑤) we can use
variational inference methods to approximate 𝑝(𝑤|𝒟) = 𝑝(𝒟|𝑤)𝑝(𝑤)/𝑝(𝒟) and use that
to realize 𝑔𝑤. The disadvantage of this approach is that prior knowledge we might have
about the domain typically relates to the behaviour of the function 𝑔𝑤(𝑥), which is
very difficult to encode at the level of the individual weights in 𝑤. Consequently, the
prior 𝑝(𝑤) will in essence only act as a regularizer, and is not a suitable medium for
incorporating informative a priori knowledge.

Functional variational Bayesian neural networks [16] is a variational inference method
for neural networks that approximates the posterior distribution in function space. This
means that our prior will be a distribution over functions, i.e., a stochastic process, and as
part of the evaluation of the evidence lower bound (ELBO) we will need to calculate the
KL-divergence from one process to another. Sun et al. [16] show that for two stochastic
processes 𝒫 and 𝒬, the KL-divergence from 𝒫 to 𝒬 is the supremum of the marginal
KL-divergences over all finite measurement sets. Let 𝒫(X) (resp. 𝒬(X)) be the marginal
distribution of function values from the process 𝒫 (resp 𝒬) at some set of points X ∈ 𝒳 𝑛,
then:

KL[𝒫‖𝒬] = sup
𝑛∈N,X∈𝒳 𝑛

KL [𝒫(X)‖𝒬(X)] , (1)

Note that as the KL-divergence between two processes is a supremum over the marginals
on the right-hand side of Equation 1, it holds for any given X that KL[𝒫‖𝒬] ≥
KL [𝒫(X)‖𝒬(X)]. In the following, we will nevertheless approximate the functional
KL-divergence by using finite measurement sets X ∈ 𝒳 𝑛, acknowledging the fact that
we may underestimate the true KL-divergence between the two stochastic processes.
From now on we will therefore be talking about the KL-divergence between marginal
distributions of function values instead of between processes.

Now, let the stochastic processes be represented by a neural network 𝑓 . A priori we
will assume 𝑓 ∼ 𝑝, and use variational inference to find the posterior process 𝑓 ∼ 𝜌𝜑
which is parameterized by 𝜑. We will think of the generative process 𝜌𝜑 as follows: We
sample a vector 𝜉 from, e.g., a standard Gaussian and populate a neural network with
weights 𝑤𝑖 = 𝜇𝑖 + 𝜎𝑖 · 𝜉𝑖, where 𝜑 = (𝜇,𝜎) is the collection of parameters required to
define the sample function.

In our notation, Sun et al. [16] showed that the gradient of the KL-divergence for
functions marginalized at the measurement set X is

∇𝜑KL [𝜌𝜑({f(𝑥)}𝑥∈X)‖𝑝({f(𝑥)}𝑥∈X)] =
E𝜉

[︀
∇𝜑{f(𝑥)}𝑥∈X(∇f log 𝜌𝜑({f(𝑥)}𝑥∈X)

−∇f log 𝑝({f(𝑥)}𝑥∈X))
]︀
. (2)

Here we have used that the expected value of the score function is zero. The difficult
part in Equation (2) is to estimate ∇f log 𝜌𝜑({f(𝑥)}𝑥∈X) and ∇f log 𝑝{f(𝑥)}𝑥∈X). The
entropy derivative ∇f log 𝜌𝜑({f(𝑥)}𝑥∈X) is generally intractable. Depending on how we
define the prior, however, ∇f log 𝑝({f(𝑥)}𝑥∈X) can be easy to compute analytically. To
reduce variance in the gradients, we use tractable priors in this paper.

To estimate the gradient of the log-density under 𝜌𝜑, ∇f log 𝜌𝜑({f(𝑥)}𝑥∈X), Sun et al.
[16] use the Spectral Stein Gradient Estimator (SSGE) [17]. Shi et al. [17] show that, for
a differentiable density 𝜌 and positive definite kernel 𝑘(·, ·) in the Stein class of 𝑘, we can
approximate the gradient ∇f log 𝜌({f(𝑥)}𝑥∈X). Given 𝑁 samples from 𝜌, the Nyström
approximation [18, 19] is used to calculate the first 𝐽 eigenfunctions of 𝑘, 𝜓̂1, . . . , 𝜓̂𝑘. It
follows that

∇f log 𝜌({f(𝑥)}𝑥∈X) ≈
𝐽∑︁

𝑗=1
∇f 𝛽̂𝑖𝑗𝜓̂𝑗({f(𝑥)}𝑥∈X),

where

𝛽̂𝑖𝑗 = − 1
𝑁

𝑁∑︁
𝑛=1
∇f 𝜓̂𝑗(f𝑛).

In short, this is a method for estimating the gradient function of implicit distributions
using approximations to eigenfunctions of a kernel-based operator. We will follow Shi et al.
[17] and use the RBF kernel in all experiments. This brings three hyper-parameters to the
algorithm: the number of samples 𝑁 from the implicit distribution used to approximate
the gradient, the number of eigenvectors 𝐽 used to approximate the gradient, and 𝜂, a
regularisation parameter that smooths the gradient function.

The full objective for the functional Bayesian neural network becomes

ℰ = 1
|𝒟𝑠|

∑︁
(𝑥,𝑦)∈𝒟𝑠

log𝑃 (𝑦|f(𝑥))− 𝜆 ·KL [𝜌𝜑 ({f(𝑥)}𝑥∈X) ‖𝑝 ({f(𝑥)}𝑥∈X)] , (3)

where we use 𝑃 (𝑦|f(𝑥)) to denote the likelihood of the observation 𝑦 under the stochastic
process evaluated at 𝑥 (e.g., f(𝑥) could be a univariate Gaussian with given mean and
standard deviation). Note here that we approximate log𝑃 (𝑦|f(𝑥)) in the implementation
using Monte Carlo sampling: We generate f1:𝑁 (𝑥) with 𝑓 ∼ 𝜌𝜑, use these to approximate
the local model f(𝑥), and thereby also approximate the log-likelihood of the observation
𝑦 under the generative process 𝜌𝜑.

In order for ℰ in Equation (3) to match the functional ELBO and be a proper lower
bound for log 𝑝(𝒟), 𝜆 should be set to 𝜆 = 1

|𝒟| . Sun et al. [16] note, however, that ℰ uses
a lower bound for the true KL divergence between the processes, so a larger value for 𝜆
is likely necessary to maintain properly calibrated posterior uncertainty. They, therefore,
use one over the batch size instead, 𝜆 = 1

|𝒟𝑠| , a strategy that we will also follow.

3. Method
Osband and Van Roy [20] prove that posterior sampling of Q-values for reinforcement
learning in finite horizon MDPs has at least a near-optimal regret bound. They further
conjecture that their bound can be improved to show optimal regret. Additionally, a
posterior sampling-based reinforcement learning algorithm can be made to utilize domain
knowledge through an appropriate prior. This should improve the policy convergence
rate. Combined with the computational efficiency of posterior sampling, this motivates
the development of a Bayesian reinforcement learning algorithm with functional priors.

We will present a method based on functional variational Bayesian neural networks [16]
that allows efficient exploration, and the inclusion of domain knowledge.

This can be achieved by modeling posterior distributions either over the policy function
or a value function, then sample an action directly from that posterior (in case of policy
focus) or use greedy action-selection based on samples from the value-function posterior.
In this paper, we will approximate the posterior distribution of the Q-value function
using DQN [12].

We use the functional variational Bayesian neural network (FVBNN) [16] framework
discussed previously and compare our approach to NoisyNet. Note that when NoisyNet
uses one sample from 𝑄 for each optimization step we will instead use 𝑁 samples from 𝑄.
This is needed to use the FVBNN loss defined in Equation (3) rather than the temporal
difference used in NoisyNet. The Bayesian formalism allows us to incorporate a priori
domain knowledge through the prior 𝑝, and will encourage exploration with (close to)
optimal regret [20].

Recall that the learning objective in Equation (3) requires the evaluation of the
marginal {f(𝑥)}𝑥∈X. Here, the measurement set X should contain representative samples
from 𝒳 . In our setting 𝑥 will be state-action pairs, and 𝒳 = 𝒮 × 𝒜. The data-set
𝒟𝑛

𝜔 consists of 𝑛 examples of state-action pairs combined with the predicted 𝑄-value,

0 10 20 30

0.020

0.025

0.030

0.035

Thousand frames

M
ea

n
st

an
da

rd
de

vi
at

io
n

Penultimate Layer

0 10 20 30

0.010

0.015

0.020

0.025

0.030

0.035

Thousand frames

M
ea

n
st

an
da

rd
de

vi
at

io
n

Last Layer
BayesianExplore

NoisyNet

Figure 2: Comparison of mean standard deviation for NoisyNet and BE on Cartpole.

𝒟𝑛
𝜔 = {(𝑠𝑖, 𝑎𝑖, 𝑞𝑖)}𝑛𝑖=1; the subscript 𝜔 is used to denote the version of the target net

used to generate the 𝑞𝑖-values. In the following the set X is defined as the set of all
state-action pairs for states we have already explored:

X = {(𝑠𝑖, 𝑎𝑗) | ∀𝑠𝑖 ∈ 𝒟𝑛
𝜔, ∀𝑎𝑗 ∈ 𝒜}.

X will eventually have full support in 𝒮 ×𝒜 if the MDP is ergodic.
To calculate log𝑃 (𝑞𝑖|f(𝑠𝑖, 𝑎𝑖)) we will assume that the underlying stochastic process is

a Gaussian process, ℱ ∼ GP. The network architecture for 𝑓 is defined to produce two
output vectors: the mean 𝜇 and the log standard deviation 𝜏 = log𝜎.

This gives the following loss function when evaluated on a sub-sample 𝒟𝑠:

ℒ = 𝜆 ·KL[𝜌𝜑‖𝑝] + 1
|𝒟𝑠|

|𝒟𝑠|∑︁
𝑖=1

𝜏𝑖 + (𝜇𝑖 − 𝑞𝑖)2 exp(−𝜏𝑖).

Algorithm 1 shows a general DQN-update iteration shared by both NoisyNet and
BE where the agent interacts with the environment. The difference between NoisyNet
and BE is how the neural network is updated when Algorithm 1 makes the call to
UpdateNet in line 10. Algorithm 2 and Algorithm 3 provide two different definitions for
the UpdateNet function. Algorithm 2 details the procedure for updating NoisyNet. It
begins by sampling one value function 𝑓 and one target function 𝑓 ′. The target function
is used to calculate the target-value for the value function in line 8. After that, the
network is updated by minimising the temporal difference error. Algorithm 3 shows the
pseudo-code for BE. The first difference to NoisyNet is that the network has two outputs
for each action, the mean 𝑞𝜇 and standard deviation 𝑞𝜎. Note that we use subscript 𝜇
when we are only interested in the mean (line 7 and 9) and no subscript when we fetch
both results (line 8). The next difference is that we sample 𝑁 functions from the network
(line 3) and target network (line 4). Instead of the temporal difference error, a Gaussian
log-likelihood loss is used instead (line 10). The gradient KL-loss term is calculated using
the spectral Stein gradient estimator as outlined above (call to SSGE in line 13).

Algorithm 1 DQN-update
1: 𝒟 ← ∅
2: 𝑠 ∼ 𝑃0
3: Initialise 𝜑,𝜔
4: for 𝑡 ∈ {1, . . . } do
5: 𝑓 ∼ 𝜌𝜑
6: 𝑎 ∼ arg max𝑎 𝑓(𝑠, 𝑎)
7: 𝑠′ ∼ 𝑃 (·|𝑠, 𝑎)
8: 𝑟 ∼ 𝑅(𝑠′, 𝑎, 𝑠)
9: 𝒟 ← 𝒟 ∪ {𝑠, 𝑎, 𝑟, 𝑠′}

10: UpdateNet(𝜑,𝜔,𝒟) ◁ Update value network
11: if 𝑡 mod 𝑡− ≡ 0 then
12: 𝜔 ← 𝜑 ◁ Update target network
13: end if
14: end for

Algorithm 2 NoisyNet Update
1: function UpdateNet(𝜑,𝜔,𝒟)
2: 𝒟𝑠 ∼ 𝒟
3: Δℒ ← 0
4: 𝑓 ∼ 𝜌𝜑
5: 𝑓 ′ ∼ 𝜌𝜔
6: for {𝑠, 𝑎, 𝑟, 𝑠′} ∈ 𝒟𝑠 do
7: 𝑞 ← max𝑎 𝑓(𝑠, 𝑎)
8: 𝐺← 𝑟 + 𝛾 · 𝑓 ′(𝑠′, 𝑎)
9: Δℒ ← Δℒ −∇𝜑(𝑞 −𝐺)2

10: end for
11: 𝜑← Optimizer(𝜑,Δℒ)
12: end function

4. Experiments
Our method most closely resembles NoisyNet [3], so all experiments will mainly compare
the performance of BE to that baseline.

4.1. Details and Hyper-parameters
We compare our method with NoisyNet [3] on three different environments in the OpenAI
Gym [21]: Cartpole, MountainCar, and LunarLander. Whenever possible we will use
the hyper-parameters employed by Han et al. [22]. Additionally, our method has hyper-
parameters related to the calculation of the functional KL-divergence. These are reported
in Table 1. Note the relatively low number of eigenvectors 𝐽 and relatively high value for
𝜂. Both were chosen to smooth the gradient estimates. Note also that we have used the

Algorithm 3 Functional Bayesian Update
1: function UpdateNet(𝜑,𝜔,𝒟)
2: 𝒟𝑠 ∼ 𝒟
3: 𝑓𝑖 ∼ 𝜌𝜑 𝑖 = 1, . . . , 𝑁
4: 𝑓 ′

𝑖 ∼ 𝜌𝜔 𝑖 = 1, . . . , 𝑁
5: Δℒ ← 0
6: for {𝑠, 𝑎, 𝑟, 𝑠′} ∈ 𝒟𝑠 do
7: 𝑎𝑖 ← arg max𝑎 𝑓𝑖(𝑠, 𝑎)𝜇 𝑖 = 1, . . . , 𝑁
8: (𝑞𝜇𝑖, 𝑞𝜎𝑖)← 𝑓𝑖(𝑠, 𝑎𝑖) 𝑖 = 1, . . . , 𝑁
9: 𝐺𝑖 ← 𝑟 + 𝛾 · 𝑓 ′

𝑖(𝑠′, 𝑎)𝜇 𝑖 = 1, . . . , 𝑁
10: Δℒ ← Δℒ + 1

|𝑁 |∇𝜑
∑︀𝑁

𝑖=1 log𝑃 (𝐺𝑖|𝑞𝜇𝑖, 𝑞𝜎𝑖)
11: end for
12: X← CreateMeasurementSet(𝒟𝑠)
13: ΔKL ← SSGE({f1:𝑁 (𝑥)}𝑥∈X))
14: 𝜑← Optimizer(𝜑,Δℒ − 𝜆ΔKL)
15: end function

local reparameterization trick (LRT) [23] in our implementation. Using LRT, we sample
pre-activations rather than the weights themselves, which results in significant speedup.
This is especially important for BE, which does 𝑁 times as many samples per iteration.
LRT also reduces the variance of the gradient, which stabilizes training.

All experiments have been implemented in Julia, and the source code is available at
https://github.com/XXX.1

Table 1
Hyperparameters for BE.

Hyperparameter Value

𝑁 Number of function samples 100
𝐽 Number of eigenvectors 6
𝜆 KL regularization parameter 1/|𝒟𝑠|
𝜂 Regularization parameter for SSGE 0.95

4.2. Flat Prior
First, we will examine how BE compares to NoisyNet when we do not encode a priori
knowledge about an environment into the model. To investigate this we employ a “flat”
prior, namely an improper prior with constant probability on R𝑛. An improper prior is
not a probability density (since it does not integrate to 1), but this is not problematic as
BE only requires the gradients and does not need to evaluate the probabilities themselves.

1The URL to the repository containing all the source code including scripts to reproduce our results will
be made available once the article is accepted for publication.

https://github.com/XXX

Table 2
Number of episodes to solve select environments. Dash indicated the agent was not able to solve the
environment within the allotted number of frames (30k for Cartpole, 500k for MountainCar, and 2m
for LunarLander).

Prior Cartpole MountainCar LunarLander

𝜈 = 1, 𝜎 = 1 14 100 —
𝜈 = 1, 𝜎 = 10 33 1700 —
𝜈 = 1, 𝜎 = 50 113 1250 500

Flat prior 117 1050 800
𝜈 = −1, 𝜎 = 50 177 — —
𝜈 = −1, 𝜎 = 20 232 — —
𝜈 = −1, 𝜎 = 10 — — —

NoisyNet 219 750 1200

Table 3
Prior parameters.

Environment 𝜆1 𝜆2 State Actions

Cartpole 0 100

𝐴Left 𝐴Right

Cart Position 0 0
Cart Velocity 0 0
Pole Angle -1 1

Pole Velocity -1 1

MountainCar -100 1000
𝐴Left 𝐴Right 𝐴Nothing

Cart Position 0 0 0
Cart Velocity -1 1 0

LunarLander 0 100

𝐴Left 𝐴Right 𝐴Nothing 𝐴Up

Position 𝑥 0 0 0 0
Position 𝑦 0 0 0 0
Velocity 𝑥 0 0 0 0
Velocity 𝑦 0 0 0 0

Angle -1 1 0 0
Angular Velocity -1 1 0 0

Left Leg Touching 0 0 0 0
Right Leg Touching 0 0 0 0

The training curves for BE and standard NoisyNet-DQN on the three selected OpenAI
Gym environments are shown in Figure 1. While both methods can solve all environments,
BE uses considerably fewer frames to find an optimal policy for Cartpole. The methods
are comparable in the two other environments.

Fortunato et al. [3] noted that the learned variance in their weights increased during
exploration in some environments despite there existing an optimal deterministic solution,
and the loss provides no incentive to maintain uncertainty. Figure 2 shows the mean

standard deviation for the penultimate and final layer for BE and NoisyNet evaluated on
Cartpole. It is interesting to see that the last layer’s standard deviation for NoisyNet
continues to decrease throughout the training while BE’s uncertainty initially decreases
faster but then stabilises at a higher degree of uncertainty than NoisyNet’s. Figure 1
shows that BE has found a near-optimal solution after approximately 5k frames and
an optimal policy after 10k frames. Interestingly, the standard deviation of the weight
parameters for BE in the last layer stops decreasing after 5k iterations. This seems to
indicate that BE is satisfied that is has found a stable policy, where optimising further
would be overfitting to noise. Given that the gradient in the last layer is sufficiently
small, the nature of the chain rule will cause the gradient in the penultimate layer to be
smaller, which can explain why the mean standard deviation in the penultimate layer
decreases more slowly.

4.3. Informative Prior
One of the benefits of a functional prior is that we can incorporate domain knowledge
to get more efficient exploration. We will now see how our method can utilise domain
knowledge to improve sample efficiency. To measure the effectiveness of priors we will
use a distribution that has a higher concentration of large Q-values for actions that we
want to incentivize.

We purposefully do not do an extensive search for a “good” prior distributions. Rather,
we are interested in the effect a “simple” prior can have on performance. The results
reported in Table 2 will reveal the effectiveness of the prior distributions. To this end,
we have chosen to define the prior as a Gaussian process with the following mean and
kernel function:

𝜇(𝑠, 𝑎) = 𝜆1 + 𝜈 · 𝜆2 ·A⊺
𝑎𝑠,

𝑘(𝑠, 𝑠′) = 𝜎2𝐼(𝑠 = 𝑠′),

where we use the notation that 𝐼(𝒯) = 1 if 𝒯 is true and 0 otherwise. Values for 𝜆1,
𝜆2, and 𝐴𝑎 for each environment can be found in Table 3. 𝜈 is either +1, indicating a
“helpful” prior, or −1, indicating an “unhelpful” prior. A𝑎 was selected based on vague
information such as “In Cartpole, it is good to move left if the pole is leaning to the left,
and vice versa” and “In MountainCar, it is better to move left if your cart is already
moving to the left, and vice versa”. 𝜆1 and 𝜆2 were set so that the prior mean for the
Q-values would be roughly at the true mean, though we suspect this could be a restricting
factor of our prior. Experimental results for varied values of 𝜈 and 𝜎, can be seen in
Table 2.

An alternative approach to defining the prior could be to focus on smoothness, i.e., use
𝑘(𝑠, 𝑠′) to incorporate that states that are similar also are likely to have similar Q-values.
This would also be a prior that does not necessarily need much domain knowledge to be
effective.

For Cartpole, strong helpful priors result in a substantial benefit in the number of
episodes to solve the environment, and even a weak unhelpful prior outperforms NoisyNet

here. MountainCar benefits from a strong and helpful prior, solving the environment
in as little as 100 episodes. However, a vague and presumably helpful prior appears to
be harmful in this environment. For LunarLander, a strong helpful prior prevented the
algorithm from solving the environment, yet a more vague prior was beneficial. This seems
to indicate that the prior used in that environment was not very precise. Unsurprisingly,
strong unhelpful priors prevented the algorithm from solving any environment, with runs
terminated at 30k iterations for Cartpole, 500k iterations for MountainCar, and 2mill
iterations for LunarLander. We observe that the strongest priors (both “helpful” and
“unhelpful”) may restrict the exploration too much, and unless the prior is focused on an
optimal strategy, the environment is not solved. Overall, the results show that some effort
has to be put into creating effective priors for certain environments, but that domain
knowledge can be extremely valuable if it is available. Finally, BE with an appropriately
defined prior outperformed NoisyNet [3] on all environments. We conclude that the
Bayesian formulation combined with well-functioning priors can be an alternative to
other strategies to provide domain knowledge, like reward shaping.

5. Conclusion and Discussion
This paper presents BayesianExplore (BE), a fully Bayesian reinforcement learning
algorithm. This is valuable because it is known that posterior sampling of Q-values
for reinforcement learning in finite horizon MDPs has (close to) optimal regret bound
[20]. Initial experiments show that BE is comparable to NoisyNet in well-known test
environments.

Next, since we utilized recent breakthroughs in function-space variational inference
[16] to formulate the model as a stochastic process, we have the opportunity to encode
domain knowledge into prior information that can lead to faster learning. BE with an
informative prior outperforms NoisyNet in all environments.

One interesting avenue for future work is to extend the approach to methods other
than the standard DQN. We hypothesise that BE can be adapted and used to improve
exploration in any algorithm that is compatible with NoisyNet. A functional Bayesian
approach for policy evaluation, where the Gaussian process we used in this paper would
be replaced by a Dirichlet process, which would permit prior distributions in policy
space rather than in value space. This can be a more intuitive representation of a priori
knowledge in many situations.

References
[1] W. R. Thompson, On the Likelihood that One Unknown Probability Exceeds Another

in View of the Evidence of Two Samples, Biometrika 25 (1933) 285–294. URL:
https://www.jstor.org/stable/2332286. doi:10.2307/2332286, publisher: [Oxford
University Press, Biometrika Trust].

[2] I. Osband, B. Van Roy, Z. Wen, Generalization and Exploration via Randomized

https://www.jstor.org/stable/2332286
http://dx.doi.org/10.2307/2332286

Value Functions, arXiv:1402.0635 [cs, stat] (2016). URL: http://arxiv.org/abs/1402.
0635, arXiv: 1402.0635.

[3] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, C. Blundell, S. Legg, Noisy Networks for
Exploration, arXiv:1706.10295 [cs, stat] (2019). URL: http://arxiv.org/abs/1706.
10295, arXiv: 1706.10295.

[4] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, D. Silver, Rainbow: Combining Improve-
ments in Deep Reinforcement Learning, arXiv:1710.02298 [cs] (2017). URL:
http://arxiv.org/abs/1710.02298, arXiv: 1710.02298.

[5] M. G. Bellemare, W. Dabney, R. Munos, A Distributional Perspective on Reinforce-
ment Learning, arXiv:1707.06887 [cs, stat] (2017). URL: http://arxiv.org/abs/1707.
06887, arXiv: 1707.06887.

[6] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, N. de Freitas, Dueling
Network Architectures for Deep Reinforcement Learning, arXiv:1511.06581 [cs]
(2016). URL: http://arxiv.org/abs/1511.06581, arXiv: 1511.06581.

[7] H. van Hasselt, A. Guez, D. Silver, Deep Reinforcement Learning with Double
Q-learning, arXiv:1509.06461 [cs] (2015). URL: http://arxiv.org/abs/1509.06461,
arXiv: 1509.06461.

[8] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized Experience Re-
play, arXiv:1511.05952 [cs] (2016). URL: http://arxiv.org/abs/1511.05952, arXiv:
1511.05952.

[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Sil-
ver, K. Kavukcuoglu, Asynchronous Methods for Deep Reinforcement Learn-
ing, arXiv:1602.01783 [cs] (2016). URL: http://arxiv.org/abs/1602.01783, arXiv:
1602.01783.

[10] C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in
Neural Network, in: F. Bach, D. Blei (Eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, PMLR, Lille, France, 2015, pp. 1613–1622. URL: http://proceedings.mlr.
press/v37/blundell15.html.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Ried-
miller, Playing Atari with Deep Reinforcement Learning, arXiv:1312.5602 [cs] (2013).
URL: http://arxiv.org/abs/1312.5602, arXiv: 1312.5602.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015) 529–
533.

[13] D. J. Rezende, S. Mohamed, D. Wierstra, Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models, arXiv:1401.4082 [cs, stat] (2014). URL:
http://arxiv.org/abs/1401.4082, arXiv: 1401.4082.

[14] H. Ritter, A. Botev, D. Barber, A Scalable Laplace Approximation for Neural
Networks, 2018. URL: https://openreview.net/forum?id=Skdvd2xAZ.

http://arxiv.org/abs/1402.0635
http://arxiv.org/abs/1402.0635
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1602.01783
http://proceedings.mlr.press/v37/blundell15.html
http://proceedings.mlr.press/v37/blundell15.html
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1401.4082
https://openreview.net/forum?id=Skdvd2xAZ

[15] W. Maddox, T. Garipov, P. Izmailov, D. Vetrov, A. G. Wilson, A Simple Baseline
for Bayesian Uncertainty in Deep Learning (2019). URL: https://arxiv.org/abs/1902.
02476v2.

[16] S. Sun, G. Zhang, J. Shi, R. Grosse, Functional Variational Bayesian Neural
Networks, arXiv:1903.05779 [cs, stat] (2019). URL: http://arxiv.org/abs/1903.05779,
arXiv: 1903.05779.

[17] J. Shi, S. Sun, J. Zhu, A Spectral Approach to Gradient Estimation for Implicit
Distributions, arXiv:1806.02925 [cs, stat] (2018). URL: http://arxiv.org/abs/1806.
02925, arXiv: 1806.02925.

[18] E. J. Nyström, Über die praktische auflösung von integralgleichungen mit anwen-
dungen auf randwertaufgaben, Acta Mathematica 54 (1933) 185–204.

[19] C. Williams, M. Seeger, Using the nyström method to speed up kernel machines, in:
T. Leen, T. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing
Systems 13 (NIPS 2000), MIT Press, 2001, pp. 682–688.

[20] I. Osband, B. Van Roy, Why is Posterior Sampling Better than Optimism for
Reinforcement Learning?, arXiv:1607.00215 [cs, stat] (2017). URL: http://arxiv.org/
abs/1607.00215, arXiv: 1607.00215.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
W. Zaremba, OpenAI Gym, arXiv:1606.01540 [cs] (2016). URL: http://arxiv.org/
abs/1606.01540, arXiv: 1606.01540.

[22] S. Han, W. Zhou, J. Liu, S. Lü, NROWAN-DQN: A Stable Noisy Network with
Noise Reduction and Online Weight Adjustment for Exploration, arXiv:2006.10980
[cs, stat] (2020). URL: http://arxiv.org/abs/2006.10980, arXiv: 2006.10980.

[23] D. P. Kingma, T. Salimans, M. Welling, Variational dropout and the local reparam-
eterization trick, 2015. arXiv:1506.02557.

https://arxiv.org/abs/1902.02476v2
https://arxiv.org/abs/1902.02476v2
http://arxiv.org/abs/1903.05779
http://arxiv.org/abs/1806.02925
http://arxiv.org/abs/1806.02925
http://arxiv.org/abs/1607.00215
http://arxiv.org/abs/1607.00215
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/2006.10980
http://arxiv.org/abs/1506.02557

	1 Introduction
	2 Background
	2.1 Noisy Networks
	2.2 Functional Variational Bayesian Neural Networks

	3 Method
	4 Experiments
	4.1 Details and Hyper-parameters
	4.2 Flat Prior
	4.3 Informative Prior

	5 Conclusion and Discussion

