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Abstract  
In this study, two methods are proposed to reduce the energy consumption of drones. The first 

method is path planning using depth images, which combines the path planning algorithm of 

the previous study with the algorithm for speed control in the direction of travel. The second 

method inputs depth images into deep reinforcement learning to learn speed control and 

collision avoidance. This method also uses the algorithms of previous studies for path planning. 

As it is difficult to fly drones freely and conduct experiments due to the severe punishment of 

drone flight laws in recent years, experiments are conducted using a drone simulator called 

AirSim. Also, since energy consumption cannot be directly obtained on AirSim, we propose a 

method for calculating energy consumption on AirSim. The experimental results show that the 

time required for the arrival of the destination was shortened and the energy consumption was 

drastically reduced in both proposed methods compared with the previous study. Specifically, 

the path planning method using speed control in the traveling direction reduced the arrival time 

by about 39 seconds and the energy consumption by about 42% compared with the previous 

study. Also, the path planning method using deep reinforcement learning reduced the arrival 

time by about 47 seconds and the energy consumption by about 30% compared with the 

previous study. In addition, the collision rate was improved by about 2.8% in the path planning 

method using speed control in the traveling direction and by about 3.8% in the path planning 

method using deep reinforcement learning compared with the previous study. 
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1. Introduction 

In recent years, drones have attracted strong interest all over the world, and the market size is 

growing year by year. Drones are expected to be used in a variety of scenes by developments (e.g. 

package delivery, survey of disaster-affected areas, aerial photography). However, drones have some 

problems, such as not being able to carry heavy loads due to weight restrictions, not flying on optimal 

paths, and not colliding with each other [1][2]. In addition, most of the current mainstream drones are 

battery-powered, which means they need to fly with limited power. Moreover, in recent years, it has 

become difficult to fly drones freely and conduct experiments due to the severe punishment of drone 

flight laws [3]. 

 Therefore, this study was conducted for the following two purposes. The first is the use of drone 

simulators to conduct experiments freely since it is difficult to conduct sufficient experiments in the 

real world due to strict legal regulations. In the experiment, a simulator named AirSim was used. The 

second is to fly to the destination with a low collision rate and low energy consumption. In the 
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experiment, to reduce the time it takes to reach the destination and to reduce energy consumption, path 

planning using speed control in the traveling direction of the drone is carried out. In addition, we thought 

that collision avoidance with minimal action would also reduce energy consumption, so we used deep 

reinforcement learning to control the speed in the traveling direction and avoid collisions.  

The structure of this paper is as follows. Section 2 describes the relevant research of this study. 

Section 3 describes an algorithm for speed control in the traveling direction, which we devised to solve 

the problems of the previous study, and an algorithm for computing energy consumption on AirSim. In 

Section 4, the environment and experimental results of deep reinforcement learning and learning of 

speed control and collision avoidance using depth images are described. In Section 5, the summary of 

this paper and future issues are described. 

2. Related study 

This section describes the relevant research of this study. In paper [4], LiDAR was used to study 

obstacle detection and collision avoidance of drones. Although LiDAR has high performance, it is not 

suitable for installation on small drones due to its high cost and weight. In paper [5], a depth image 

acquired from a drone is divided into 289 sections to determine the safest direction from each of the 

sections to avoid a drone collision. However, in paper [5], experiments are conducted using actual 

drones, but the experimental environment is simple and not suitable for conducting experiments on 

collision avoidance, which is a problem that the experimental environment is insufficient. Study [6] 

proposes a path planning method for drones by improving the collision avoidance method in paper [5]. 

In paper [6], they used a drone simulator named AirSim for experiments and a map suitable for 

experiments distributed for simulation. Several literature studies are showing the effectiveness of 

AirSim, and in paper [7], they conducted a comparative experiment between flight in real space and 

flight on AirSim and showed that the flight characteristics of a drone on AirSim are close to those in 

real space. Also, in paper [8], it was shown that AirSim is suitable for experiments such as deep learning 

because it can acquire data and images without delay. Therefore, in paper [6], it can be said that the 

problem of experimenting in an insufficient environment in paper [5] has been solved. However, in 

paper [6], there is a problem in that the speed of the drone in the traveling direction is slow and constant, 

resulting in poor power efficiency and large energy consumption required to reach the destination.  

In addition, in recent years, reinforcement learning and deep reinforcement learning have been 

increasingly used in drone research to improve the performance of autonomous flight. In paper [9], 

AirSim and reinforcement learning were used to learn how to land a drone safely, and the learned model 

was transferred to a real vehicle to accomplish the task in a real vehicle with little learning on the 

simulator. It was shown that the cost and time required for real machine learning could be drastically 

reduced by advanced learning on the simulator. However, study [9] has a problem that is not realistic 

because the learning content of reinforcement learning of drones is only landing and does not carry out 

complicated tasks such as collision avoidance. In paper [10], they used deep reinforcement learning to 

learn how to plan a path to a destination while avoiding collisions on an AirSim. However, problems in 

paper [10] are that the environment for experiments is insufficient because the destination is set in a 

straight line of the drone's camera and the number of obstacles between the initial point and the 

destination is small. The approach of [11] proposes a path planning algorithm that performs collision 

avoidance while saving power based on deep reinforcement learning. In the experiment, they can say 

that the problems of paper [10] are solved because the simulator is used in an environment where there 

are many obstacles and the destination is not in a straight line. Furthermore, the learned model achieved 

the task not only in the learned environment but also in the unknown environment without significantly 

reducing the collision rate. This shows that in drone collision avoidance, the deep reinforcement 

learning-based algorithm can accomplish the task regardless of the environment. However, there is a 

problem in paper [11] that learning is performed by setting the movement speed of drones at a constant 

speed. However, papers [10], [11] and [12] have a problem in that they do not take advantage of the 

vertical movement that is a characteristic feature of drones because the flight altitude is fixed. 

 To address these issues, we propose a path planning method for drones with low energy 

consumption in this paper. 
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3. Path planning method using direction-of-travel speed control 

This section describes a path planning method using speed control in the direction of a drone's travel, 

which aims to reduce power consumption by reducing the time it takes to reach a destination.  

3.1. Previous study 

In this section, we describe collision avoidance and path planning algorithms using depth images in 

paper [6]. Collision avoidance is divided into two algorithms: a direction-specifying algorithm that 

determines the direction a drone flies from depth images and an algorithm that performs speed control 

during flight.  

First, we describe a direction-specifying algorithm. we acquire a depth image of 256 × 144 pixels 

from AirSim. Then, we divide the depth image into 289 sections, each 17 by 17 in length and width, as 

in paper [5]. Each section is 69 × 42 pixels in size, and the sections overlap by shifting 11 pixels to the 

right and 6 pixels down. Also, each section is assigned a number and managed in a coordinate format 

such that the top left section is (0, 0), the center section is (8, 8), and the bottom right section is (16, 

16). After dividing the sections, the pixel values of each section are calculated, and if the average of the 

pixel values of the center section is greater than the set threshold, the center section is set as the largest 

section, otherwise, the section with the largest pixel value is selected from the sections other than the 

center, and that section is set as the largest section. Finally, collision avoidance is realized if the speed 

is controlled so that the selected maximum section becomes the central section in the next process. Then, 

an algorithm for speed control is described. In the algorithm for speed control, speed control is 

performed using PID control so that the maximum section selected in the algorithm for collision 

avoidance moves to the position of the center section.  

Finally, an algorithm for path planning to a destination is described. First, the rotation angle of the 

drone is calculated from the coordinates of the current drone and the coordinates of the destination. 

Then, when the drone is not performing collision avoidance, that is, when the input speed on the Y and 

Z axes is 0 when the direction in which the drone's camera is facing is taken as the X axis, and when 

the calculated rotation angle is larger than the threshold defined as the allowable angle deviation, the 

drone can be redirected toward the destination by rotating the drone by that rotation angle. 

 In this study, to avoid a collision between a drone and an object as much as possible, the speed of 

the drone in the direction of travel is fixed at a low speed, and since the speed remains low even in a 

situation where collision avoidance is not performed, the time required to arrive at the destination is 

long and the energy consumption is large. Therefore, we propose a method to improve energy 

consumption, which is a problem, without lowering the collision rate by referring to the previous study. 

3.2. Proposed method 

In this section, we describe an algorithm for speed control in the traveling direction, which was 

inspired by a paper [6], and an algorithm for calculating power consumption on AirSim. 

3.2.1. Algorithm for speed control in the direction of travel 

In this section, we describe an algorithm for controlling the speed of a drone in its traveling direction. 

In the AirSim environment, the coordinate axes relative to the drone are shown in Fig. 3.1, and in this 

study, the velocity of the drone in the X-axis direction is vx, the velocity in the Y-axis direction is vy, 

and the velocity in the Z-axis direction is vz. Therefore, the velocity control in the traveling direction 

in this experiment is to control vx. 
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Fig. 3.1 Coordinate axis of the drone in AirSim [7] 

 

First, when the uppermost left coordinate of the acquired depth image is (x, y) = (0, 0), a 21 × 69 

rectangular section such as Fig. 3.2 with (x, y) = (88, 48) as the upper left corner is cut out to make vx 

_ section. 

 

 
Fig. 3.2 vx _ section 

 

Next, we prepare a variable avg _ vx _ section that serves as a threshold for controlling vx and store 

the average of the pixel values in vx _ section in avg _ vx _ section = 50 if the drone is moving to avoid 

obstacles, or in avg _ vx _ section if it is not. Then, by preparing limit _ vx, which is a variable for 

setting the upper limit of vx, limit _ vx = 9.0 if the value of avg _ vx _ section is 200 or more, 6.0 if it 

is 150 or more but less than 200, and 3.0 otherwise. Finally, it adds 0.01 to vx when vx is less than limit 

_ vx and subtracts 0.01 when vx is greater than limit _ vx. The above flow can be expressed as Eq. (3.1) 

and Eq. (3.2). 

𝑙𝑖𝑚𝑖𝑡_𝑣𝑥 = {

9.0 (𝑎𝑣𝑔_𝑣𝑥_𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ≥ 200)

6.0 (200 > 𝑎𝑣𝑔_𝑣𝑥_𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ≥ 150) 

3.0 (150 > 𝑎𝑣𝑔_𝑣𝑥_𝑠𝑒𝑐𝑡𝑖𝑜𝑛)
(3.1) 

 

𝑣𝑥 = {
𝑣𝑥 + 0.01(𝑣𝑥 < 𝑙𝑖𝑚𝑖𝑡_𝑣𝑥)

𝑣𝑥 − 0.01(𝑣𝑥 > 𝑙𝑖𝑚𝑖𝑡_𝑣𝑥)
(3.2) 

 

This reduces the large inclination of the drone due to a sudden change in speed while controlling the 

drone to be fast when there are no obstacles in the direction of travel and slow when there are obstacles. 

3.2.2. Algorithm for energy consumption calculation 

In this section, we describe an algorithm for calculating the energy consumption of drones. In 

calculating the power consumption of a drone, we divide the calculation into two parts: the power 

consumed by the motor that turns the propeller required for the drone to fly, and the power consumed 

other than the motor.  
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 First, we explain how to calculate power consumption in the motor. Since AirSim cannot obtain the 

values of the motor voltage and the current flowing there, which are necessary for calculating power 

consumption, we obtain power consumption from motor power. The motor power P' [W] can be 

expressed by Eq. (3.3), where the motor angular velocity is denoted by ω [rad/s], and the motor torque 

is denoted by T [N · m]. 

𝑃′ = 𝜔𝑇 (3.3) 

 

The output per unit time of a motor is called power, and to obtain this power, electrical power must 

be supplied to the motor input. However, not all of the supplied power is converted into output power, 

as some of the power is lost as heat energy and other losses. The ratio of the supplied power to the 

output power is known as motor efficiency. Considering the motor efficiency as n, the power 

consumption taking into account the motor efficiency can be calculated as P_motor [W], and the power 

consumption is obtained by Eq. (3.4). 

𝑃_𝑚𝑜𝑡𝑜𝑟 = 𝑃′
1

𝑛
(3.4) 

 

Next, the calculation method of power consumption other than the motor is explained. Drones also 

have cameras that capture depth images [13] and small boards [14] in addition to motors. In experiments, 

the power consumption of these devices was determined as a single constant, and the power 

consumption was calculated by multiplying the flight time of the drone by this constant. Power 

consumption per unit time other than the motor is expressed as q [W] and the drone flight time is 

expressed as t [s] and the total drone energy consumption in one flight is expressed as P [Ws], energy 

consumption is obtained by Eq. (3.5). 

𝑃 = (𝜔𝑇
1

𝑛
+ 𝑞) 𝑡 (3.5) 

3.3. Comparative experiment 

This section describes the contents, experimental results, and discussion of the comparison with the 

previous study [6]. In this experiment, we compare the average energy consumption, the collision rate, 

and the average arrival time at the destination for each method at 500 randomly selected points in the 

range of 100≦| x |, | y |≦200. Also, we use a distribution map called Blocks [15] where many static 

obstacles of various shapes are placed as shown in Fig. 3.3. The motor efficiency is n = 0.8 and the 

Power consumption per unit time other than the motor is q = 10.5. In this experiment, power 

consumption was determined based on the specifications of the NVIDIA Jetson Orin Nano [14] as the 

single-board computer and the Intel RealSense™ Depth Camera D400 series [13] as the depth sensor 

camera. In this method, the power consumption is set to the minimum specified in the documentation 

(7W) plus the power consumption of the depth sensor camera (3.5W). 

 

 
Fig. 3.3 Blocks [15] 
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The experimental environment is as follows. 

 

⚫ CPU: Intel Core i7-9750H 

⚫ GPU: NVIDIA GeForce GTX 1650 

⚫ RAM: 16GB 

⚫ AirSim v1.8.1 

⚫ Unreal Engine 4.25.4 

 

The experimental results are shown in Table 3.1. 

 

Table 3.1 Experimental results 

 
Average energy     

consumption [Ws] 
Collision rate [%] Average arrival time [s] 

The previous study [6] 7483.8 7.8 89.5 

Proposed method 4315.0 5.0 50.8 

 

Table 3.1 shows that the average arrival time of the proposed method with speed control in the 

traveling direction was shortened by about 39 seconds and the average energy consumption was reduced 

by about 42% compared with the previous study method. Therefore, in an environment with only static 

obstacles such as Blocks, it was found that if the arrival time to the destination was shortened by 

increasing the speed, power consumption per unit time would be larger due to the increase in the motor 

speed, but the overall energy consumption would be smaller. 

 Furthermore, Table 3.1 shows that the collision rate of the proposed method is about 2.8% lower 

than that of the previous study. This is because when the vx of the drone enters the collision avoidance 

state at a speed faster than 3 m/s, negative acceleration is applied to the vx and the speed is reduced to 

3 m/s. Since the drone's attitude tilts slightly due to the acceleration, the drone's direction of travel is 

slightly more diagonally upward than normal when the acceleration is negative. As a result, it is thought 

that the velocity of vx affects the velocity in the upward direction, making it easier for the vehicle to 

pass over obstacles in a large way, thus lowering the collision rate. 

4. Drone speed control and collision avoidance using deep reinforcement 
learning 

This section describes drone speed control and collision avoidance using depth images and deep 

reinforcement learning. The proposed method described in Section 3 aims to achieve more optimal 

speed control and collision avoidance by using deep reinforcement learning because the speed is 

constant at low speed during collision avoidance. Also, the path planning to the destination of the drone 

is based on the route planning algorithm proposed in the previous study [6]. 

4.1. Learning environment 

This section describes the environment, agents, rewards, and hyperparameters of deep reinforcement 

learning set up in the experiment.  

4.1.1. Environment and Agent 

First, the environment is described. The algorithm of deep reinforcement learning uses Proximal 

Policy Optimization (PPO) [16] of Stable Baselines 3[17]. The policy network uses CNN because depth 

images are used for input. For learning, a map called Blocks [15] is used, where the initial point of the 

drone is (x, y, z) = (0,0, -9), and the initial velocity is set to (vx, vy, vz) = (0, 0, 0), where vx is the 

velocity in the X-axis of the drone, vy is the velocity in the Y-axis, and vz is the velocity in the Z-axis.  
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Next, the agent is described. The agent is a drone that can be operated by the API provided by AirSim, 

and the following seven actions can be taken by the agent. 

 

⚫ 𝑣𝑥 = 𝑣𝑥 + 0.25, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧 

⚫ 𝑣𝑥 = 𝑣𝑥 − 0.25, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧 

⚫ 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦 + 0.25, 𝑣𝑧 = 𝑣𝑧 

⚫ 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦 − 0.25, 𝑣𝑧 = 𝑣𝑧 

⚫ 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧 + 0.25 

⚫ 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧 − 0.25 

⚫ 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧 

4.1.2. Reward 

In this section, we describe the rewards set in learning. The ideal control of drones that we want to 

realize by reinforcement learning is a movement that increases the traveling speed as much as possible 

while not colliding with obstacles. 

Next, the reward set in the experiment is explained. The reward consists of two parts: reward _ speed 

and reward _ state. The reward _ speed is a reward for the forward velocity vx of the drone. When the 

vx of the current drone is between 3 ~ 10 m/s, the reward is vx multiplied by 0.05, and when vx is 0 ~ 

3 m/s, the reward is -0.05, otherwise, the reward is -0.1. Therefore, when the speed of vx is fast, the 

reward is given positively, and when the speed is slower than a certain value, the reward is given 

negatively. The reward _ speed is expressed as Eq. (4.1). 

 

𝑟𝑒𝑤𝑎𝑟𝑑_𝑠𝑝𝑒𝑒𝑑 = {
0.05𝑣𝑥 (3 ≤ 𝑣𝑥 ≤ 10)

−0.05 (0 ≤ 𝑣𝑥 ≤ 3)
−0.1

(4.1) 

 

Next, the reward _ state is explained. The purpose of this reward is to keep the motion during 

collision avoidance as small as possible by keeping the non-traveling velocities vy and vz as zero as 

possible during the flight. If vx of the traveling speed is greater than 0 and the other speeds vy and vz 

are 0, the reward is 0.05, otherwise 0. The reward _ state is expressed as Eq. (4.2). 

 

𝑟𝑒𝑤𝑎𝑟𝑑_𝑠𝑡𝑎𝑡𝑒 = {
0.05 (𝑣𝑥 > 0 ∩ 𝑣𝑦 == 0 ∩ 𝑣𝑧 == 0)

0
(4.2) 

 

The total reward _ speed and reward _ state are given as a reward, but if a drone strikes, the reward 

is -10, and done = 1, which is the judgment for ending an episode. Therefore, if the reward is expressed 

as a reward, the reward looks like equation (4.3). 

 

𝑟𝑒𝑤𝑎𝑟𝑑 = {
𝑟𝑒𝑤𝑎𝑟𝑑_𝑠𝑝𝑒𝑒𝑑 + 𝑟𝑒𝑤𝑎𝑟𝑑_𝑠𝑡𝑎𝑡𝑒 (If the drone has not collided)

−10 (In case of drone collisions)
(4.3) 

 

Next, Other exceptional rewards and termination conditions are explained. If there is a drone 

within a 1-meter radius of the destination, it is determined that the drone has reached the destination 

and done = 1. This is because, if the arrival judgment is made only in the coordinates of the 

destination, it is necessary to pass exactly in the coordinates of the destination for the timing of the 

arrival judgment, but the judgment is severe for a drone with high speed, and reinforcement learning 

is also difficult to progress. In addition, if the drone somehow goes below the ground level, because 

the behavior is impossible in reality, reward = -10 is set and done = 1. In addition, if the drone is more 

than 400 m away from the initial point, if the current height of the drone exceeds 150 m, or if the 

flying time during one flight exceeds 1000 seconds, the learning efficiency is poor even if the drone is 

allowed to continue learning, so done = 1. 
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4.1.3. Hyperparameters 

In this section, we list the hyperparameters. the parameters used in the experiment are shown in 

Table 4.1. The names of the parameters used in the experiment are based on Stable Baselines 3 [17]. 

 

Table 4.1 Hyperparameters used in the experiment 

Parameter name Set value 

𝑔𝑎𝑚𝑚𝑎 0.99 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 0.00025 

𝑔𝑎𝑒_𝑙𝑎𝑚𝑏𝑑𝑎 0.95 

𝑛_𝑠𝑡𝑒𝑝𝑠 2048 

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 512 

𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 4 

𝑐𝑙𝑖𝑝_𝑟𝑎𝑛𝑔𝑒 0.2 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒_𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 True 

𝑒𝑛𝑡_𝑐𝑜𝑒𝑓 0.0005 

𝑣𝑓_𝑐𝑜𝑒𝑓 0.5 

𝑚𝑎𝑥_𝑔𝑟𝑎𝑑_𝑛𝑜𝑟𝑚 0.5 

𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 500000 

4.2. Comparative experiment 

In this section, we compare the model learned by deep reinforcement learning with other methods. 

The comparison methods are the path planning method using speed control in the traveling direction 

proposed in Section 3 and the previous study [6] introduced in the 3.1 section. 

 In this experiment, we compare the average energy consumption, the collision rate, and the average 

arrival time at the destination for each method at 500 randomly selected points in the range of 100≦| x 

|, | y |≦200. Also, we use Blocks [15]. We also set the motor efficiency at n = 0.8, q = 10.5 for power 

consumption other than the motor using the method without deep reinforcement learning, and q = 18.5 

for power consumption other than the motor using the method with deep reinforcement learning. In this 

experiment, power consumption was determined based on the specifications of the NVIDIA Jetson Orin 

Nano [14] as the single-board computer and the Intel RealSense™ Depth Camera D400 series [13] as 

the depth sensor camera. The reason for setting the power consumption to 10.5W for the method that 

does not utilize deep reinforcement learning and 18.5W for the method that utilizes deep reinforcement 

learning is that it is believed that employing deep reinforcement learning increases the power 

consumption of the single-board computer installed in the drone. In the method that does not utilize 

deep reinforcement learning, the power consumption is set to the minimum specified in the 

documentation (7W) plus the power consumption of the depth sensor camera (3.5W). In the method 

that utilizes deep reinforcement learning, the power consumption is set to the maximum specified in the 

documentation (15W) plus the power consumption of the depth sensor camera (3.5W). 

 

The experimental environment is as follows. 

 

⚫ CPU: Intel Core i7-9750H 

⚫ GPU: NVIDIA GeForce GTX 1650 

⚫ RAM: 16GB 

⚫ AirSim v1.8.1 

⚫ Unreal Engine v4.25.4 

⚫ Stable Baselines 3 v1.6.2 

⚫ OpenAI Gym v0.21.0 [18] 

 

The experimental results are shown in Table 4.2. 
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Table 4.2 Experimental results 

 
Average energy 

consumption [Ws] 
Collision rate [%] 

Average arrival time 

[s] 

The previous study [6] 7483.8 7.8 89.5 

Proposed method 

(Direction-of-travel speed control) 
4315.0 5.0 50.8 

Proposed method 

(Deep reinforcement learning) 
5301.3 4.0 42.4 

 

From the experimental results in Table 4.2, the proposed method using deep reinforcement learning 

was able to improve all 3 items of energy consumption, collision rate, and average arrival time 

compared to the previous study. Specifically, the path planning method using speed control in the 

traveling direction reduced the average arrival time by about 39 seconds and the average energy 

consumption by about 42% compared with the previous study. The path planning method using deep 

reinforcement learning also reduced the average arrival time by about 47 seconds and the average 

energy consumption by about 30%. The collision rate was improved by about 2.8% in the path planning 

method using speed control in the traveling direction and by about 3.8% in the path planning method 

using deep reinforcement learning compared with the previous study.  

The method using deep reinforcement learning results in a shorter average arrival time but larger 

energy consumption than the path planning method using speed control in the traveling direction. There 

are two possible reasons why the energy consumption of the method using deep reinforcement learning 

is larger than the path planning method using speed control in the traveling direction. The first reason, 

we believe, is that when deep reinforcement learning is used, power consumption per unit of time is 

large because more power consumption is put on the board than when it is not used. However, in an 

environment where the distance to the destination is longer than that of the present experiment or where 

there are many obstacles, the difference in the average arrival time between the method using deep 

reinforcement learning and the method using speed control in the traveling direction becomes larger, 

and the difference in power consumption of the board by using deep reinforcement learning is 

considered to have less impact.  

The second reason, we believe, is that the lack of learning time has prevented us from minimizing 

collision avoidance, and even when there are no obstacles in front of us and we can go straight, the vy 

and vz values may not be zero. We believe this can be improved by further increasing the total number 

of learning steps. We also believe that by making the positive reward of the reward _ state larger than 

the current one, we can perform optimized path planning with minimal collision avoidance than the 

present model. However, if the reward in the reward _ state is increased, receiving a positive reward in 

the reward _ state will be prioritized over avoiding a collision, which may lead to a higher collision rate, 

so the balance with a negative reward in a collision must also be adjusted. In terms of collision rate, the 

proposed method using deep reinforcement learning showed the lowest rate compared to the previous 

study and the proposed method using speed control in the traveling direction. In this regard as well, we 

believe that the collision rate can be further reduced by increasing the total number of learning steps, 

which we have previously described as an improvement measure. 

The improvement measures described so far are based on hyperparameters and rewards, but by 

giving not only depth images but also the current location and destination of energy consumption and 

drones as feature values to the input of deep reinforcement learning, the number of power consumption 

other than motors will increase further, but we think that energy consumption will be able to reduce it 

more by allowing path planning considering energy consumption without making a detour when 

avoiding a collision. 

5. Conclusion 

In this paper, we proposed a path planning method for drones to reduce energy consumption. In this 

study, we focus on the energy consumption of the path planning method of drones in the previous study 

[6], and show two proposed methods for its improvement. In the path planning method using speed 
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control in the traveling direction proposed in Section 3, speed control in the traveling direction using 

depth images was added to the path planning method of the drone to improve the problems of the 

previous study [6]. Also, because AirSim cannot directly acquire energy consumption, the power 

consumption of the drone was divided into the power consumed by the motor and the power consumed 

other than the motor in this experiment. power consumption of the motor was calculated from the power 

of the motor, and power consumption other than the motor was set to a certain value to calculate the 

power consumption and energy consumption of the drone. The method using deep reinforcement 

learning proposed in Section 4 uses depth imaging and deep reinforcement learning to control the speed 

of the drone and avoid collisions. Comparative experiments between the previous study and the two 

proposed methods show that both of the proposed methods can improve energy consumption compared 

to the previous study. Specifically, the path planning method using speed control in the traveling 

direction reduced the arrival time by about 39 seconds and energy consumption by about 42% compared 

with the previous study. The path planning method using deep reinforcement learning also reduced the 

arrival time by about 47 seconds and energy consumption by about 30% compared with the previous 

study. In terms of collision rate, the path planning method using speed control in the traveling direction 

improved by about 2.8% and the path planning method using deep reinforcement learning improved by 

about 3.8% compared with the previous study. Comparing the two proposed methods, energy 

consumption was smaller in the path planning method using speed control in the traveling direction, 

but the collision rate was smaller in the path planning method using deep reinforcement learning. 

However, regarding energy consumption, we think that the method using deep reinforcement learning 

still has room for improvement. 

As a future research issue, we plan to experiment by giving not only depth images but also 

information on the current location and destination of the drone and energy consumption as feature 

quantities to the input of deep reinforcement learning. We think that this will enable us to carry out path 

planning considering energy consumption. In this experiment, we focused on the power consumption 

drone motor and other than the motor, so in future experiments, we think it is necessary to think about 

a more accurate calculation method of the power consumption on AirSim, to conduct experiments in 

an environment considering dynamic obstacles, and to conduct experiments using a real vehicle in the 

real space. 
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