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Abstract  
Because the efficiency of farming in Japan largely depends upon personal experience, 

approaches toward farming are not frequently shared. To illustrate this tacit knowledge, the 

present study was conducted to visualize the fertilization effect via drone monitoring. Through 

continuous monitoring, we obtained time-series data of four vegetation indices in an 

approximately 3m mesh square grid, and employed clustering to analyze it. By performing 

such an analysis on paddy rice and wheat fields with and without comparative adjustment of 

the fertilizer amount, the appropriate fertilizer amount and variation in growth within the field 

were cleared. Although the vegetation indices are often used in drone monitoring, their values 

may be difficult to interpret. By monitoring data with respect to years, fields, and types of 

plants, we constructed and investigated an average time-series curve, thereby obtaining criteria 

associated with growth quality. Furthermore, we developed a prediction model of each index 

to clarify and narrow down the validity period of the fertilizer application. 
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1. Introduction 

The number of farmers in Japan has experienced a considerable decline due to aging and a decrease 

in the number of new farmers. One primary cause of this decline is the inherent ambiguity of effective 

farming techniques, which are largely rooted in farmers’ personal experiences. In other words, these 

techniques represent tacit knowledge, which are difficult to pass on to others. It is therefore necessary 

to convert the underlying tacit knowledge into formal knowledge. Because current evaluation methods 

for farming techniques are generally based on harvest yield, they cannot be employed prior to the 

harvest. Furthermore, the harvest yield is not a comprehensive measure of efficacy for farming 

techniques. Consequently, smart agriculture, wherein robots, artificial intelligence (AI), and the Internet 

of Things (IoT) are employed to accurately and inexpensively evaluate farming techniques, has become 

an emerging research topic. One example of smart agriculture is drone monitoring. Variations in growth 

are known to be ubiquitous even in smaller fields such as those in Japan. An effective way of monitoring 

the growth of crops in small fields involves high-frequency and high-resolution drones. Because these 

drones are autopiloted, this method can be used safely and effectively, as demonstrated through prior 

studies [1]. However, monitoring results must be interpretable and applicable in practice for individual 

farmers [2]. Although prior studies have employed vegetation indices to monitor crop conditions [1, 3, 

4, 7, 8, 18], these values cannot be directly associated with quality. Other approaches manage crops for 

high yield with the objective of reaching and maintaining predetermined target values of vegetation 

indices. However, these approaches demand the use of manual handheld sensors, making the process 

highly time- and resource-intensive [3]. 
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The present study was therefore conducted to visualize and evaluate a fertilizer application of rice 

and wheat crops using vegetation indices in conjunction with machine learning. Consequently, the 

effectual observation period was narrowed down from the obtained vegetation indices and machine 

learning results. 

2. Method 

Details pertaining to the experimental environment are listed in Table 1. The farm fields were located 

in the inland central area of Iwate Prefecture (Okamizawa, Yuguchi-8, Yokokawame, Todoroki-3). The 

varieties in each field were “Hitomebore” and “Yumiazusa” for paddy rice, and “Ginganochikara” and 

“Yukichikara” for wheat. The mesh area (data acquisition unit) was an approximately 3-5m square. 

Monitoring was conducted from the time when crop leaves first covered the ground to immediately 

prior to harvest (paddy rice: July to September; wheat: April to June), under consideration of optimal 

weather conditions. The drone used for monitoring was a P4 Multispectral (Figure 1) [18]. In this survey, 

Yuguchi-8 and Todoroki-3 were varied by fertilizer amount with the corresponding fertilizer effect 

visualized. The nitrogen amount in fertilizer was, at Yuguchi-8, 2.8, 3.5, 4.2[gN/m2] from the North. 

At Todoroki-3, 3.2[gN/m2] were applied to the entire field until the second application and 0.9[gN/m2] 

only the West after the third application (Table 1). 

 

 

Table 1 
Experimental farmfield 

Farmfield name Okamizawa Yuguchi-8 Yokokawame Todoroki-3 

Variety 
Paddy rice Wheat 

Hitomebore Yumiazusa Ginganochikara Yukichikara 

Number of Meshes 743 818 735 489 

Date 

Planting May. 7th Early May. Sep. 26th Sep. 30th 

Fertilizer 
application 

(North) 
Jul. 24th 

(Center, South) 
1st: Aug. 1st 

2nd: Aug. 6th 

Jul. 20th 
1st: Apr. 12th 

2nd: May. 10th 

(Entire) 
1st: Apr. 7th 

2nd: May. 5th 
(Only West) 

3rd: May. 24th 
4th: May. 30th 

Earing Aug. 3rd Early Aug. May. 15th May. 10th 

Harvesting Sep. 27th Early Oct. Jul. 7th Jul. 1st-4th 

Comparable value N/A 

Fertilizer 
amount [gN/m2] 

North: 2.8 
Center: 3.5 
South: 4.2 

N/A 

Fertilizer 
amount [gN/m2] 

 
Entire: 3.2 

Only West: 0.9 

Aerial photo. 
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Time-series data of vegetation indices for each mesh were obtained through continuous monitoring. 

Because no preliminary training data were present, unsupervised learning – specifically, the k-means 

clustering method – was employed to analyze these time-series data. Generally, clustering refers to the 

grouping of point data, as in the case of scatter plots. Because the present study was conducted on time-

series data, clustering could not be performed directly. Instead, we employed a self-making function to 

cluster the data according to similar trends. Specifically, we adopted the TimeSeriesKmeans function 

of the tslearn module in Python [15]. The k-means method was used to determine the number of clusters 

subjectively using the elbow method. 

Vegetation indices obtained from monitoring data are usually computed via sunlight reflex ratio of 

leaves. As shown in Figure 2, healthy crops exhibit a large difference in this ratio between the red and 

near-infrared (NIR) regions, whereas stressed crops show a smaller difference. Using these 

characteristics, we obtained the reflex ratios of three regions (Red, RedEdge, NIR), and evaluated the 

fertilizer application by three vegetation indices (NDVI, NDRE, CCCI) computed from these regions. 

The following subsections provide explanations for each vegetation index. 

 

 

Figure 1: Drone used in this research (P4 Multispectral, DJI Co.)  
 

Figure 2: Spectral characteristics of leaf sunlight reflectivity 
  

57



2.1. Normalized Difference Vegetation Index (NDVI) 

This index, which diagnoses vegetation and harvest amount, is computed using reflex ratios in the 

Red and NIR regions as shown in Equation (1), taking a value between -1 and 1, wherein higher values 

indicate healthier vegetation [1]. This is one of the most common indices used to evaluate the growth 

of various plants. 

2.2. Normalized Difference RedEdge Index (NDRE) 

This index, which diagnoses crop stress, ranges from -1 to 1 wherein higher values indicate less 

stress [4]. Its values are usually smaller than those of NDVI because RedEdge is closer to the NIR reflex 

ratio than Red (Figure 2).  For paddy rice, NDRE is normally within a range of 0 – 0.3 [5]. It is difficult 

to identify the cause of stress looking solely at this index, and a subsequent field investigation is 

necessary. The results of such an investigation may reveal the following information according to when 

and where the stress level was raised [6]: There are holes in the ridges if values near the ridges are low; 

Root rot caused by floating straw if low on the leeward side; Overgrowth of weeds if low in July and 

August; Rice blast if low near the ridges at the end of August. 

However, values of this index do not exhibit significant change in the absence of great stress. 

Accordingly, we employed an additional index (sNDRE: standardized NDRE) by standardizing the 

NDRE for each observation date [18]. 

2.3. Canopy Chlorophyll Content Index (CCCI) 

This index can diagnose the nitrogen content of crops. A related study used the CCCI to diagnose 

nitrogen ratios in wheat [7]. However, this index is not commonly used, and to our knowledge, no other 

studies have used it for rice. 

The nitrogen content is calculated by the relationship equation between CCCI and the estimation 

formula of nitrogen content. The CCCI is computed via Equation (3). The NDREmax and NDREmin with 

the smallest root mean square error (RMSE) between the estimated and actual nitrogen contents are 

defined from the maximum and minimum lines, wherein all data are sandwiched in a two-dimensional 

plot of NDVI and NDRE [7, 8]. However, this index is computed by a simple method, as we could not 

collect actual nitrogen content. Here, NDREmax and NDREmin denote the maximum and minimum 

values of NDRE at a site on each monitoring date [9].  

This index takes ranges 0 to 1 with higher values indicating higher nitrogen content. Because 

nitrogen is involved in the growth of crops as a component of fertilizers, CCCI can indicate the amount 

of nitrogen absorbed by the crops. 

 

3. Field experiments 
3.1. Diagnosis by Vegetation Indices for Each Field 

The following subsections present clustering results of each site, as well as relationships between 

crop growth and vegetation indices. The clustering results and mesh distribution map are shown in 

Tables 2 and 3, respectively. 

3.1.1. Okamizawa 

This site was planted with a paddy rice called “Hitomebore.” Although no comparative experiments 

were conducted, the fertilization methods varied between the North and Center/South. At the North, 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑) (𝑁𝐼𝑅 + 𝑅𝑒𝑑)⁄ , (1) 

𝑁𝐷𝑅𝐸 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒) (𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)⁄ , (2) 

𝐶𝐶𝐶𝐼 = (𝑁𝐷𝑅𝐸 − 𝑁𝐷𝑅𝐸𝑚𝑖𝑛) (𝑁𝐷𝑅𝐸𝑚𝑎𝑥 −𝑁𝐷𝑅𝐸𝑚𝑖𝑛)⁄ , (3) 
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0.51[gN/m2] were applied on July 24th. At the Center and South, farmer-made fertilizer was applied on 

August 1st and 6th. 

In NDVI, the clusters were completely separated each field. Focusing on the earing period, the 

generated prediction was "lower harvest amount in the South because Cluster 2 was lower." In terms of 

NDRE, no significant stress was observed, as no low values were present throughout the monitoring 

period. In terms of sNDRE, overgrowth of weeds was predicted for the Center and South, as Cluster 2 

exhibited a low score in August. In terms of CCCI, Cluster 1 exhibited an earlier peak than Clusters 0 

and 2. These peaks represent the highest level of fertilizer efficiency on the crops, reflecting differences 

in fertilization between the North and Center/South regions. 

3.1.2. Yuguchi-8 

This site was used to conduct a comparative experiment with varying fertilizer amounts, wherein 

more fertilizer was used the further south you went. There were days when monitoring was not possible 

due to severe weather conditions. 

In terms of NDVI, Clusters 0 and 3 were more desirable because their values were higher in the 

earing period. The North region, where fewer fertilizer was used, was predicted to yield the highest 

harvest amount. In terms of sNDRE, Cluster 2 exhibited a low value until the earing period. Because 

this value increased in August, no significant stress was diagnosed. In CCCI, the cluster distribution 

map indicated that the crops were classified in center and ridge regardless of fertilizer amount. This 

indicates that the fertilizer did not work consistently due to factors such as temperature and weather. 

3.1.3. Yokokawame 

This site was planted with a wheat called “Ginganochikara.” Because both fields onsite were worked 

identically, no comparative experiments were conducted [10]. 

Although the NDVI generally peaks at earing periods, this was not the case here. We presume that 

crop health was maintained by fertilizer application on April 12th, and monitoring could not proceed at 

the earing period. Cluster 0 exhibited good growth with high values throughout the monitoring period, 

whereas Clusters 1 and 2, which were located near the ridge, exhibited low values. In terms of sNDRE, 

Cluster 1 was associated with high stress. This may be explained by poor drainage, as the site was 

converted from a paddy rice field. Overall, these results indicate a need for soil improvement. 

3.1.4. Todoroki-3 

This site was planted with a wheat called “Yukichikara,” and comparative experiments were 

performed. As shown in Table 1, the West section was fertilized four times, whereas the East section 

was fertilized twice [10]. 

In terms of NDVI, the clustering distribution map shows that Cluster 0 was located in the West, 

Clusters 1 and 2 were in the East, and Cluster 3 represented the ridge. With the exception of Cluster 3, 

differences were observed from May 25th. Values for Cluster 1 exhibited a gradual decline, with a 

significant difference with those of Cluster 0 observed on June 15th. Considering that the third fertilizer 

application was on May 24th, this incongruity was assumed to be caused by variability in fertilizer 

amount. Thus, the combination of NDVI and machine learning could be used to visualize the 

fertilization effect on crops in a comparative manner. In other vegetation indices, the clusters were 

divided between the West and East sections. Particularly in terms of sNDRE, the East section exhibited 

low values from late May, indicating clear stress. From this, a prediction could be made: either the 

fertilization method used in the West section was more appropriate, or further steps can be made to 

minimize stress on crops. 
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Table 2 
Results of time-series clustering 

 Okamizawa Yuguchi-8 Yokokawame Todoroki-3 

N
D

V
I 

 

N
D

R
E 

sN
D

R
E 

C
C

C
I 
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Table 3 
Mesh distribution map 

 Okamizawa Yuguchi-8 Yokokawame Todoroki-3 

NDVI 

    

NDRE 

    

sNDRE 

    

CCCI 

    

3.2. Diagnostic Criteria of Vegetation Indices 

Our experimental results were used to interpret crop growth, stress level, fertilizer effects, and 

related factors according to time-series vegetation indices. In this section, growth comparison beyond 

location and year, as well as normal changes in each index, are explained based on the results of the 

2021 work [9, 18] and the present study. 

In terms of NDVI, all crops and sites exhibited a mountain pattern that peaked at the earing period. 

The peak values were approximately 0.6 for paddy rice and 0.4 for wheat. For paddy rice, optimal 

values of this index can be determined through multi-year monitoring. Specifically, clusters that have 

not exhibited bad growth were associated with values of at least 0.2 in early July, 0.4 in mid-July, and 

0.6 at the earing period. No target values were recorded following the earing period because the harvest 

amount is typically determined here. 

In terms of NDRE, a non-negative value indicates the absence of significant stress regardless of crop. 

sNDRE is more appropriate when visualizing small or relative stress, as it corresponds to changes in 

data under different monitoring conditions on the same scale. Note that a sNDRE of 0.0 represents 

average stress in a field. 

Owing to the simple computation method used in this study, CCCI and sNDRE exhibited a 

relationship of normalization and standardization. Consequently, although the time series exhibited 

different degrees of variability, the distribution maps were somewhat similar. CCCI data from different 

years or locations could not be compared, as NDREmax and NDREmin vary from field to field whereas 

all CCCI values lie between 0.0 and 1.0.  
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4. Discussion 

As described above, time-series clustering can help clarify differences in crop growth and 

fertilization effects. However, even though the drones are autopiloted, the monitoring process itself is 

not fully automated, with certain tasks, such as flight route setting, still requiring manual labor. To 

ensure monitoring efficiency, it is desirable to minimize the number of monitoring operations. To 

determine which observation date would yield the best result, we employed vegetation indices from 

"Okamizawa," as their field has a large quantity of observations and a relatively large difference 

between clusters, as shown in Tables 1, 2, and 3. 

 First, correlations between vegetation index values were calculated to analyze whether the efficient 

observation date differs for each vegetation index. These correlations were measured by the Spearman 

correlation coefficient [19], where 𝐷′  is an arbitrary subset from all observation dates 𝐷 , 𝐶  is the 

number of clusters, 𝑋 is the clustering result corresponding to 𝐷′ and 𝐶, and 𝑌 is the set of all other 

clustering results. The similarity 𝑑𝑖𝑠𝑡 between 𝑋 and 𝑌 is then calculated using the following formula. 

𝑑𝑖𝑠𝑡 =∑ ∑ ∑(𝑥𝑐,𝑑,𝑖 − 𝑦𝑐,𝑑)
2

𝑛𝑐

𝑖=1𝑑∈𝐷′⊂𝐷𝑐∈𝐶

 
 

where 𝑛𝑐 is the number of meshes classified into cluster 𝑐 in 𝑋, 𝑥𝑐,𝑑,𝑖 is the 𝑖-th mesh in cluster 𝑐 in 

𝑋 on observation date 𝑑, and 𝑦𝑐,𝑑 is the centroid value of cluster 𝑐 in 𝑌 on observation date 𝑑. Thus, 

510 dist values were computed excluding anomalies and outliers. These values were ranked in 

ascending order for each vegetation index, to calculate the Spearman correlation coefficients between 

vegetation indices, as listed in Table 4. Because no significant correlations were found between any 

indices, the effectual observation period was determined to differ for each vegetation index. 

The random forest algorithm is frequently used in agricultural applications, such as harvest yield 

prediction and crop classification [16, 17]. We performed random forest to determine which observation 

date was important when classifying meshes. The vegetation index values of each observation date were 

set as independent variables whereas the cluster IDs were considered dependent variables. 

Approximately 25% of all 743 meshes were allocated as training data, with the remaining 75% used as 

test data. We evaluated the prediction accuracy of dependent variables within the test data using the 

decision tree generated from the training data. The random forest was implemented with the 

RandomForestClassifier module in Python [11], and the decision tree was visualized using Graphviz 

[12] and PyDotPlus [13]. The accuracy rates were approximately 98%, 84%, 95%, and 97% for NDVI, 

NDRE, sNDRE, and CCCI, respectively. 

We observe that cluster IDs were classified very accurately with a small volume of training data for 

most vegetation indices. Only NDRE exhibited a slightly lower correct answer rate, as minimal 

differences were observed between clusters compared to other vegetation indices. Figure 3 represents 

the decision tree for each vegetation index, whereas Figure 4 shows the importance of each observation 

date. The importance was calculated using the following formula, wherein a larger value indicates 

higher importance of the dependent variable for classification [14]. 

𝐼(𝑗) = ∑ (𝑁𝑝(𝑖) × 𝐺𝑝(𝑖) − 𝑁𝑙(𝑖) × 𝐺𝑙(𝑖) − 𝑁𝑟(𝑖) × 𝐺𝑟(𝑖))

𝑛∈𝐹(𝑗)

𝑖=1

 

 

where 𝐼(𝑗) is the importance for feature 𝑗, 𝐹(𝑗) is a set of nodes for which a feature 𝑗 is to be split, 

𝑁𝑝(𝑖) is the number of samples at node 𝑖, 𝑁𝑙(𝑖) is the number of left node samples among the child 

nodes of 𝑖, 𝑁𝑟(𝑖) is the number of right node samples among the child nodes of 𝑖, 𝐺𝑝(𝑖) is the Gini 

impurity at 𝑖, 𝐺𝑙(𝑖) is the Gini impurity of left nodes among the child nodes of 𝑖, and 𝐺𝑟(𝑖) is the Gini 

impurity of right nodes among the child nodes of 𝑖. The Gini impurity at node 𝑘 – 𝐺(𝑘) – was calculated 

from the number of target labels as 𝑛, and the proportion of samples with target label 𝑖 in node 𝑘 as 

𝑝(𝑖): 

𝐺(𝑘) =∑𝑝(𝑖) × (1 − 𝑝(𝑖))

𝑛

𝑖=1
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From Figure 4, NDVI observations were sufficient until the first half of August. The observation 

period for NDRE was optimal from July 13th at the panicle formation period to August 9th at the earing 

period. sNDRE and CCCI require observation following August. Subsequently, the cluster IDs in the 

test data were predicted using the training data only for these important observation ranges. The 

accuracy rates were approximately 96%, 82%, 95%, and 96% for NDVI, NDRE, sNDRE, and CCCI, 

respectively. 

Thus, the important observation ranges for each vegetation index were clarified using a random 

forest. However, observations from July to September are necessary when using all four vegetation 

indices considered in this study, so it is important to use only those vegetation indices that match the 

application. 

 

 

Table 4 

Spearman Correlation Coefficient 
 

 

 

Figure 3: Decision trees for cluster ID classification generated by random forest 

 NDVI NDRE sNDRE CCCI 

NDVI N/A -0.013 -0.015 -0.149 
NDRE -0.013 N/A 0.267 -0.047 
sNDRE -0.015 0.267 N/A 0.211 
CCCI -0.149 -0.047 0.211 N/A 

NDVI NDRE 

sNDRE CCCI 
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Figure 4: Importance of each observation date 

5. Conclusions 

In this study, Gramineae crops were continuously monitored with variable fertilizer amounts to 

evaluate paddy rice and wheat growth by analyzing time-series of multiple vegetation indices. In 

addition, the periods and locations of crops under stress were visualized along with the nitrogen amount 

in conjunction with the index values. These results can be used as references to ensure efficient 

fertilization from the perspectives of the environment and SDGs. 

Although valid observation dates were revealed from the importance of dependent variables using 

the random forest, this importance is relative within each vegetation index. One method to address this 

problem may be regression of the cluster IDs by a generalized linear model [20], such as multinomial 

logistic regression, to determine statistically and quantitatively effective observation dates. In the future, 

we plan to predict cluster IDs with higher accuracy and fewer independent variables using these models. 

Thus, we expect to quantitatively interpret the important observation ranges to support the conservation 

of labor in agriculture. 
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