
ByteGAP: A Non-continuous Distributed Graph Computing System
using Persistent Memory
Miaomiao Cheng1,2, Jiujian Chen1, Cheng Zhao2,∗, Cheng Chen2, Yongmin Hu2,
Xiaoliang Cong2, Liang Qin2, Hexiang Lin2, Rong Hua Li1, Guoren Wang1,
Shuai Zhang2 and Lei Zhang2

1Beijing Institute of Technology
2Douyin Vision Co., Ltd.

Abstract
Graph computing systems play a critical role in a variety of industrial applications. This study examines
ByteDance’s graph computing system workload, which challenges the conventional notion of a one-shot,
lightweight graph computing task that can scale to trillions of edges. The workload includes both small and
large-scale tasks separated by a 1000-second runtime threshold. The majority of the workload is dominated
by small-scale tasks submitted arbitrarily, but with high time-sensitive requirements. Large-scale tasks
make up the bulk of computing resources and occur periodically. Therefore, the graph computing system
must be capable of pausing running tasks and prioritizing more critical ones. In this paper, we introduce
ByteGAP, a non-continuous graph computing system that leverages PMEM’s unique features, such as
durability, byte-addressability, memory-like access, lower latency, and high capacity. The non-continuous
approach uses checkpointing mechanisms to achieve effective fault detection and recovery. ByteGAP provides
two key contributions: (1) lightweight distributed checkpointing based on PMEM, (2) efficient dual-mode
PMEM management for optimizing PMEM read and write operations. Moreover, we present a comprehensive
evaluation method that demonstrates the system’s ability to handle the challenges associated with large-scale
computing tasks. The findings lay the foundation for future research in distributed graph computing systems
and advocate for a non-continuous approach to graph computing.

Keywords
graph, non-continuous graph processing, persistent memory

1. Introduction
Graph computing system is widely employed in in-
dustry[1, 2, 3], catering to a variety of application
scenarios. In ByteDance, thousands of graph com-
puting tasks run daily, playing a crucial role in vari-
ous scenarios such as recommendations, fraud detec-
tion, and content auditing. To better understand
the characteristics of real-world graph computing

Joint Workshops at 49th International Conference on Very
Large Data Bases (VLDBW’23) —Workshop on Accelerat-
ing Analytics and Data Management Systems (ADMS’23),
August 28 - September 1, 2023, Vancouver, Canada
∗Corresponding author.
Envelope-Open chengmiaomiao.123@bytedance.com (M. Cheng);
jiujian@bit.edu.cn (J. Chen);
zhaocheng.127@bytedance.com (C. Zhao);
chencheng.sg@bytedance.com (C. Chen);
huyongmin@bytedance.com (Y. Hu);
congxiaoliang@bytedance.com (X. Cong);
qinliang.touyi@bytedance.com (L. Qin);
linhexiang@bytedance.com (H. Lin); rhli@bit.edu.cn
(R. H. Li); wanggr@bit.edu.cn (G. Wang);
zhangshuai.root@bytedance.com (S. Zhang);
zhanglei.michael@bytedance.com (L. Zhang)

© 2023 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

workloads, we collected data on tasks performed in
ByteDance within a month. As illustrated in Figure
1, the task runtime distribution within ByteDance’s
graph computing system manifests distinct charac-
teristics. It can be observed that graph comput-
ing tasks of different scales exhibit two types of
characteristics. (1) Small-scale tasks, which can be
completed within 1000 seconds, account for 90% of
all tasks. This suggests that most tasks can be com-
pleted relatively quickly. (2) Large-scale tasks that
take more than 1000 seconds to complete consume
more than 90% of computing resources. This indi-
cates that these tasks use the majority of computing
resources.

ByteDance’s workload reveals that besides the
typical small-scale graph computing tasks,there
are also large-scale tasks demanding significant re-
sources. Large-scale graph computation tasks ex-
hibit the following characteristics. (1) Extensive
resource consumption and long computing dura-
tion. Large-scale graph computing tasks occupy
90% of system resources. In ByteDance,large-scale
graph computations may take several hours. (2)
Significant memory consumption. For large-scale
graph computations in ByteDance, graph data can

mailto:chengmiaomiao.123@bytedance.com
mailto:jiujian@bit.edu.cn
mailto:zhaocheng.127@bytedance.com
mailto:chencheng.sg@bytedance.com
mailto:huyongmin@bytedance.com
mailto:congxiaoliang@bytedance.com
mailto:qinliang.touyi@bytedance.com
mailto:linhexiang@bytedance.com
mailto:rhli@bit.edu.cn
mailto:wanggr@bit.edu.cn
mailto:zhangshuai.root@bytedance.com
mailto:zhanglei.michael@bytedance.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
or

m
al

iz
ed

: #
Ta

sk
/R

es
ou

rc
es

small-scale(<1000s) large-scale(>1000s)
#Task
Resources

Figure 1: Percentage of the number of tasks and re-
sources (running time multiplied by used core numbers)
occupied for different task-scale in ByteDance graph
computing workloads. Tasks are separated by a run-
time threshold of 1000 seconds.

reach a trillion-scale, and at least 10TB of memory
is required to store the pure graph data structure.
These characteristics present challenges:

• Potential other task blockage due to lack
of pause capability. Large-scale graph com-
puting tasks cannot be paused, which may
result in blocking other tasks when preemp-
tive strategies are not in place [4, 5, 6].

• Lower tolerance for timeliness. Graph tasks
must meet application timeliness, such as
daily updated search tasks. For small-scale
tasks, timeliness requirements can be ensured
through a retry when encountering execu-
tion failures. However, large-scale tasks have
higher retry costs, and when cluster failures
occur during computation[7, 8],it may be
impossible to satisfy the task’s timeliness
requirement.

Therefore, to address these challenges, graph com-
puting systems must support checkpoint mecha-
nisms and implement effective non-continuous graph
computing techniques to ensure high availability
within the graph computing cluster. The non-
continuous graph computing system supports ef-
fective fault detection and recovery strategies and
allows high priority tasks to interrupt low-priority.
This approach offers significant advantages for large-
scale graph computing systems.

Large-scale graph computing workloads require a
large amount of storage space, with DRAM deliv-
ering exceptional performance and SSDs providing
persistent checkpoint storage and extending DRAM.
In addition, PMEM boasts unique characteristics,
such as durability, byte-addressability, memory-like
access, lower latency, and high capacity[9, 10], ren-
dering it a better choice for constructing checkpoint-
centric graph computing systems. However, de-

ploying large-scale graph computation on PMEM
presents a challenge. To ensure data consistency,
graph computation requests write operations fol-
low a certain order [11, 12]. However, keeping the
writes to PMEM connected via memory bus in a
certain order requires a special set of CPU instruc-
tions such as CLFLUSHOPT or CLWB followed by
SFENSE, which has been proven to be extremely
expensive[13, 14, 15].

In this paper, we propose a non-continuous dis-
tributed graph computing system based on PMEM,
ByteGAP. To handle ByteDance-style graph com-
puting workloads, we suggest a non-continuous strat-
egy that preserves checkpoints for graph topology
structures and vertex states during the iterative
computing process. To increase efficiency, we fur-
ther specialize in the design of PMEM checkpoints.
To efficiently store topology structure and vertex
states from various graph computing algorithms, we
design a dual-mode PMEM management strategy
that supports both fixed and variable data alloca-
tion. In summary, the main contributions of this
paper are as follows.

• Lightweight distributed checkpointing. Byte-
GAP supports efficient, lightweight dis-
tributed checkpoints based on PMEM to fa-
cilitate effective non-continuous large-scale
graph computation. Tailored to graph com-
putation by considering both graph topology
structure and vertex state data. We have
developed a checkpoint saving mechanism
using PMEM to improve system reliability
and performance.

• Efficient dual-mode PMEM management.
To accommodate multiple data patterns in
the system, ByteGAP integrates a carefully-
designed dual-mode persistent memory man-
ager to handle and optimize PMEM read
and write operations. To achieve high data
access performance, the persistent memory
manager employs an innovative dual-model
PMEM allocator design, integrating both
pool-based and log-based PMEM allocators
to support fixed-size data and non-fixed-size
data storage, respectively.

The rest of this paper is organized as follows.
§2 describes the overall system architecture. We
discuss the PMEM-based checkpoint-centric system
design in §3. Experimental evaluation is reported
in §4, and §5 reviews the related works. At last, we
conclude our work in §6.

Application

Computing Kernel

Persistent Memory Manager

Compute() Combine()

Checkpoints

Aggregate()

Edge Table Message Table

Thread Pool

Batch Processing

Vertex Table

Communication

C
P-A

gent

Checkpoint Manager
Receiver

Sender

Result
Dumper

Graph
Loader

Disk / HDFS / ...

Figure 2: The system architecture of ByteGAP

2. System Architecture
We depict the architecture of ByteGAP in Figure 2,
omitting some trivial connections between compo-
nents and data for readability. The system can be
seen as consisting of four parts (i.e., Application,
CP-Agent, Computing Kernel and Persistent Mem-
ory Manager). Each node in the ByteGAP cluster
will deploy only one process to perform graph com-
putation while fully occupying all CPU resources.

The global runtime environment is managed by
the CP-Agent. We build agents to spawn, ren-
dezvous, and monitor workers across all nodes. They
play a crucial role in achieving the checkpointing
for our system. Beyond the system layer, user-
defined graph algorithms are written as Applica-
tion by specifying and injecting exposed interfaces.
The Compute() method serves as the kernel for
vertex-centric graph processing. It is defined by the
users to implement the specific computation logic
over each vertex along with its neighbors, follow-
ing the classic ‘think like a vertex’ programming
paradigm, based on various distributed graph algo-
rithms. In addition, there are two optional functions
that users can customize. The Combine() method is
used to combine these messages targeting the same
destination vertex locally, reducing communication
overhead across nodes. The Aggregate() method
periodically aggregates global intermediate result-
s/statistics across nodes during computation, acting
as a signal for global algorithm behaviors or system
controls.

Computing Kernel is the core part of ByteGAP.
It executes applications based on the BSP model,
using user-defined methods in iterations. We fur-
ther divide the worker into several components ac-
cording to their functions. The Sender and the
Receiver drives the tasks between computation and
communication, including combining messages and
constructing the Message Table in the Persistent

Memory Manager. Batch Processing represents a
collection of computing operations that we will dis-
cuss in §3.1. It invokes the computing method in
multiple threads, generating messages and updating
the value of vertices. Moreover, all threads used in
processing and communication are managed by a
Thread Pool. To perform a graph algorithm com-
putation, workers first use the Graph Loader to
load the graph from the Hadoop Distributed File
System (HDFS) or local file system, where users
can self-define the input data format of vertices
and edges in the files. Loaded data will be parti-
tioned among distributed workers and finally saved
on DRAM for Vertex Table and persistent mem-
ory for Edge Table respectively, with contiguous
storage to obtain the performance benefits of se-
quential read/write. The algorithm is conducted in
rounds of supersteps, where every worker processes
the computation in batches and shuffles messages to
others in each superstep. When the last superstep
is finished, the Result Dumper will write the results
back to the storage devices in a user-defined format
and terminate the program.

The underlying part is the Persistent Memory
Manager (§3.3), which handles access to PMEM
devices and persistent data management (includ-
ing data storage, indexing, memory allocation, and
garbage collection). Benefiting from the byte-
addressable and good read/write performance of
PMEM, we leverage it to store massive data in both
Edge/Message Tables and CheckPoints. For the
consideration of checkpointing, the Checkpoint Man-
ager (§3.2) will generate and manage checkpoints
happened at certain supersteps. When entering a
failure recovery process, workers will use these check-
points to restore themselves to continue distributed
computing. We heavily engineered our system to
be adapted for persistent memory, to achieve the
best system performance with checkpointing.

3. System Design
We first introduce the computing kernel of ByteGAP
in §3.1, which is the essential part of the system’s
execution. Then, we will discuss how to achieve fast
recovery with checkpoints in §3.2, and discuss how
to store and manage data in persistent memory in
§3.3.

3.1. Computing Kernel
In this section, we will introduce the basic data
layout and computing module of ByteGAP.

Machine 1

Machine 2

10

12

13

14

15

10

17

18

thread 1

thread 2

thread 1

thread 2

One Edge
Page

MEM

NVM

MEM

ID

1

2

3

4

5

6

...

Value

1.0

1.0

1.0

1.0

1.0

1.0

...

Active

true

true

true

false

true

true

...

Offset

0

2

5

6

8

5

...

Vertex Table Edge Table

vertex

1

1

2

3

4

4

5

6

Msg Table

msg

5

2

3

1

2

1

2

12

One Msg
Page

Figure 3: The data layout of ByteGAP

Page-based data layout. CSR is a widely used for-
mat for storing sparse graphs and matrices in graph
systems [11, 16, 17]. We employ CSR to store graph
data for the benefit of cache prefetching and efficient
data access. Figure 3 depicts the data layout format
of ByteGAP. All data associated with vertices is
stored as a table in memory for efficient updating
and fast access. Typically, each vertex takes one row
in the array, storing the vertex ID, the vertex value,
the active state, and an offset to the start position
of its adjacency-list in the Edge Page. Each active
state and vertex value is modifiable at run-time for
algorithm processing. To adapt the CSR format on
PMEM, we organize the adjacency lists of all ver-
tices into a global linked page-list (i.e., Edge Table),
where each page has a fixed length to store a fixed
number of edges. Then, the offset of 𝑣𝑒𝑟 𝑡𝑒𝑥[𝑖] and
𝑣𝑒𝑟 𝑡𝑒𝑥[𝑖+1] can clearly indicate the start and end po-
sition (i.e., page number and offset on the page) of
the adjacency-list of 𝑣𝑒𝑟 𝑡𝑒𝑥[𝑖]. Accordingly, to fetch
the neighbors of one given vertex, we can iterate the
pages on the Edge Table by sequentially reading on
PMEM, which performs performance (i.e., latency
and throughput) comparable to DRAM.

In addition, we also need to iterate over messages
belonging to each vertex during the computation.
Each message includes a source vertex ID and mes-
sage data. Similar to the Edge Table, we also ar-
range all message data into a global list of linked
pages on PMEM, called the Message Table.

Message passing. While computing, vertex can
send messages to any other vertices to be processed
in the next superstep. Message passing between
vertices may appear across different workers. The
two components of ByteGAP, Sender and Receiver,
are used to manage this process between workers.
Alongside the compute dispatcher, Sender grabs
messages from compute threads and sends them
out once the message count reaches a batch size.
Meanwhile, Receiver accepts these streaming mes-
sages and saves them to the Message Table. It

is expected that communication costs will overlap
with computation in such pipelines.

To reduce the total amount of messages processed
in each superstep, we take message properties-based
approaches in different scenarios. When multiple
messages sent to a vertex can be combined, a user-
defined Combiner is adopted in both Sender and
Receiver. In one sending batch, messages will be
combined at the same destination. And after being
received, messages will also be merged into one
final message during generating the Message Table.
Therefore, the indices of batches of messages can be
easily calculated by the offsets in the Message Table
for computing dispatchers in the next superstep.

We also use mirror vertices to reduce communica-
tion costs when each vertex sends the same message
to its neighbors. A Remote Message Table is built
alongside the resulting Message Table. When a ver-
tex needs to send an identical message to multiple
neighbors on a node, there will be a mirror vertex in
the Remote Message Table on the target node. Mes-
sage passing only occurs between the original vertex
and its mirrors. Neighbors then fetch messages from
the mirrors to fill the Message Table for the next
superstep. For ease of programming, mirror vertices
are transparent to algorithms and improvements are
optional to reduce communication costs. We also
take optimization for vertices with huge degrees.
They will have mirror vertices in each node and the
messages passing to them are first gathered locally
after sending them out. To prevent concurrent write
conflicts on such mirrors, we collect messages within
each thread and combine them upon completion of
each superstep. Based on the skewed distribution
of graph vertices, we dynamically select the thresh-
old for degrees, trading mirror memory usage for
reduced global communication costs.

3.2. Lightweight Distributed Checkpointing
To facilitate the recovery of our computing work-
ers, we construct checkpoints at periodic number of
supersteps (called 𝐶𝑃) that need to do checkpoint.
For ease of access, Checkpoint Manager saves check-
points as key-value pairs in the PMEM store for
fast retrieving after process restart. The keys are
generated based on both the identifiers of each sys-
tem component and the current system superstep
number, where the values are the specific states
or computing data that need to be stored inside
checkpoints.

Leader-follower checkpointing. Checkpointing oc-
curs at the beginning of each 𝐶𝑃, then each worker
will enter into a specific routine to construct the
checkpoint individually. These checkpoints exist on

the local persistent memory of each node, where we
discuss its format in 3.3. Note that to ensure the
integrity of the newly generated checkpoint before
safely removing the previous checkpoint, all nodes
should set up a global barrier before the atomic
checkpoint swap. In addition, we assign a node to
be the worker leader, for using it to generate the
system’s unique Last Checkpoint ID (LCI). LCI
is a basic concept for the checkpoint mechanism,
which indicates what the last global 𝐶𝑃 is. We only
allow the leader to generate and store the LCI, and
broadcast it to other followers during the recovery,
to avoid inconsistent distribution, considering if one
worker fails at checkpointing while the others suc-
cessfully save the new checkpoint. Therefore, at the
end of the checkpointing routine, each follower will
send a completed notification to the leader after its
checkpoints have persisted. And only after receiving
all completed messages, the leader can update the
LCI and acknowledge it to followers by notifying
them that the previous checkpoint is out of date.
When CP-Agents relaunch all workers, the leader
will load the LCI from its persistent layer and broad-
cast it to all followers to restore the checkpointed
data.

Lightweight checkpoints. After loading the graph,
topologies, i.e. edges and partition information, are
involved in every computation and message sending.
They will not change during the computation of
many algorithms, so that only one checkpoint for
them is required before the first superstep of com-
puting. And at each superstep, as described in §3.1,
the computing dispatchers need to use the updated
states and messages received from local vertices from
the last superstep, which are required to be saved
in checkpoint at each 𝐶𝑃. We adopt a lightweight
checkpointing approach that is dedicated to reduc-
ing the extra overhead based on whether the data
is mutable or not and which memory they mainly
use. While edges are usually immutable and persist
only once at the beginning, vertex-related data, i.e.,
Vertex Table and Message Table, take up the bulk
of the workload when checkpointing.

For vertices stored in DRAM, we serialize them
down to the PMEM layer in parallel to make full
use of PMEM bandwidth at minimum cost. The
message checkpoint is thoughtfully considered in
other works [18, 19] as its size can be proportional
to the number of edges. However, we have already
placed messages in the PMEM as Message Table
before storing checkpoints. We only need to treat
them as checkpoints and keep them available until
the next checkpoint is generated.

Specifically, we use three buffers in Message Table
to store received messages. One buffer is used for

regular supersteps, it will be overwritten by new in-
coming messages iteratively at each superstep. The
other two buffers work interchangeably for check-
pointing rounds, in which case it can ensure that
the latest checkpointed messages are always avail-
able even as we write the next checkpoint. We
only need to store an index to track which buffer
holds the latest messages at each 𝐶𝑃. Therefore, the
overall checkpointing overhead is lightweight due
to the spread of data in our system. And during
recovery, we only need to restore the indices of the
key-value pairs in persistent memory, as we will
describe below.

Checkpointing with agent. Inspired by Torch Dis-
tributed Elastic [20], which enables PyTorch to run
in a fault-tolerant manner, we achieve our CP-Agent
to manage distributed computing workers in Byte-
GAP. To assemble the essential environment for
communication and monitor the running status of
each computing process. It is commonly assumed
that as cluster size increases, the chance of the entire
system failing due to the failure of a single worker
increases as well. Therefore, how to solve retrieval
in a distributed graph computing system becomes
a primary concern in our design. The basic idea
is to re-spawn working processes with the help of
CP-Agent, where CP-Agent ensures that the en-
tire program can be fully executed or terminated
normally. If some processes encounter fatal errors
during the computation, CP-Agent will charge the
recovery of process rank, communication environ-
ment, and worker monitoring.

3.3. Dual-Mode Persistent Memory
Management

We use the Persistent Memory Manager (PMM) to
manage ByteGAP persistent memory space for high-
performance PMEM access. PMM mainly supports
data storage for Edge Table, Message Table, and
checkpoints. We conduct 𝑃𝑎𝑔𝑒 as the minimum allo-
cation unit for PMEM with a fixed length. A series
of pages can form the Edge Table and the Message
Table as a linked page-list. To facilitate optimal
data access and allocation, we set the page size to
be the OS physical page size. While checkpointing
data can be arbitrary in length, PMM also needs
to support dynamic memory allocation. Further, as
we mentioned in §3.2, PMM should organize stored
elements as key-value pairs, to better categorize
different checkpointed components for their on- and
off-load.

Dual-mode allocator. Based on the above reasons,
we adopt both pool-based and log-based allocators
for fixed and non-fixed data storage, respectively,

New chunk

Global free list

T1 T2 T3

Object
Cache

Object
Cache

Object
Cache

Deallocate
Deallocate

PMEM
device

 Allocate

(a) Pool-based allocator

New
chunk

T1 T2 T3

Object
Cache

Deallocate

PMEM
device

 Allocate Large size allocation

Large
chunk

Allocate

(b) Log-based allocator

Figure 4: PMEM allocators

to achieve efficient data management (i.e., alloca-
tion, deletion, garbage collection) on PMEM. To
meet fixed size memory allocation requirements, the
pool-based allocator implements a shared memory
management strategy as follows. As illustrated in
figure4a, when a thread attempts to allocate an ob-
ject, it first searches through its own private object
cache to get a free object. If no free object is left,
it will fetch free objects from a global free-list to
refill its own local object cache. Only if there are
not enough free objects in the global free-list, the
thread will allocate a new chunk from the PMEM
device, and using this new chunk to generate free
objects to refill the object cache. When a thread
wants to deallocate an object, the thread first sets
the tombstone bit of the deleted object and then
adds the object to the private object cache. If the
thread finds too many free objects (e.g., twice the
bulk load size) in the object cache, it will move some
free objects from its private free-list to the global
free-list. Obviously, such a strategy can provide
a pool-based allocator with excellent data locality
and high performance for data allocation. While,
for the log-based allocator depicted in figure4b, it
manages the memory space in chunks, but each
chunk may have a different size. The log-based allo-
cator charges the allocation of objects with variable
lengths, hence it needs to migrate data from existing
chunks to a newly allocated chunk during data de-
fragmentation to improve data locality. Specifically,
when the allocator finds a highly fragmented chunk,
it first scans the chunk to locate all valid records of
the chunk, and then copies those valid records to
a new chunk for seeking tighter data arrangement.
Next, the allocator maps the memory access of the
migration record to the new memory address, and
finally reclaims the memory space of the old chunk.

Persistent data lifetime. For persistent data
stored in PMM belonging to different system com-
ponents, we should use different types to manage
their lifetime at runtime. For example, when a new
checkpoint is generated, the old checkpoint does not
need to be maintained. While deleting an outdated
checkpoint is not an atomic operation, a failure

may occur during asynchronous deletion and CP-
Agent will restart all workers after that. Then, in
the progress of PMM’s recovery through PMEM
devices scanning, we can directly drop those use-
less records and remain the useful records based on
their lifetime type. Therefore, we classify all data
managed by the PMM into three types of lifetime:
Keep, Delete, Exclusively Keep.

• Keep: Persistent data of this type should
remain valid during the whole runtime of the
job. For example, Edge Table is read only
after it is generated, so it belongs to Keep
type.

• Delete: Some data should be burned after
reading and will not be saved to checkpoint,
e.g. temporary Message Table data. These
data are marked as Delete, which will not be
recovered when the process restarts.

• Exclusively keep: All checkpoint-related data
is indexed by the checkpoint ID, which refers
to its associated checkpoint. This data be-
longs to the Exclusively Keep type, meaning
it needs to be saved with the ICI index.

PMM supports data recovery when workers per-
form unexpected exits. Note that we reduce the
recovery process overhead by using PMEM run-
time storage. Unlike other systems [1, 21, 22, 19],
which recovers the Message Table via recomput-
ing or reloading from disk log, we directly store
and fetch the Message Table in PMEM at runtime
without any further operations.

4. Experiments
ByteGAP aims to provide scalable non-continuous
support for graph computing. This section reports
the results of our evaluation of ByteGAP in various
environments.

4.1. Experimental Setup
Testbed. We evaluated ByteGAP on a cluster of
up to 16 machines, each equipped with two Intel
Xeon Platinum 8260 CPUs (48 cores in total) and
128GB of DRAM. Each node also contains 320GB
of SSD and 512GB of Optane DC PMM, which will
be configured in memory mode and app-direct mode
depending on the situations in our evaluation.

Datasets. We adopt four real-world datasets for
our evaluation. Table 1 shows the statistics of these
four graphs: Twitter and Friendster from SNAP [23],
and UK-2007 and UK-union from LWA [24]. Twitter
and Friendster are the graphs that belong to the

Table 1
Dataset statistics
Dataset |𝑉 | |𝐸| Avg. 𝐷𝑒𝑔𝑟𝑒𝑒
Twitter 41,652,230 1,468,364,884 4.4

Friendster 65,608,366 1,806,067,135 16.0
UK-2007 105,896,555 3,738,733,648 35.3
UK-union 133,633,040 5,475,109,924 41.0

social networking domain, while UK-2007 and UK-
union are both Internet graphs. The number of
edges in each graph reaches the billion scale, and
the degrees of Internet graphs are more than social
graphs. In addition, we generated a weighted graph
for each dataset by randomly assigning an integer
from 0 to 100 to each edge.

Algorithms. We evaluated our system by four
representative algorithms: PageRank, Connected
Components (CC), Breadth First Search (BFS) and
Shortest Single Source Path (SSSP). We ran these
algorithms against other out-of-core systems for
comparison. And since PageRank is implemented
in all systems, we use it as a core test for several
experiments.

4.2. Checkpointing Evaluation
We also examined the pros and cons of checkpoint-
ing in ByteGAP. To evaluate the elapsed time on
checkpointing and recovery, we ran PageRank on the
Twitter dataset and configured the system to write
checkpoints at each 10 superstep. In the next su-
perstep after saving a checkpoint, one of computing
kernels will kill itself to simulate a worker stopping.
The PageRank algorithm ensures that each super-
step has the same workload of computation and can
generate the same number of messages. After the
worker stops, CP-Agent will relaunch and guide the
system to begin recovery. There are four important
phases in failure and recovery. We represent the
time metrics of this process as follows:

• 𝑇𝑖𝑡𝑒𝑟: the time of each superstep without sav-
ing checkpoints, used to indicate the elapsed
time of normal execution for comparison with
checkpointing overhead. In our settings, this
is the average time of ten supersteps.

• 𝑇𝑐𝑝0 and 𝑇𝑐𝑝𝑖: the time to write all needed
checkpoints when the worker executes nor-
mally. We use 𝑇𝑐𝑝0 to denote time of the
initial checkpointing before first superstep
and use 𝑇𝑐𝑝𝑖 as the time of saving checkpoints
at the latest 𝐶𝑃 superstep.

• 𝑇𝑟𝑒𝑐: the time of the recovery by checkpoints.
As our agents will also kill survival workers

to perform relaunching, these times repre-
sent the maximal time of recovery across all
workers.

To fully evaluate performance, we recorded these
time metrics for ByteGAP on 2 to 10 machines
as shown in Figure 5a-figure 5c. There is one CP-
Agent on each machine to keep PMM and Comput-
ing Kernel healthy, and each worker will only save
checkpoints to and load back from its local storage.
Figure 5a depicts the time metrics for the first two
phases as described above. The time 𝑇𝑐𝑝0 of writ-
ing the initial checkpoint only takes up once in the
whole running time. It is not as much scalable as
𝑇𝑖𝑡𝑒𝑟 because it includes time of saving the topology
of graph. However, the additional cost for each
𝐶𝑃 superstep is always much smaller than normal
execution. As the number of machines increases,
the average execution time required for a superstep
decreases proportionally. And 𝑇𝑐𝑝𝑖 also decreases
and stays at about one-third of 𝑇𝑖𝑡𝑒𝑟.

We ran ByteGAP to evaluate checkpoint perfor-
mance. The PMM used SSD as the underlying
storage, though our system supports this use case,
it lacks optimization for PMEM to improve I/O
efficiency. Figure 5b shows that checkpoints were
faster on SSDs than PMEM. This is because the
operating system has optimizations for SSD writes,
including caching, which PMEM cannot currently
use. We also ran ByteGAP in a testbed where the
PMM uses a normal path on SSD as the underlying
storage to inspect the time metrics about recovery.
Although naturally supported in our system, such
a use case lacks the specialized design for PMEM,
which can improve I/O efficiency. Figure 5c illus-
trates the time of recovery with different machines.
Each of the reported time decreases exponentially
as the number of machines grows. Starting with a
few machines, 𝑇𝑟𝑒𝑐 of running on PMEM is much
less than running on SSDs. However, when there
are more machines being involved, both of them
perform close metrics. Despite hardware limitations,
ByteGAP benefits from PMEM features and does
not lose performance when using SSDs on multiple
machines.

We also evaluated ByteGAP versus GraphX
(Spark 3.0) on 2 to 10 PMEM-equipped servers
to compare checkpoint performance. GraphX is a
widely used graph processing system. For GraphX,
we killed processes during computation to simulate
task failure and recovery. 𝑇𝑟𝑒𝑐 is obtained by sub-
tracting the time of normal running tasks from failed
and recovered tasks. 𝑇𝑖𝑡𝑒𝑟 is also represented by the
average time of the first 10 iterations. Since GraphX
checkpointing time 𝑇𝑐𝑝𝑖 involves synchronous copies

2 4 6 8 10

19
.5
9

12
.2
7

7.
16

4.
98

4.
03

0.
22

0.
1

7.
26

⋅1
0−

2

5.
65

⋅1
0−

2

4.
65

⋅1
0−

2

9.
88

5.
45

4.
23

3.
2

2.
71

#Machine

T
im

e/
s

𝑇𝑖𝑡𝑒𝑟
𝑇𝑐𝑝0
𝑇𝑐𝑝𝑖

(a) Time of checkpoints

2 4 6 8 10

0.22

0.1
7.26 ⋅ 10−2 5.65 ⋅ 10−2 4.65 ⋅ 10−2

0.1
5.25 ⋅ 10−2 3.46 ⋅ 10−2 2.72 ⋅ 10−2 2.12 ⋅ 10−2

#Machine

T
im

e/
s

𝑇𝑐𝑝𝑖-PMEM
𝑇𝑐𝑝𝑖-SSD

(b) Time of checkpoints

2 4 6 8 10

9.88

5.45
4.23 3.2 2.71

16.45

8.88
6.05

4.85 4.19

#Machine

T
im

e/
s

𝑇𝑟𝑒𝑐-PMEM
𝑇𝑟𝑒𝑐-SSD

(c) Time of recovering worksers

2 4 6 8 10

9.88 5.45 4.23 3.2 2.71

93.43

245.74

197.5

127.06

74.66

#Machine

T
im

e/
s

ByteGAP 𝑇𝑟𝑒𝑐
GraphX 𝑇𝑟𝑒𝑐

(d) ByteGAP vs GraphX for 𝑇𝑟𝑒𝑐

Figure 5: Time metrics of checkpointing

2 4 6 8 10

279.64

13
4.
95

80
.8
8

55
.2
9

44
.7
6

20
4.
8

11
9.
14

69
.6

39
.7
7

48
.3
8

#Machine

T
im

e/
s

ByteGAP-Memory
ByteGAP-AppDirect

(a) PageRank-Twitter

2 4 6 8 10

1,011.23

54
1.
74

51
0.
02

40
1.
28

34
5.
75

69
7.
02

50
0.
53

29
1.
96

22
8.
34

23
2.
15

#Machine

T
im

e/
s

ByteGAP-Memory
ByteGAP-AppDirect

(b) PageRank-UKunion

2 4 6 8 10

191.09

13
4.
95

80
.8
8

55
.2
9

25
.9
7

12
3.
77

71
.5
1

51
.4
4

25
.1
9

22
.0
1

#Machine

T
im

e/
s

ByteGAP-Memory
ByteGAP-AppDirect

(c) CC-Twitter

2 4 6 8 10

2,092.81

99
9.
65

79
8.
12

54
6.
09

44
8.
76

1,
37
1.
7

80
8.
77

88
1.
79

41
2.
83

49
4.
01

#Machine

T
im

e/
s

ByteGAP-Memory
ByteGAP-AppDirect

(d) CC-UKunion

Figure 6: Results of scalability evaluation

and is difficult to measure, the overhead is also
small. This experiment did not statistically analyze
𝑇𝑐𝑝𝑖 but mainly focused on measuring the time of
𝑇𝑟𝑒𝑐. Under 10 machines, we found that the average
time required for a single iteration of GraphX is 27.1
seconds, while 𝑇𝑟𝑒𝑐 of GraphX takes 23.5 seconds.
The average time required for a single iteration of
ByteGAP is only 4.3 seconds, while 𝑇𝑟𝑒𝑐 takes only
2.7 seconds. ByteGAP achieved much shorter 𝑇𝑖𝑡𝑒𝑟
and 𝑇𝑟𝑒𝑐 than GraphX. For 𝑇𝑟𝑒𝑐 time comparison with
2 to 10 machines is shown in figure 5d, ByteGAP
is much faster than GraphX for all numbers of ma-
chines. Because GraphX uses Spark’s checkpoint
function, only a portion of the computing resources
are used after recovery in the beginning, so when
there are too many computing nodes, the entire re-
sources cannot be used immediately after recovery,
which can lead to resource waste.

4.3. Scalability
We examine the scalability of ByteGAP in this sec-
tion to evaluate the relationship between execution
time and cluster size. Intuitively, processing perfor-
mance can be improved by increasing the number
of machines. Since persistent memory can be con-
figured as Memory mode and App Direct mode, we
evaluated scalability by the running time in both
configurations with up to 10 machines. Specifically,
we adopted two datasets, Twitter and UK-union,
and used 2, 4, 6, 8, and 10 machines to run PageR-
ank and CC algorithms with two modes respectively.
Figure 6 reports the results of our evaluation. It
takes different time when using Memory mode and
App Direct mode as depicted. Therefore, in almost
all experiments, ByteGAP using App Direct mode

delivered a smaller execution time compared to us-
ing Memory mode with the same algorithm and
the same number of machines. As in the case that
computing connected components on the Twitter
dataset in 8 machines, it takes 25.19s with App
Direct mode and 55.29s with Memory mode. This
indicates two reasons: (1) the data storage we de-
signed is more suitable for I/O with direct access,
and (2) using memory mode may result in mem-
ory swapping too frequently, reducing ByteGAP’s
performance.

Our experiments verify that increasing the num-
ber of machines can reduce ByteGAP execution
time. The system benefits from more CPU resources
and higher parallelism in both configurations as the
number of machines increases, as more machines can
provide more CPU resources. For example, when
running PageRank on the Twitter dataset, using
Memory mode takes 279.64s at 2 machines and only
55.29s at 8 machines, and using App Direct mode
takes 204.8s at 2 machines and only 39.77s at 8
machines, depicting more machines needing to use
less time. This means that we can achieve better
performance of our system by adding more machines
to improve parallelism. However, adding more ma-
chines to the cluster may involve new overhead, such
as system consistency guarantees, network commu-
nication overhead across machines, and hardware
access overhead, all of which tend to degrade system
performance. Experiments show that the perfor-
mance of using App Direct mode is worse than
using Memory mode at 10 machines while comput-
ing PageRank on Twitter and CC on UK-union. It
also indicates that performance degradation using
App Direct mode occurs earlier than using Memory

2 4 6 8 10
0

200

400

600

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

PageRank-Twitter

2 4 6 8 10
0

500

1,000

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

PageRank-Friendster

2 4 6 8 10
0

500

1,000

1,500

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

PageRank-UK2007

2 4 6 8 10
0

1,000

2,000

3,000

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

PageRank-UKunion

2 4 6 8 10
0

100

200

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

CC-Twitter

2 4 6 8 10
0

200

400

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

CC-Friendster

2 4 6 8 10
0

500

1,000

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

CC-UK2007

2 4 6 8 10
0

500

1,000

1,500

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

CC-UKunion

2 4 6 8 10
0

100

200

300

400

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

BFS-Twitter

2 4 6 8 10
0

200

400

600

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

BFS-Friendster

2 4 6 8 10
0

500

1,000

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

BFS-UK2007

2 4 6 8 10
0

500

1,000

1,500

#Machine

Time/s

ByteGAP
GraphD-Recoding
GraphD-Recoded

BFS-UKunion

4 6 8 10
0

200

400

#Machine

Time/s

ByteGAP
GraphD-Basic

SSSP-Twitter

4 6 8 10
0

500

1,000

1,500

2,000

#Machine

Time/s

ByteGAP
GraphD-Basic

SSSP-Friendster

4 6 8 10
0

2,000

4,000

#Machine

Time/s

ByteGAP
GraphD-Basic

SSSP-UK2007

4 6 8 10
0

2,000

4,000

6,000

#Machine

Time/s

ByteGAP
GraphD-Basic

SSSP-UKunion

Figure 7: ByteGAP vs. GraphD on the cluster

Twitter Friendster UK-2007 UK-union

216.94 316.15
575.83

884.17
1,322.82

2,852.47

1,769.78

2,850.97

T
im

e/
s

ByteGAP
GraphChi

(a) PageRank

Twitter Friendster UK-2007 UK-union

159.93 349.12
1,164.8

2,536.6

1,424.68

3,594.3 3,736.29

5,887.82

T
im

e/
s

ByteGAP
GraphChi

(b) CC

Figure 8: ByteGAP vs. GraphChi

mode. For example, running PageRank on Twitter
dataset using App Direct mode takes 69.59s with 6
machines and 39.77s with 8 machines, but it takes
48.38s with 10 machines. However, this did not
happen while using Memory mode. As a result,
I/O performance remains a bottleneck in the stor-
age layer of the distributed system with sufficient
computing resources.

4.4. Comparison with Out-of-Core Systems
In this subsection, we compare the computing per-
formance of ByteGAP with other out-of-core sys-
tems because they have similar use cases with ex-
ternal storage. GraphChi [17] and GraphD [25] are
well-known disk-based systems running in a single
machine and distributed environment, respectively.

We have mounted the Optane PMM to an indepen-
dent path so that it can be treated as a stand-alone
filesystem by OS. All systems are configured to use
this path and leave all DRAM as the main memory.
While other systems accept the edgelist file format,
input graphs for GraphChi are preprocessed and
stored directly on PMEM. We compare the exe-
cution time of ByteGAP with the above systems
by running PageRank, CC, BFS, and SSSP on all
datasets individually.

We first report the execution time compared to
GraphChi as shown in Figure 8. There is a differ-
ent emphasis on the design of single-machine and
distributed systems, such as the shared-memory or
shared-nothing architecture and the synchronization
mechanism between supersteps. We sequentially ran
ByteGAP from single machine to multiple machines
for comparison. To better measure the computing
performance of the systems, we recorded the run-
ning time around the iteration of graph algorithms
only for each system. We start with the time of
computing PageRank and connected components
in one machine by ByteGAP and GraphChi, as de-
picted in Figure 8a and Figure 8b. Consequently,
ByteGAP outperforms GraphChi on all datasets.
The Parallel Sliding Windows for accessing disks in

GraphChi is not suitable for PMEM, and GraphChi
does not keep values of all vertices in memory like
ByteGAP do. As a result, the execution time of
ByteGAP is less than half that of the others for
both algorithms.

We then report the time of ByteGAP and GraphD
on 2 to 10 machines to examine execution in a dis-
tributed environment. Figure 7 lists the running
time of four algorithms on all datasets. We chose
the Recoded version of GraphD because it achieves
better performance than the base version. Run-
ning time is denoted as GraphD-Recoded in each
figure and we also count the required time of the
GraphD-Recoding process that is needed beyond
the graph loading. Because they do not provide
the Recoded version of the SSSP algorithm, we fall
back on running the basic version and only compare
the running time on 4 to 10 machines because it
is much slower. As depicted in the first three rows
of Figure 7, ByteGAP ran faster than GraphD-
Recoded on all datasets for PageRank and Twitter
and Friendster datasets for CC. However, the dis-
parity between them decreases as the number of
machines increases. Also ByteGAP becomes a bit
slower when running on the UK-2007 and UK-union
datasets for CC. However, taking the overhead of
the additional recoding process into account, it can
be assumed that ByteGAP gets better performance
than GraphD on all different numbers of machines.
Moreover, it is significantly faster than the basic
version of GraphD for computing SSSP as depicted
in the last row of Figure 7. On the other hand, we
observe that some spikes appear on the line chart of
ByteGAP. The reason could be that the partition-
ing strategy we used (i.e., chunk-based partitioning)
may lead to higher communication costs with the
increase of machines involved, and ultimately affect
overall execution time.

5. Related Works
Recently, many graph computing systems have been
proposed following the vertex-centric programming
model, which allows each vertex to access the re-
ceived messages from the last superstep and send
new messages to its neighbors after computing
the updated value. Following Google’s Pregel sys-
tem [1], many Pregel-like open-source systems have
been proposed, including Giraph [26], Pregel+ [27],
GraphX [2], and so on. Like Pregel, these sys-
tems maintain the entire graph in the main memory
during the computing procedure. GraM [28] is a
new system architecture that exploits the bene-
fits of multi-core and RDMA, where communica-

tion overhead is an essential concern. SHMEM-
Graph [29] synthesizes several optimizations to ad-
dress both computational and communication im-
balances. Nevertheless, with an eye on the industry,
only a few graph computing systems have been
widely used in business.

6. Conclusions
We present ByteGAP, a non-continuous distributed
graph computing system using persistent memory.
ByteGAP focuses on large-scale graph computing in
industrial scenarios, which often demands a balance
between system performance and resource cost. We
propose a dual-mode allocator for managing data
in persistent memory. Leveraging the persistent
memory manager with a lightweight checkpointing
method, ByteGAP supports massive data compu-
tation and fast recovery. Extensive experimental
results on several large real-world graphs show that
ByteGAP takes full advantage of persistent memory
and achieves competitive performance compared to
other out-of-core systems.

References
[1] G. Malewicz, M. H. Austern, A. J. C. Bik,

J. C. Dehnert, I. Horn, N. Leiser, G. Cza-
jkowski, Pregel: a system for large-scale graph
processing, in: SIGMOD, 2010, pp. 135–146.

[2] J. E. Gonzalez, R. S. Xin, A. Dave,
D. Crankshaw, M. J. Franklin, I. Stoica,
Graphx: Graph processing in a distributed
dataflow framework, in: OSDI, 2014, pp.
599–613.

[3] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang,
GRAPE: parallelizing sequential graph com-
putations, Proc. VLDB Endow. 10 (2017)
1889–1892.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al., Apache
hadoop yarn: Yet another resource negotiator,
in: Proceedings of the 4th annual Symposium
on Cloud Computing, 2013, pp. 1–16.

[5] Z. Rejiba, J. Chamanara, Custom schedul-
ing in kubernetes: A survey on common prob-
lems and solution approaches 55 (2022). URL:
https://doi.org/10.1145/3544788. doi:10.1145/
3544788.

[6] T. Gonzalez, S. Sahni, Preemptive scheduling
of uniform processor systems, Journal of the
ACM (JACM) 25 (1978) 92–101.

https://doi.org/10.1145/3544788
http://dx.doi.org/10.1145/3544788
http://dx.doi.org/10.1145/3544788

[7] A. Eisenman, K. K. Matam, S. Ingram,
D. Mudigere, R. Krishnamoorthi, K. Nair,
M. Smelyanskiy, M. Annavaram, Check-n-run:
a checkpointing system for training deep learn-
ing recommendation models, in: 19th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 22), 2022, pp. 929–943.

[8] T. D. Chandra, S. Toueg, Unreliable failure
detectors for reliable distributed systems, Jour-
nal of the ACM (JACM) 43 (1996) 225–267.

[9] L. Benson, L. Papke, T. Rabl, Perma-
bench: Benchmarking persistent mem-
ory access, Proc. VLDB Endow. 15
(2022) 2463–2476. URL: https://www.vldb.
org/pvldb/vol15/p2463-benson.pdf.

[10] S. Gugnani, A. Kashyap, X. Lu, Un-
derstanding the idiosyncrasies of real per-
sistent memory, Proc. VLDB Endow. 14
(2020) 626–639. URL: http://www.vldb.org/
pvldb/vol14/p626-gugnani.pdf. doi:10.14778/
3436905.3436921.

[11] X. Zhu, W. Chen, W. Zheng, X. Ma, Gemini:
A computation-centric distributed graph pro-
cessing system, in: OSDI, 2016, pp. 301–316.

[12] J. Shun, G. E. Blelloch, Ligra: a lightweight
graph processing framework for shared mem-
ory, in: A. Nicolau, X. Shen, S. P. Ama-
rasinghe, R. W. Vuduc (Eds.), ACM SIG-
PLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, Shen-
zhen, China, February 23-27, 2013, ACM,
2013, pp. 135–146. URL: https://doi.org/10.
1145/2442516.2442530. doi:10.1145/2442516.
2442530.

[13] C. Chen, J. Yang, M. Lu, T. Wang, Z. Zheng,
Y. Chen, W. Dai, B. He, W.-F. Wong, G. Wu,
Y. Zhao, A. Rudoff, Optimizing in-memory
database engine for ai-powered on-line decision
augmentation using persistent memory, Proc.
VLDB Endow. 14 (2021) 799–812. URL: https:
//doi.org/10.14778/3446095.3446102. doi:10.
14778/3446095.3446102.

[14] L. Benson, H. Makait, T. Rabl, Viper:
An efficient hybrid pmem-dram key-
value store, Proc. VLDB Endow. 14
(2021) 1544–1556. URL: http://www.
vldb.org/pvldb/vol14/p1544-benson.pdf.
doi:10.14778/3461535.3461543.

[15] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang,
J. Shu, Flatstore: An efficient log-structured
key-value storage engine for persistent memory,
in: J. R. Larus, L. Ceze, K. Strauss (Eds.), AS-
PLOS ’20: Architectural Support for Program-
ming Languages and Operating Systems, Lau-
sanne, Switzerland, March 16-20, 2020, ACM,

2020, pp. 1077–1091. URL: https://doi.org/10.
1145/3373376.3378515. doi:10.1145/3373376.
3378515.

[16] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, J. M. Hellerstein, Graphlab: A
new framework for parallel machine learning,
CoRR abs/1408.2041 (2014).

[17] A. Kyrola, G. E. Blelloch, C. Guestrin,
Graphchi: Large-scale graph computation on
just a PC, in: OSDI, 2012, pp. 31–46.

[18] Y. Shen, G. Chen, H. V. Jagadish, W. Lu,
B. C. Ooi, B. M. Tudor, Fast failure recovery
in distributed graph processing systems, Proc.
VLDB Endow. 8 (2014) 437–448.

[19] D. Yan, J. Cheng, H. Chen, C. Long, P. V. Ban-
galore, Lightweight fault tolerance in pregel-
like systems, in: ICPP, 2019, pp. 69:1–69:10.

[20] Torch distributed elastic, 2021. https:
//pytorch.org/docs/stable/distributed.elastic.
html.

[21] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson,
C. Guestrin, Powergraph: Distributed graph-
parallel computation on natural graphs, in:
OSDI, 2012, pp. 17–30.

[22] S. Salihoglu, J. Widom, GPS: a graph process-
ing system, in: SSDBM, 2013, pp. 22:1–22:12.

[23] J. Leskovec, A. Krevl, SNAP Datasets: Stan-
ford large network dataset collection, http:
//snap.stanford.edu/data, 2014.

[24] P. Boldi, S. Vigna, The WebGraph framework
I: Compression techniques, in: WWW, 2004,
pp. 595–601.

[25] D. Yan, Y. Huang, M. Liu, H. Chen, J. Cheng,
H. Wu, C. Zhang, Graphd: Distributed vertex-
centric graph processing beyond the memory
limit, IEEE Trans. Parallel Distributed Syst.
29 (2018) 99–114.

[26] A. Ching, S. Edunov, M. Kabiljo, D. Logo-
thetis, S. Muthukrishnan, One trillion edges:
Graph processing at facebook-scale, Proc.
VLDB Endow. 8 (2015) 1804–1815.

[27] D. Yan, J. Cheng, Y. Lu, W. Ng, Effective tech-
niques for message reduction and load balanc-
ing in distributed graph computation, CoRR
abs/1503.00626 (2015).

[28] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao,
L. Wei, H. Lin, Y. Dai, L. Zhou, Gram: scaling
graph computation to the trillions, in: SoCC,
2015, pp. 408–421.

[29] H. Fu, M. G. Venkata, S. Salman, N. Imam,
W. Yu, Shmemgraph: Efficient and balanced
graph processing using one-sided communica-
tion, in: 18th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing,
2018, pp. 513–522.

https://www.vldb.org/pvldb/vol15/p2463-benson.pdf
https://www.vldb.org/pvldb/vol15/p2463-benson.pdf
http://www.vldb.org/pvldb/vol14/p626-gugnani.pdf
http://www.vldb.org/pvldb/vol14/p626-gugnani.pdf
http://dx.doi.org/10.14778/3436905.3436921
http://dx.doi.org/10.14778/3436905.3436921
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2442516.2442530
http://dx.doi.org/10.1145/2442516.2442530
http://dx.doi.org/10.1145/2442516.2442530
https://doi.org/10.14778/3446095.3446102
https://doi.org/10.14778/3446095.3446102
http://dx.doi.org/10.14778/3446095.3446102
http://dx.doi.org/10.14778/3446095.3446102
http://www.vldb.org/pvldb/vol14/p1544-benson.pdf
http://www.vldb.org/pvldb/vol14/p1544-benson.pdf
http://dx.doi.org/10.14778/3461535.3461543
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
http://dx.doi.org/10.1145/3373376.3378515
http://dx.doi.org/10.1145/3373376.3378515
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data

	1 Introduction
	2 System Architecture
	3 System Design
	3.1 Computing Kernel
	3.2 Lightweight Distributed Checkpointing
	3.3 Dual-Mode Persistent Memory Management

	4 Experiments
	4.1 Experimental Setup
	4.2 Checkpointing Evaluation
	4.3 Scalability
	4.4 Comparison with Out-of-Core Systems

	5 Related Works
	6 Conclusions

