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Abstract
Global Navigation Satellite Systems (GNSS) are often the target of malicious attacks and interferences,
mainly spoofing, thus posing a significant threat to both civilian and military equipment, and therefore
necessitating effective detection and identification of such attacks. In this ’Work-in-Progress’ paper, we
propose the application of Machine Learning neural networks, a methodology proven highly effective
in fields like cyberattack detection, to identify spoofing events across various scenarios. Our approach
consists in computing non-time related metrics from a dataset of known spoofed signals, using the
observables and signal-level measurements provided by a GNSS software receiver. The training is
validated on both spoofed and clean scenarios to ensure a comprehensive approach. Furthermore, we
provide a description of the feature’s importance in the decision-making process of the model.

1. Introduction

To meet the needs of the United States armed forces, the first model of a satellite geolocation
system, TRANSIT, was implemented in the early 1960s. Developed by the U.S. Navy, TRANSIT
was quickly followed by more sophisticated models, particularly the Global Navigation Satellite
System (GNSS), which was the first satellite-based geolocation system open to civilians.s. Since
then, the Geolocation and Navigation Satellite System (GNSS) technology has made enormous
progress and has become indispensable for a plethora of uses in daily life. It has become a major
economic and political issue, hence the development of the Galileo and Beidou-3 systems by
European and Chinese respectively. Its architecture and functioning make it an easy target for
malicious attacks: in the recent years, successful attempts of spoofing and jamming by rogue
states or academic figures have shifted the debate on the urgent need to detect attacks and
mitigate the damage. Civil GPS, which are embarked in civil transportation facilities, mainly
boats or cars, are particularly vulnerable to this kind of threats but occurrences of jacking of
secured military utilities have also been reported, e.g. Iran allegedly stole a US Air Force drone
using low-cost spoofing [1].

Spoofing involves transmitting counterfeit GNSS-like signals to generate a false position in
the target receiver without disrupting GNSS operations, ultimately gaining control over the
receiver. This technique entails mimicking a false signal that shares the same code phase, carrier
frequency, and Doppler frequency shift as the authentic navigation satellite signal, thereby
enabling interference and signal capture.

Many counter techniques have been developed and published in the recent years, the majority
focusing on analyzing signal level characteristics in order to trigger alarms when abnormal
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behavior is detected. They cover mainly disruption detection, for instance an abrupt change in
either amplitude, beat carrier phase, code phase, and primarily power monitoring (RPM). In that
sense, signal quality monitoring (SQM) consists in detecting distortions in the correlation peak
that results from the correlation of the received signal and the local replica. For instance, among
these SQM techniques, the most common metrics are often the delta and ratio tests [2], even
though a wide range of similar metrics have also been proposed in the literature. Moreover,
authentication of the signal by verifying the origin and integrity of signals is used to identify
and prevent unauthorized or counterfeit transmissions [1].

In the past two decades, the integration of machine learning into practical, real-world appli-
cations has experienced a remarkable surge, including the improvement of GNSS navigation
performance.[3] Despite this massive expansion to very various domains, GNSS spoofing de-
tection through machine learning implementation is fairly restrained [4, 5, 6, 7, 8]. Many of
these works involve detection techniques that require PVT observables, and thus they cannot
be applied until the GNSS receiver has succeeded in obtaining a position fix, which may take
several seconds in cold start.

In this paper, we provide a comparative analysis of many of the existing anti-spoofing
techniques when they are tested in a common framework comprising the same GNSS software
receiver and the same input datasets of spoofed signals. To do so, a layer of machine learning
algorithms is implemented in order to gather all the outputs provided by the considered anti-
spoofing techniques, and then to determine the relevance of such techniques on the model
decision process that is followed by the machine learning algorithms. Machine learning’s
greatest strength lies in its ability to discover patterns, outliers and hidden relationships in vast
and intricate amounts of data, and therefore this feature is expected to help in unveiling which
are the most effective anti-spoofing techniques among those being considered. It is important
to remark that the input data for the machine learning algorithms (in our case, the output of
the anti-spoofing techniques) often requires pre-processing such data through techniques like
removal, cross-combination, and scaling, rather than directly converting these data into binary
data (i.e. hard-decisions) for triggering alerts. These pre-processed data is then used as input for
the machine learning model, which generates binary output predicting the presence of spoofing
[9].

Once the introduction and motivation of this paper has been introduced, the remaining of this
paper is structured as follows. The problem statement and the specific tasks that are conducted
in the present work are briefly presented in Section 2. Next, a high-level explanation of the
mathematics and technology used in this work is introduced in Section 3. The fundamentals
of the considered Machine Learning architecture and its explicit the features are discussed in
Section 4. Finally, the experimental setup is described in Section 5 and conclusions are drawn
in Section 6.

2. Problem Statement

This work has two primary objectives. Firstly, we aim at developing a robust and efficient
spoofing detection system that leverages machine learning techniques, including both tradi-
tional algorithms and neural networks to practically predict a malicious spoofing attempt. In
parallel, we collect metrics recently introduced in the literature along with exclusive metrics to
retrospectively evaluate their weight in the machine learning process. The ultimate goal is to
establish a ranking that reflects the effectiveness of each metric in detecting spoofing attempts.
By combining a sophisticated detection system with a comprehensive understanding of the
factors influencing its success, we hope to enhance the overall reliability and practicality of our
approach.

To achieve this, we will:

• Analyze multiple datasets containing both genuine and spoofed GNSS signals.



• Investigate, extract and build relevant features and metrics for spoofing detection using a
software receiver.

• Train and evaluate a machine learning neural network to identify the most effective
approach.

• Assess the impact of different features on the decision-making process of the models.
• Validate the performance of the developed system in realistic scenarios.

3. Signal Model and Software Receiver

3.1. Signal Model

A typical GNSS signal can be represented in a simplified manner by Eq (1) [10],

𝑠(𝑡;𝐴, 𝑓𝑐, 𝜑) = 𝐴𝑑(𝑡)𝑐(𝑡) cos(2𝜋𝑓𝑐𝑡+ 𝜑(𝑡)) (1)

where 𝑠(𝑡;𝐴, 𝑓𝑐, 𝜑) is the received signal at time 𝑡, 𝐴 is the amplitude of the signal, which
is related to the signal power, 𝑑(𝑡) is the data-modulated signal containing the bits of the
navigation message, 𝑐(𝑡) is the spreading code or the pseudorandom noise (PRN) code, 𝑓𝑐 is the
carrier frequency and 𝜑(𝑡) is the carrier phase.

In a spoofing attack, the attacker generates a counterfeit GNSS signal, 𝑠sp(𝑡), that closely
resembles the genuine signal, 𝑠gn(𝑡). The goal is to deceive the GNSS receiver into locking
onto the counterfeit signal instead of the genuine one. The received signal in the presence of a
spoofing attack can be modeled by Eq (2) given in [5]:

𝑟(𝑡) = 𝑠gn(𝑡− 𝜏gn;𝐴gn, 𝑓𝑐,gn, 𝜑gn) + 𝑠sp(𝑡− 𝜏sp;𝐴sp, 𝑓𝑐,sp, 𝜑sp) + 𝑛(𝑡) (2)

where 𝑠gn(𝑡) is the genuine GNSS signal and 𝑠sp(𝑡) is the counterfeit GNSS signal generated by
the spoofer, 𝜏 is the propagation delay and 𝑛(𝑡) is the additive noise.

The signal model forms the basis for feature extraction and analysis in the subsequent stages
of our spoofing detection system. By exploring the differences between genuine and counterfeit
GNSS signals, we can identify meaningful features and metrics that can be used as input for the
machine learning models.

3.2. Software Receiver: A High-Level Overview

A GNSS software receiver is a GNSS receiver that processes the received signals using software
algorithms. It consists of several modules working together to acquire, track, and decode the
GNSS signals. These modules operate in a synchronized manner to compute the position,
velocity, and time (PVT) information [11]. The main components of a software receiver are
summarized in Fig. 1 and briefly described below:

• Signal Acquisition: This module searches for and acquires the GNSS signals transmitted
by the satellites. It correlates the incoming signals with locally generated replicas of the
PRN codes to determine the time delay and Doppler frequency shift.

• Signal Tracking: Once a signal is acquired, the tracking module continuously adjusts
the local replicas of the PRN code and carrier frequency to keep them aligned with the
incoming signal. This process involves adjusting the code delay and carrier frequency
using tracking loops, such as the code phase tracking loop and the carrier phase tracking
loop.

• Demodulation and Decoding: After tracking the signals, the receiver demodulates and de-
codes the navigation data. This information includes satellite ephemeris, clock corrections,
and other auxiliary data. These data are essential for calculating the PVT solution.



Figure 1: Software-Defined Receiver (SDR) architecture.

• PVT Calculation: The receiver uses the decoded navigation data and the measured pseudo-
ranges to compute the PVT solution. This calculation involves solving a set of nonlinear
equations, which can be done using various algorithms, such as the least squares method
or the extended Kalman filter.

4. Neural Network, Features and Input Data

4.1. Neural Network

Neural Networks are a subset of machine learning, mimicking the structure and function of
biological neural networks, like the ones found in the human brain. It is typically structured
with an input layer, one or multiple hidden layers and an output layer, they are well suited for
modeling non-linear relationships. Therefore they have been increasingly used in various fields,
from image recognition to language processing [5]. In this work, we choose to focus on one in
particular:

The Multi-Layer Perceptron is a type of feedforward artificial neural network that consists
of multiple layers of interconnected neurons. These connections have associated weights
that are adjusted during the training process. The network learns to optimize these weights
using an algorithm such as backpropagation, which minimizes the error between the predicted
output and the actual target values. MLP is convenient in our case for multiple reasons. Firstly,
it is a complex enough model to be able to handle complex and high-dimensional data to
sense the outliers and patterns in non-linear relationships. Secondely, despite being highly
efficient in most cases, it remains a fairly straightforward and computationally light algorithm
in our particular architecture. This efficiency also facilitates the empirical search for optimal
parameters through methods such as grid search[12].

4.2. Features Descriptors

To train and evaluate the performance of our machine learning models, we extract a set of fea-
tures from the received GNSS signals. The following metrics are used for feature extraction[13]
[14]:

• Carrier to noise spectral density (𝐶/𝑁0): It measures the strength of the GNSS signal
relative to the noise level. It is an essential metric to assess signal quality and can be
affected by spoofing attacks.
The 𝐶/𝑁0 is computed by first calculating the signal power 𝑃 and noise variance 𝜎2 from
the tracked signal. Specifically, the signal power is calculated as 𝑃 = 𝐼2𝑃 +𝑄2

𝑃 , where 𝐼𝑃
and 𝑄𝑃 represent the in-phase and quadrature components of the signal. We plot it in Fig.
2. In that case, the scenario being a 10 dB power advantage, the metric is expected to raise,



Figure 2: 𝐶/𝑁0 observables obtained ∼ 10 seconds before and after the spoofer appeared in
scenario ’os2’.

suggesting there might be an issue. The dataset involves a 2 ms (milliseconds) time delay
or ’push’, also described as a ’two chip delay’, the signal is delayed by the duration of two
pulses. In our case the software receiver, never being able to locate the newest strongest
peak, is keeping track of the authentic signal instead of tracking the spoofed signal.

The noise variance 𝜎2 is obtained from the deviation of the noise level from its mean over
a certain interval. The 𝐶/𝑁0 is then given by the formula:

𝐶/𝑁0 = 10 · log10
(︂
𝑃

𝜎2
· 1

𝑃𝐷𝐼

)︂
(3)

where the 𝑃𝐷𝐼 factor is the time duration over which the signal power and noise variance
are averaged.

• The delta metric (∆𝜏(𝑡)): is used as a metric for detecting spoofing and it is based on
computing the following ratio [13]:

∆𝜏(𝑡) =
𝐼𝐸,𝜏 (𝑡)− 𝐼𝐿,𝜏 (𝑡)

2𝐼𝑃 (𝑡)
(4)

In this equation, 𝐼𝐸,𝜏 (𝑡) and 𝐼𝐿,𝜏 (𝑡) correspond to early and late taps, respectively, which
are 𝜏 seconds ahead and behind the prompt tap 𝐼𝑃 (𝑡) in the in-phase component at time 𝑡.
Since the delta test exhibits symmetry, 𝐸[∆𝜏(𝑡)] = 0 under conditions free from multipath
and spoofing.

• Quadrature discriminant metric: This metric is similar to the delta metric, but for the
quadrature component. It is represented as 𝑄𝑑𝑖𝑠𝑐𝑟 and calculated as follows in Eq (4):

Qdiscr =
𝑄𝐿,𝜏 (𝑡)−𝑄𝐸,𝜏 (𝑡)

2𝑄𝑃 (𝑡)
(5)

• Early-late phase metric (𝐸𝐿𝑃𝜏 ): This metric captures the phase difference between early
and late taps. It can help detect spoofing and multipath effects. It is calculated in Eq (5):

ELP𝜏 = arctan

(︂
𝑄𝐿,𝜏 (𝑡)

𝐼𝐿,𝜏 (𝑡)
−

𝑄𝐸,𝜏 (𝑡)

𝐼𝐸,𝜏 (𝑡)

)︂
(6)



• In-phase and quadrature ratio discriminant metrics (𝐼𝑅𝐷 and 𝑄𝑅𝐷): These metrics measure
the ratio between the sum of early and late taps and the prompt tap for both in-phase and
quadrature components, respectively, as given in Eq (6) and Eq (7):

𝐼RD =
𝐼𝐿,𝜏 (𝑡) + 𝐼𝐸,𝜏 (𝑡)

2𝐼𝑃 (𝑡)
, (7)

𝑄RD =
𝑄𝐿,𝜏 (𝑡) +𝑄𝐸,𝜏 (𝑡)

2𝑄𝑃 (𝑡)
(8)

• Magnitude Difference Metric (𝑀𝐷𝜏 ): This metric evaluates the difference between the
magnitudes of the early and late taps normalized by the prompt tap magnitude. It can
help detect spoofing attacks. It is calculated in Eq (8):

MD𝜏 =

√︀
𝐼𝐸,𝜏 (𝑡)2 +𝑄𝐸,𝜏 (𝑡)2 −

√︀
𝐼𝐿,𝜏 (𝑡)2 +𝑄𝐿,𝜏 (𝑡)2√︀

𝐼𝑃 (𝑡)2 +𝑄𝑃 (𝑡)2
(9)

• Q-channel Signal Quality Monitoring (SQM) metric: It is also denoted as 𝑀sqm, is a novel
SQM metric proposed in [15] to address the limitations of traditional SQM metrics, such
as limited spoofing detection accuracy and low robustness due to false alarms caused by
environmental effects like multipath. Traditional SQM metrics are mainly constructed
based on the in-phase correlator outputs in the tracking loop of a GNSS instrument. During
a spoofing attack, the interaction between genuine and fake signals may lead to a transfer
of correlation energy into the quadrature channel. This abnormal quadrature channel
energy serves as the primary indicator for the 𝑀sqm metric. In the absence of spoofing,
the typical value of Q-channel energy is 0, while the typical value of I-channel energy is
large and nonzero. When spoofing is present, even a weak abnormal energy can quickly
appear in the Q-channel. The metric is given in Eq (9):

𝑀SQM =

√︃(︂
𝑄𝐸,𝜏 (𝑡)

𝐼𝑃 (𝑡)

)︂2

+

(︂
𝑄𝐿,𝜏 (𝑡)

𝐼𝑃 (𝑡)

)︂2

(10)

• Partial Correlation: It is computed by means of the cumulative sum of the samples com-
prising a bit period. When attempting spoofing, the attacker will struggle to instantly
know what to output in the first instant of a bit sign change, thus often giving a null or
random output. This phenomenon is highlighted in the right hand of Fig. 3, where the
presence of random guesses of the bit during the first samples of the bit period causes
the cumulative sum to stagnate for a while. In contrast, for the case of a clean signal, the
cumulative sum follows its linear regression nicely. The idea of this technique is to exploit
this phenomenon by computing the correlation between the first and last samples of the
bit period [16].

• Custom CCAF Metric: We compute the Cross-Ambiguity Function (CCAF) periodically,
every second before the tracking loop when this computation is traditionally only done
during the acquisition process. The CCAF can be useful to spot the presence of multiple
signals even in cases where the spoofing is inaccurate and the counterfeit peak is sig-
nificantly distant from the authentic signal by computing the correlation over both the
Doppler frequency and code delay [17]. On the other hand, the computation is heavier and
longer in time than other metrics proposed. In the matlab code, we reduced the calculation
in an specific area around the first peak found: the computation is faster but the spoofer
signal’s peak could be missed. In our custom metric, we analyze the CCAF to identify the
two largest peak values, which can correspond to the authentic and counterfeit signals:
after finding the first peak, we erase and replace a given area around this peak by the



Figure 3: Cumulated sum and its linear regression for snapshot for scenario ’os2’ in the absence
(left) and presence (right) of spoofing.

Figure 4: CCAF plot when spoofing, zoomed 20 digits around main peak.

average noise level before grid searching for the highest peak.
The metric is computed using with Eq (10):

𝜆 =
𝑅1 −𝑅2

𝑅1
(11)

where 𝑅1 represents the largest peak value and 𝑅2 represents the second-largest peak
value of the CCAF. This custom metric helps us assess the impact of spoofing on the CCAF
over time, by quantifying the relative difference between the two most prominent peaks.
As an example, Fig. 4 displays the CCAF when there is spoofing, where one can see that
two peaks do appear, thus indicating the presence of two simultaneous GNSS signals, one
of which must be the spoofed signal.

• SAM Metric: We adapted a metric originally designed for multipath detection, as described
in [18], to suit our needs. The Slope Asymmetry Metric (SAM) is based on comparing the
left and right slopes of the received signal correlation peak. Ideally, both slopes should be
equal (but sign reversed), and their sum should be close to zero. The metric was developed
primarily for static multipath scenarios, but we have adjusted it to be applicable in our



context. Using Least Squares Regression on four points of each side of the correlation
function centered on its peak, the sum of the two slopes is the metric used to detect any
spoofing. Starting from the least squares regression, we can use the normal equations
to find the slopes for the left and right sides of the correlation function. Given 4 points
on each side, we can express the problem in matrix form. Let A𝐿 and A𝑅 be the 4× 2
matrices for the left and right sides respectively, where the first column contains the time
shift values 𝑥 and the second column is filled with ones:

A𝐿 =

⎡⎢⎢⎣
𝑥1𝐿 1
𝑥2𝐿 1
𝑥3𝐿 1
𝑥4𝐿 1

⎤⎥⎥⎦ , A𝑅 =

⎡⎢⎢⎣
𝑥1𝑅 1
𝑥2𝑅 1
𝑥3𝑅 1
𝑥4𝑅 1

⎤⎥⎥⎦ (12)

Let y𝐿 and y𝑅 be the 4 × 1 column vectors containing the corresponding correlation
values:

y𝐿 =

⎡⎢⎢⎣
𝑦1𝐿
𝑦2𝐿
𝑦3𝐿
𝑦4𝐿

⎤⎥⎥⎦ , y𝑅 =

⎡⎢⎢⎣
𝑦1𝑅
𝑦2𝑅
𝑦3𝑅
𝑦4𝑅

⎤⎥⎥⎦ (13)

The normal equation for each side can be expressed as:

A𝑇
𝐿A𝐿

[︂
𝑚𝐿

𝑏𝐿

]︂
= A𝑇

𝐿y𝐿, A𝑇
𝑅A𝑅

[︂
𝑚𝑅

𝑏𝑅

]︂
= A𝑇

𝑅y𝑅 (14)

These normal equations can be solved to obtain the slope and intercept (𝑚𝐿, 𝑏𝐿,𝑚𝑅, 𝑏𝑅)
for each side. In matrix notation, these solutions would be:[︂

𝑚𝐿

𝑏𝐿

]︂
= (A𝑇

𝐿A𝐿)
−1A𝑇

𝐿y𝐿,

[︂
𝑚𝑅

𝑏𝑅

]︂
= (A𝑇

𝑅A𝑅)
−1A𝑇

𝑅y𝑅 (15)

After obtaining the slopes 𝑚𝐿 and 𝑚𝑅, we can calculate the Slope Asymmetry Metric
(SAM) as the sum of the two slopes in Eq (15):

SAM = 𝑚𝐿 +𝑚𝑅 (16)

A significant deviation of the SAM metric from zero would indicate potential spoofing.

4.3. Input Datasets

In this study, we employ two publicly available datasets to evaluate the performance of our
machine learning models, namely the Texas Spoofing Test Battery (TEXBAT) provided by
the University of Texas at Austin, and the Oak Ridge Spoofing and Interference Test Battery
(OAKBAT) from the US Oak Ridge National Laboratory. These datasets consist of diverse
scenarios of spoofed GPS L1 C/A signals, as well as the baseline clean scenarios.

• TEXBAT dataset [19]: The Texas Spoofing Test Battery (TEXBAT) is a collection of six high-
fidelity digital recordings of live static and dynamic GPS L1 C/A spoofing tests, conducted
by the Radionavigation Laboratory of the University of Texas at Austin. The purpose of
TEXBAT is to serve as the data component of an evolving standard aimed at defining spoof
resistance for civil GPS receivers. The recordings capture a wide range of bandwidth and
quantization considerations to support the evaluation of various authentication techniques.
TEXBAT includes six spoofing attack scenarios and two clean datasets, with parameters
such as spoofing type, platform mobility, power advantage, frequency lock, noise padding,
and file size. The battery enables researchers to develop and evaluate spoofing detection



techniques by studying the response of GPS L1 C/A receivers to the different spoofing
attack scenarios presented in TEXBAT [20].

• OAKBAT dataset [21]: The OAKBAT dataset is a more recent dataset explicitly designed for
GNSS spoofing detection research. It has been developed following the same methodology
as the TEXBAT dataset to provide more data for researchers as those specific resources have
proven to be scarce. This collection of digitized RF signals serves as both a complementary
"sibling" and an advancement to the widely used TEXBAT dataset. It comprises both
authentic and spoofed GNSS signals collected in controlled environments, with the latter
being generated using a commercially available signal simulator. The OAKBAT dataset
consists of 16 unique datasets, with eight sets containing only the GPS L1 C/A signal and
another eight sets containing only the Galileo E1 signal. Each group has two spoof-free,
clean baseline sets and six sets with various degrees and types of spoofing. The datasets
share several common parameters and are designed with reproducibility and accessibility
in mind, making it an invaluable resource for researchers in the field of GNSS security
and robustness.

5. Results

5.1. Experimental Setup

Our experimental setup comprises three main components: downloading spoofing or clean
scenarios from the TEXBAT and OAKBAT datasets, processing the scenarios through a modified
version of our software receiver to extract and build desired metrics, and building a machine
learning neural network using these metrics as input.
1. Datasets: We aimed to include a diverse range of scenarios from both TEXBAT and

OAKBAT datasets. In our experiments, we specifically used the Scenario 2 dataset from the
TEXBAT collection, referred herein as ’ds2’. This scenario, also known as Static Overpowered
Time Push (SOTP), features a spoofing attack where the spoofer has a 10 dB power advantage
over the authentic signal ensemble. This scenario showcases the effects of a timing attack with
a significant power advantage, forcing authentic signals into the noise floor and making the
interaction between authentic and counterfeit signals less apparent. We also used the scenario
2 of the OAKBAT dataset, herein referred as ’os2’, which gives similar features. To have a more
complete training, we also used the two clean of spoofing static scenarios from both datasets. As
a validation feature, scenario 4, herein referred as ’os4’, of the OAKBAT dataset will be utilized.
2. Data Processing: We employed the FGI-GSRx software receiver for signal processing

and analysis, which is provided as a companion software to [22]. Developed by the Finnish
Geospatial Research Institute (FGI), this versatile GNSS software-defined radio tool is built with
MATLAB, allowing users to process and analyze GNSS signals, which is particularly useful for
research purposes. In our study, we used the FGI-GSRx software to evaluate the performance of
spoofing detection techniques. We input the entire dataset into the software receiver but we
focus on a shortened sample, which spans from approximately 10 seconds before the start of
spoofing to 10 seconds after, according to the timestamps given by [19] for the TEXBAT dataset
and [21] for OAKBAT.
For the non-spoofed scenarios, we compute from 100 to 120 seconds for the TEXBAT dataset
and 110 to 130 seconds for the OAKBAT dataset. As a result, most metrics comprise 20,000
epochs, given that observations are obtained from the GPS L1 C/A signal every 1 ms. Some
other metrics, such as those using the 𝐶/𝑁0, are obtained every 1 s. It is also important to
remark that only one satellite is being processed at a time in the results to be shown next, in
particular SV3 for TEXBAT and SV8 for OAKBAT.

3. Machine Learning: We implemented a feedforward neural network using python libraries
TensorFlow and Keras to classify the presence of spoofing attacks based on the metrics extracted



from the GNSS signals, with the goal of predicting the binary label. The choice to use a neural
network was motivated by multiple reasons. The main reason is their ability to model complex
relationships very well, which is not as efficient in different models like Support Vector Machines
(SVMs) or the gradient boosting XGBoost. They are able to extract non-linear relationships
and intricate interactions between features. Another reason is their flexibility in tuning the
parameters and the architecture of the layer; as the training dataset is still to be updated with
more various scenarios, the adaptability of Multi-Layer Perceptron (MLP) simplifies the modeling
process. On the other hand, it is important to pay attention to overfitting and bias while training,
some early setups really struggled to accurately predict the spoofing due to strong overfitting.
To compare performances, we also implemented an SVM model in our preliminary stages.
While the SVM model delivered results comparable to the MLP, we decided to concentrate on
optimizing and detailing results from the neural network due to its aforementioned benefits.
We aim in this work at using binary classification to predict whether an epoch, here a 1 ms
period, is spoofed or not. The algorithm consists of categorizing data into two classes: True
or False. During the preprocessing, we first removed extreme outliers, mainly the first 1,000
points of the implementation, to eliminate any anomalous effects at the beginning of the dataset.
Then, we applied a 1-second (1,000 points) rolling mean to smooth the data and reduce the
noise. Thus, our input data is reduced from 20,000 epochs to 19,000 for 11 features. We also add
the spoofed label that indicates whether a row is spoofed (equals 1) or not (equals 0).
The dataset is randomly divided between training and test datasets with a ratio 70%−30%. To
this effect, we utilized the train_test_split function from the Scikit-learn Python library. This
function first shuffles the dataset randomly, then allocates a specified proportion of data points
to the training set and the remainder to the test set As a result, the training and test datasets
are composed of 13 300 and 5700 points respectively.
Additionally, we computed the correlation between the different features to better understand
their relationships and potentially reduce dimensionality as illustrated in Fig. 5: it displays
the 11 features used before reducing the dimensionality as well as the label value spoofed. It
is important to remark that the importance of the correlation is given by the absolute value:
a value close to 1 or -1 means a strong relationship between the variable whereas the closer
to 0 the weaker the link. Reducing dimensionality is primordial in making the training more
efficient by getting rid of useless noisy features and particularly to avoid overfitting: other
methods could be implemented such as Principal Component Analysis (PCA) to reduce the
number of features using their variance [23].

To better training performance, the metrics of size 20,000 are scaled using MinMaxScaler
following the formula:

𝑋std =
𝑋 −𝑋min

𝑋max −𝑋min
(17)

𝑋scaled = 𝑋std * (max − min) + min (18)

where min, max are the features size.
In our model, we employed an L2 regularization technique to prevent any single feature from

dominating the learning process. This technique adds a penalty proportional to the square of
the magnitude of the weights to the loss function, discouraging the model from assigning too
much importance to any particular feature. This helps in reducing overfitting and makes the
model more generalizable [24].

The architecture of the implemented neural network is as follows:

• Input layer : A dense layer with 32 neurons and a ReLU activation function, which takes
the feature vector with a length equal to the number of metrics.

• Dropout layer : A dropout layer with a dropout rate of 0.5 is added to prevent overfitting.



Figure 5: Correlation matrix in percentage for the TEXBAT dataset ’ds2’.

• Hidden layer : A dense layer with 16 neurons and a ReLU activation function. The Rectified
Linear Unit layer (ReLU) is an activation function that simply retains positive inputs and
sets all negative inputs to zero. Although simple, this function has several interesting
properties that make it very useful in neural networks. Firstly, while being a linear function
for positive values, ReLU introduces non-linearity due to the threshold at zero, allowing
neural networks with ReLU activations to model complex patterns and relationships.
Secondly, ReLU leads to sparse activation, meaning that at any layer, some neurons can
output a true zero, contrary to tanh and sigmoid functions that only can approach the
zero value, making the network more efficient and easier to train. Thirdly, the computation
is very straightforward and basic, making the computation very efficient, the function
can be represented as 𝑓(𝑥) = max(0, 𝑥)[25].

• Dropout layer : Another dropout layer with a dropout rate of 0.5 is added.
• Output layer: A dense layer with a single neuron and a sigmoid activation function, as

this is a binary classification problem.The sigmoid activation function, also known as the
logistic function, is commonly used in the output layer of binary classification problems
due to its ability to map any real-valued number into the range between 0 and 1. This
makes it useful for outputting probabilities for the two classes in a binary classification



Figure 6: Bar plot of feature importance using connections weights (left) and permutation (right).

problem. The sigmoid function is represented as 𝑓(𝑥) = 1/(1+ 𝑒−𝑥) where 𝑥 is the input
to the function.

The model is compiled using the Adam optimization algorithm and the binary cross-entropy
loss function, which is appropriate for a binary classification task. After hypertuning the pa-
rameter using a randomSearch, The model is trained on the training dataset for 30 epochs with
a batch size of 32 and learning rate 𝛼 = 0.01. The performance of the model is evaluated on
the test dataset using validation data during training.

5.2. Metrics Ranking

In this section, we present the results obtained from our experiments. The primary objective
was to retrospectively identify the most influential metrics in our algorithm’s decision-making
process during training, in the idea to mitigate the "black-box" effect of such algorithms. At
this point of time we build the ranking for a dataset composed of both TEXBAT and OAKBAT
second scenarios and the OAKBAT clean static scenario. (ds2+os2+cleanStatic_os).
To compute the metrics importance, we use two different methods:

• Feature importance using connections weights This method aims at computing the relative
importance of input features by calculating the weights of the neural network [26]. In our
code, we evaluate the weight in between the input layer and the first hidden layer. The
results are shown in the left hand side plot of Fig. 6.

• Permutation importance This method involves randomly shuffling the values of a single
feature, running the model with the shuffled data, and measuring the change in perfor-
mance. The larger the performance drop, the more important the feature. To visualize
the results, we plot the importance of each feature with bar style, as well as the standard
deviation error to estimate uncertainty in the right hand side plot of Fig. 6. It is worth
noting that this does not represent a percentage because it doesn’t involve breaking a
whole into parts: it represents the average difference between the model with and without
shuffling over multiple tries (here ten times for each feature). A feature could even have a
negative value if shuffling it actually improves the model, for instance if the metrics only
add noise to the model [27].



Figure 7: Epochs spoofing decisions using the TEXBAT ’cleanStatic’ scenario (left) and the OAKBAT
spoofed dataset ’os4’ scenario (right).

The first method uses directly the inner working of the neural network but treats the metrics
independently, which could cause a wrong estimation of features’ correlation and therefore
output wrong results. The second method is not relying on the model’s structure, thus can more
adequately estimate more complex models despite being computionally heavier. We hope to
have a better vision of the model computation by exhibiting those two methods together.

5.3. Validation Results

In this section, we discuss the validation for our merged datasets (os2+ds2+oakbatCleanStatic).
To ensure a comprehensive evaluation, we validate on two independent datasets: the spoofed
OAKBAT scenario ’os4’ and the clean TEXBAT ’cleanStatic’ scenario. This approach allows us
to gauge the algorithm’s performance in detecting and differentiating between the two types of
data.

Firstly, being sure that our algorithm does not wrongly overly identify spoofing events in a
clean dataset is primordial: hereby the left hand side plot in Fig. 7 shows the 𝐶/𝑁0 over the
acquisition stage of the GNSS receiver according to the predictions on the non-spoofed scenario.
The results are quite promising: over 80 % of the epochs are predicted correctly.

In terms of the spoofed dataset, we plot the 𝐶/𝑁0 where the color-coded data points represent
different prediction states in the right hand side plot of Fig. 7 alongside with the confusion
matrix in Fig. 8: we observe that the model identifies almost perfectly the non-spoofed period
(in blue, 98% precision) whilst it struggles more on the spoofed event (79%). This is confirmed
by the confusion matrix Fig. 8: 417 spoofed epochs are being predicted wrongly.
For a practical use, we could convene that if the frequency of predicted spoofing exceeds a
specified threshold (e.g., 75%) within a certain time frame, it is likely that a spoofing attempt is
in progress. Tab. 1 summarizes all the validation results.
We proceeded to test our model using only the top five (CNO, ccafMetric, MetricSAM, ELP,
Msqm) and top three (CNO, ccafMetric, MetricSAM, ELP, Msqm) metrics according to their
importance given in Fig. 6. The model’s performance degraded slightly: this suggests that even
the lowest ranked metrics have valuable information, as illustrated in Tab. 2. Therefore, while
our analysis confirms the significant impact of the top-ranked metrics, it also highlights the
collective contribution of all metrics in achieving optimal detection accuracy. Regarding the
clean Oakbat dataset, the results are sensibly the same.



Validation Dataset Non-Spoofed period Spoofed period
CleanStatic 81% –%

os4 99% 79%

Table 1
Percentage of correctly validated epochs for each dataset.

Figure 8: Confusion matrix for validation using the OAKBAT dataset ’os4’.

cleanStatic os4
Top 5 99% 77%
Top 3 97% 75%

Table 2
Summary of results on both validation datasets when retaining the most predictive features.

6. Conclusions

This work-in-progress article showcases an approach for developing an efficient machine
learning-based spoofing detector concomitantly with a importance review of various metrics
build in the process. This paper uses the neural network multi-layer perceptron neural network
on selected metrics and combined datasets to classify artificially created spoofing scenarios. The
procedure involves acquiring primary data through a software receiver, constructing the desired
metrics mathematically, and applying classical machine learning pre-processing and scaling
techniques.. The results give promising results as the algorithm is able to display spoofing
and non spoofing events with correct results (with a minimum of 82% recall). As our range of
validated datasets is fairly limited, we aim at improving the work by expanding the dataset with
home generated spoofing scenarios using the Skydel GSG-8 GNSS simulator available at the
SPCOMNAV research group. Those new datasets will enable a wider range of spoofing attacks,
helping reduce the potential bias in our results.
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