
Data is Data and Control Should be Data, Too
Compiling Iterative Table-valued PL/SQL UDFs into Recursive SQL Code

Denis Hirn1

1supervised by Torsten Grust
University of Tübingen, Germany

Abstract
PL/SQL functions suffer from poor runtime performance due to the frequent context switches that occur between the PL/SQL
interpreter and the SQL executor. This switching causes friction that can slow down UDF execution significantly. Table-valued
UDFs incur the additional challenge of the efficient treatment of the sizable results they generate. In this paper, we generalize
our PL/SQL UDF compilation strategy to also handle such table-valued UDFs. The generated SQL code carefully separates
control flow from data flow at runtime. Compiled UDFs efficiently stream their table-valued results (as opposed to UDF
variants that need to hold and copy intermediate states in array variables) and thus impose significantly less memory pressure.

1. Introduction
PL/SQL is a high-level procedural programming language
that allows developers to write custom user-defined func-
tions (UDFs), operators, and algorithms that are not
supported by the built-in functions of the database sys-
tem. PL/SQL enables a style of imperative programming—
which is quite different from the declarative set-oriented
SQL paradigm—but still provides immediate access to
database-resident tables. The distinctive PL/SQL features
are (1) destructive variable assignments, (2) statement
sequences, (3) arbitrary control flow (e.g. in terms of
IF...ELSE, WHILE, EXIT), and a (4) seamless integration of
SQL queries and expressions.

PL/SQL SQL

time

Q1

Q1

Q1

WHILE
in march

𝑡𝛼

𝑡𝜔

overhead

Figure 1: Context switch-
ing as UDF march executes.

Typically, PL/SQL is imple-
mented as an interpreted lan-
guage on top of SQL host
engines. The imperative,
non-SQL statements are in-
terpreted by the PL/SQL sub-
system, while all embedded
SQL queries are sent to the
SQL executor. Because both
execution environments are
completely disparate, each
switch from one context to
the other (and back) takes
time and therefore causes
context switching overhead.
The situation is particularly

dire when these embedded queries are placed in tight

VLDB 2023 PhD Workshop, co-located with the 49th International
Conference on Very Large Data Bases (VLDB 2023), August 28, 2023,
Vancouver, Canada
Envelope-Open denis.hirn@uni-tuebingen.de (D. Hirn)
Orcid 0000-0001-7040-1780 (D. Hirn)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

PL/SQL (FOR or WHILE) loops. In that case, switching back
and forth between PL/SQL and the SQL executor occurs
very frequently, which multiplies the overhead, and ulti-
mately slows down execution. Figure 1 visualizes this.

It has thus become common developer lore that PL/SQL
is slow and should be avoided if possible [1]. It has
nonetheless been used for decades to implement complex
database-driven applications [2]. Research has since rec-
ognized this as an important issue, resulting in several
publications addressing this pressing challenge [1, 3–5].

The scope of the PhD project. The overarching goal
of the PhD project is to allow developers to use impera-
tive programming, e.g., in the form of PL/SQL UDFs, while
maintaining the high performance of plan-based SQL ex-
ecution. To accomplish this, we develop new ways to
compile imperative PL/SQL UDFs into SQL queries. This
compilation can handle arbitrary nesting of the PL/SQL
features mentioned on the left. This includes looping con-
trol flow. As a side effect of this effort, database systems
without PL/SQL support—but with support for a contem-
porary SQL dialect—will be able to run imperative PL/SQL
UDFs after compilation, since no PL/SQL interpreter is
required. In the present paper, we focus on the compila-
tion of imperative (typically: iterative) table-valued UDF
code into recursive yet plain SQL queries.

1.1. From Scalar Values to Tables
In [5], we described a compiler that transforms
scalar PL/SQL UDFs to a single recursive SQL CTE
(WITH RECURSIVE). While keeping the basic idea and com-
pilation chain as is, the present work separates the man-
agement of control flow and data flow to make the com-
pilation suitable for table-valued UDFs. To this end, we
introduce the concept of control rows and data rows. Pre-
viously, the compiler used only control rows and could
not handle table-valued UDFs.

Let us look at an example. UDF march of Figure 2a is a

mailto:denis.hirn@uni-tuebingen.de
https://orcid.org/0000-0001-7040-1780
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Q1[⋅]

1 CREATE FUNCTION march(start vec2) RETURNS SETOF vec2 AS $$
2 DECLARE
3 goal vec2 := start;
4 cur vec2 := start;
5 dir vec2;
6

7 BEGIN
8 WHILE true LOOP
9 dir := (SELECT d.dir
10 FROM directions AS d, squares AS s
11 WHERE s.xy = cur
12 AND (s.ll, s.lr, s.ul, s.ur)
13 = (d.ll, d.lr, d.ul, d.ur));
14 RETURN NEXT cur;
15 cur := (cur.x + dir.x, cur.y + dir.y) :: vec2;
16 EXIT WHEN cur = goal OR dir IS NULL;
17 END LOOP;
18

19 END;
20 $$ LANGUAGE PLPGSQL STRICT;

(a) Table-Valued version of PL/SQL UDF march.

Q1[⋅]

1 CREATE FUNCTION march-arr(start vec2) RETURNS vec2[] AS $$
2 DECLARE
3 goal vec2 := start;
4 cur vec2 := start;
5 dir vec2;
6 result vec2[] := ARRAY[] :: vec2[];
7 BEGIN
8 WHILE true LOOP
9 dir := (SELECT d.dir
10 FROM directions AS d, squares AS s
11 WHERE s.xy = cur
12 AND (s.ll, s.lr, s.ul, s.ur)
13 = (d.ll, d.lr, d.ul, d.ur));
14 result := result || cur;
15 cur := (cur.x + dir.x, cur.y + dir.y) :: vec2;
16 EXIT WHEN cur = goal OR dir IS NULL;
17 END LOOP;
18 RETURN result;
19 END;
20 $$ LANGUAGE PLPGSQL STRICT;

(b) Marching Squares as an array-based PL/SQL UDF.

Figure 2: Q1[⋅] is an embedded SQL query with the free variable cur.

table-valued function and implements the popular com-
puter graphics algorithm Marching Squares [6] in Post-
greSQL’s PL/pgSQL. Whenever such a table-valued UDF
encounters a RETURN NEXT, the PostgreSQL interpreter
adds a new result to the function’s result set before the
UDF resumes execution. This, potentially sizable, return
set is materialized during execution and returned as a
whole when the function exits.

An alternative implementation as a scalar PL/SQL UDF
(see march-arr in Figure 2b) iteratively builds the result as
an array of type vec2[]. Our previous compilation strat-
egy does handle march-arr, but the resulting SQL query
will exhibit disappointing performance: the compilation
creates a recursive CTE whose iteration expresses the
iteration of the original UDF. This CTE maintains the
local state of all UDF variables in a single row of the
CTE’s working table. For UDF march-arr, maintaining
the array result iteratively results in significant runtime
overhead because the array has to be copied (and ex-
tended) in each iteration. For 𝑛 iterations, this amounts
to a total of 𝑛 × (1 + 2 + ... + (𝑛 − 1)) ≡ 1

2
𝑛2 × (𝑛 − 1) copy

operations. In consequence, the CTE’s working table
grows to 16 MB during the execution of the compiled
UDF march-arr. Note that this copy overhead is not spe-
cific to PostgreSQL. It is a consequence of (semi-)naive
evaluation of recursive CTEs. This evaluation semantics
requires all data structures to be purely functional, mean-
ing that they preserve previous versions of themselves
unchanged. It may be possible to apply ideas from purely
functional data structures [7] to database engines to im-
prove the performance of recursive CTEs. However, as
far as we know, no system currently does this.

In what follows, we sketch how to adapt and general-
ize the CTE-based PL/SQL UDF compilation to also cover
table-valued UDFs like march of Figure 2a. We aim to
(1) support the idiomatic RETURN NEXT style of UDF au-
thoring, (2) avoid the materialization and copying of in-

PL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQLPL/SQL plain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQLplain SQL

iterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterative goto recursive trampolined style WITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVEWITH RECURSIVE

fffffffffffffffff SSA ANF ANF SQL QfQfQfQfQfQfQfQfQfQfQfQfQfQfQfQfQf

Figure 3: Compilation stages and intermediate UDF forms.
See [5] for a detailed description of this compilation.

start:
goal0 ← start;
cur0 ← start;
dir0 ← NULL;
GOTO while;

while:
cur0 ← o|(start:cur0,while:cur1);
dir1 ← (Q1[cur0]);
emit cur0;
cur1 ← (cur0.x + dir1.x, cur0.y + dir1.y);
p1 ← (cur1 = goal0 OR dir1 IS NULL);
IF p1 THEN
GOTO exit;

ELSE
GOTO while;

exit:
RETURN;

Figure 4: CFG for UDF march with code blocks in SSA form.

termediate results, and (3) still avoid PL/SQL↔SQL switch
overhead (which adds to 20% in the case of UDF march).

2. Trampolined Style in SQL
Complex UDFs that express (potentially deeply nested)
looping computation and the simple iterative semantics
of SQL’s WITH RECURSIVE appear to be at odds. Yet, that
gap can be bridged.

A program in trampolined style is organized as a single
“scheduler” loop, the so called trampoline, whichmanages
all control flow. Execution of such programs proceed in
discrete steps. After each step, control is returned to
the trampoline, which then proceeds to transfer control

WHILE

EXIT

1 WITH RECURSIVE run("rec?","data?",call,res,cur) AS (
2 SELECT true AS "rec?", false AS "data?", 'while' AS call, NULL::vec2 AS res, start AS cur
3 UNION ALL -- recursive UNION ALL
4 SELECT result.*
5 FROM run,
6 LATERAL (SELECT if_p1.*
7 FROM (Q1[run.cur]) AS let_dir(dir),
8 LATERAL (SELECT NULL AS "rec?", true AS "data?", NULL AS call, run.cur AS res, NULL AS cur
9 UNION ALL
10 SELECT if_p2.*
11 FROM (SELECT ((run.cur).x + dir.x, (run.cur).y + dir.y) :: vec2) AS let_cur(cur),
12 LATERAL (SELECT let_cur.cur = start OR dir IS NULL) AS let_p1(p1),
13 LATERAL (SELECT true AS "rec?", false AS "data?", 'while' AS call, NULL AS res, let_cur.cur AS cur
14 WHERE NOT p1
15 UNION ALL
16 SELECT true AS "rec?", false AS "data?", 'exit' AS call, NULL AS res, NULL AS cur
17 WHERE p1) AS if_p2
18) AS if_p1
19 WHERE run.call = 'while'
20 UNION ALL
21 SELECT false AS "rec?", false AS "data?", NULL AS call, NULL AS res, NULL AS cur
22 WHERE run.call = 'exit') AS result
23 WHERE run."rec?")
24 SELECT run.res FROM run WHERE run."rec?" IS NULL AND run."data?";

Figure 5: Final plain SQL code emitted for the table-valued PL/SQL UDF march of Figure 2a.

again [8]. This cycle continues until the program execu-
tion is finished. Using trampolined style, the program
is effectively transformed into a state machine. We ex-
ploit the property, that only a single loop is required to
express arbitrary control flow. This restricted form of
control flow perfectly matches the semantics of SQL’s
WITH RECURSIVE construct.

From PL/SQL to SQL. The compiler performs a series
of transformations (see Figure 3) to get from PL/SQL to
a plain recursive SQL query. The first step is to lower
the UDF to static single assignment (SSA) form. Any
iterative control flow is mapped to an equivalent program
with labeled basic blocks that end with either GOTO 𝜅 to
pass control to the block labeled 𝜅, or RETURN. From the
resulting CFG (see Figure 4) we derive the recursive SQL
CTE run of Figure 5.

Control Flow Management. After compilation, each
call to UDF march is encoded as a control row in the
working table of run. This row determines the state of
the machine, and thus which part of the computation
to perform next. In Figure 4, each CFG construct that
yields a control row is marked . It is initially created
in the non-recursive part of run (see Line 2 of Figure 5).
In the recursive part of run, the row is read, because
two columns determine the transfer of control during
execution:
rec? ∈ {true, false}: If column rec? is false, the tram-
poline will stop calculating and return.

call ∈ {while, exit}: Otherwise, column call specifies
the block to jump to. When the block is finished, it
returns a control row to the trampoline with new rec?
and call values.

We call these rows control rows. The recursive part of
run in Lines 4 to 23 of Figure 5 implements a dispatcher.
Figure 6 depicts the central role of the dispatcher “trampo-

line” and how it realizes the control flow for UDF march.

start

trampoline

while

emit cur

exit

¬ rec?

control

data

Figure 6: Tram-
polined style.

The SQL query reads the call column
to select one block ∈ {while, exit} for
evaluation. All blocks must return a
new control row with columns "rec?"
and call, so the dispatcher knows
how to proceed in the next iteration
(see Lines 13, 16, and 21 of Figure 5).
This process continues until a block
returns a control row with column
"rec?"=false (see Line 21 of Figure 5).
The working table in the next iteration
will be empty, and WITH RECURSIVE
evaluation stops.

New: Data Flow Management. While scalar UDFs
return a single value in the last trampoline iteration, table-
valued UDFs can return any number of values during ex-
ecution (see emit cur0 in Figure 4). The CTE of Figure 5
encodes these returned values in dedicated rows marked

in Line 8 of Figure 5. Two columns manage this data
flow:
data? ∈ {true, false}: Column data? indicates if this
row has a valid return value in column res.

res: Contains this return value.
We call rows with column data?=true data rows. When a
UDF uses either RETURN NEXT or RETURN QUERY, such data
rows are created in addition to control rows.
Given the UDF of Figure 2a and assuming a call
march((8,7)), overall the recursive CTE computes ta-
ble run as shown on the next page. After the initial-
ization, marked , each iteration (separated by) gen-
erates two rows, a data row and a control row. (In
general, any number of data rows can be created in
each iteration.) Note how the last iteration indicates
the end of execution via (rec?,data?)=(false,false).

run
rec? data? call res cur
true false while NULL (8,7)
false true NULL (8,7) NULL
true false while NULL (9,7)
false true NULL (9,7) NULL

false true NULL (8,8) NULL
true false exit NULL (8,8)
false false NULL NULL NULL

Recall that the
original PL/SQL UDF
has to materialize
its table-valued
result during exe-
cution, and returns
all of it as a whole.
This materializa-
tion prevents the

surrounding execution plan from terminating pre-
maturely, for example, when a LIMIT clause is used:
SELECT * FROM march((8,7)) LIMIT 5. After compilation,
however, these results are immediately returned to
the parent operator in terms of data rows, without
materialization of the entire result. This saves memory
and reduces the runtime. In addition, metrics such
as CPU cost and cardinalities can be estimated more
accurately, making planning of the translation more
effective: While PL/SQL UDFs are effectively a black box
for the planner, the translation is a regular SQL query
that the planner is designed to handle.

3. Data Rows in Trampolined Style
Both UDFs, march and march-arr, indeed exhibit the in-
famous context switching overhead that gives PL/SQL its
bad reputation. We have measured that the back and
forth between PL/SQL and SQL accounts for 20% of the
overall evaluation time for both variants (see Table 1).
The compilation to recursive SQL CTEs described in [5]
avoids this particular overhead for the two UDFs.
However, the naive treatment of the iterative result

array construction and copying in the CTE for the
scalar UDF march-arr quickly eats up all the gains: the
quadratic array maintenance cost mentioned in the intro-
duction add up to about 50% of the overall CTE runtime.
If we double the size of UDF input, the working table of
the CTE for march-arr grows by a factor of four (from
16 MB to 64 MB) and the array maintenance overhead
increases to 56%. Ultimately, this leads to a slowdown of
march-arr after compilation.
In stark contrast, the control- and data-flow-aware

compilation strategy sketched in Section 2, translates the
table-valued UDF into the recursive SQL CTE of Figure 5.
Array construction and copying is avoided altogether
and working table size remains small: doubling the UDF
input size—and thus the number of iterations performed—
linearly grows the working table’s size from 110 kB to a
mere 220 kB. Overall, compilation of UDF march leads to
runtime reduction of 62% (i.e., post-compilation the UDF
runs about 2.6 times faster). In addition, materialization
is entirely avoided: the CTE of Figure 5 can stream the
rows of the resulting table to the downstream plan.

Table 1
The context switching overhead before and speedup as well
as working table size after compilation.

UDF Return Overhead Runtime Memory
Type

march-arr vec2[] 20% 112.8% (0.88×) 16MB
march SETOF vec2 20% 38.2% (2.61×) 110 kB

4. Wrap-Up
Separating the concepts of data rows and control rows is
essential for translating table-valued functions. We save
working table space and are rewarded with a significant
runtime advantage over array-centric UDF alternatives.
But it does not stop there. In the future, we plan to
generalize this concept to add support for recursion in
UDFs. Data rows could be used to model call stack en-
tries, which—in one form or another—are required for
functions that are not tail-recursive.
A further generalization would be to remove the re-

striction that one control row always yields exactly one
new control row. This property causes trampolined style
to model single-threaded computation. If the SQL back-
end supports parallel plan execution, the creation of mul-
tiple control rows in a single iteration effectively spawns
independent threads. UDF evaluation would benefit from
parallelization just like regular SQL queries.

References
[1] K. Ramachandra, K. Park, K. Emani, A. Halverson,

C. Galindo-Legaria, C. Cunningham, Froid: Op-
timization of Imperative Programs in a Relational
Database, Proc. VLDB 11 (2018).

[2] J. Harris, A (Not So) Brief But (Very) Accurate His-
tory of PL/SQL, 2020. http://oracle-internals
.com/blog/2020/04/29/a-not-so-brief-but
-very-accurate-history-of-pl-sql/.

[3] V. Simhadri, K. Ramachandra, A. Chaitanya, R. Gu-
ravannavar, S. Sudarshan, Decorrelation of user
defined function invocations in queries, in: 2014
IEEE 30th ICDE, 2014.

[4] S. Gupta, S. Purandare, K. Ramachandra, Aggify:
Lifting the Curse of Cursor Loops using Custom Ag-
gregates, in: Proc. SIGMOD, 2020.

[5] D. Hirn, T. Grust, One WITH RECURSIVE is Worth
Many GOTOs, in: Proc. SIGMOD, 2021.

[6] C. Maple, Geometric design and space planning
using the marching squares and marching cube al-
gorithms, in: Proc. GMAG 2003, 2003.

[7] C. Okasaki, Purely Functional Data Structures, Cam-
bridge University Press, USA, 1998.

[8] S. E. Ganz, D. P. Friedman, M. Wand, Trampolined
style, in: Proceedings of the fourth ACM SIGPLAN
ICFP, 1999.

http://oracle-internals.com/blog/2020/04/29/a-not-so-brief-but-very-accurate-history-of-pl-sql/
http://oracle-internals.com/blog/2020/04/29/a-not-so-brief-but-very-accurate-history-of-pl-sql/
http://oracle-internals.com/blog/2020/04/29/a-not-so-brief-but-very-accurate-history-of-pl-sql/

	1 Introduction
	1.1 From Scalar Values to Tables

	2 Trampolined Style in SQL
	3 Data Rows in Trampolined Style
	4 Wrap-Up

