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Abstract
In abstract argumentation, arguments jointly attacking single arguments is a well-understood concept, captured by the
established notion of SETAFs—argumentation frameworks with collective attacks. In contrast, the idea of sets attacking other
sets of arguments has not received much attention so far. In this work, we contribute to the development of set-to-set defeat
in formal argumentation. To this end, we introduce so called hyper argumentation frameworks (HYPAFs), a new formalism
that extends SETAFs by allowing for set-to-set attacks. We investigate this notion by interpreting these novel attacks in terms
of universal, indeterministic, and collective defeat. We will see that universal defeat can be naturally captured by the already
existing SETAFs. While this is not the case for indeterministic defeat, we show a close connection to attack-incomplete
argumentation frameworks. To formalize our interpretation of collective defeat, we develop novel semantics yielding a natural
generalization of attacks between arguments to set-to-set attacks. We investigate fundamental properties and identify several
surprising obstacles; for instance, the well-known fundamental lemma is violated, and the grounded extension might not
exist. Finally, we investigate the computational complexity of the thereby arising problems.
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1. Introduction
Formal argumentation is a major research area in knowl-
edge representation and reasoning, with applications in
various fields in the realm of Artificial Intelligence. The
most popular formalism in the abstract setting are Ar-
gumentation Frameworks (AFs) due to Dung [1], where
arguments are modeled as the nodes of a directed graph
while the edges are interpreted as attacks. As oftentimes
the use of sets instead of singular attackers comes handy,
generalizations have been proposed—most notably, col-
lective attacks [2]. These frameworks (referred to as
SETAFs) have recently been in the focus of researchers,
see e.g., [3, 4]. SETAFs, however, are restricted in the
sense that a set of arguments can attack only a single
argument.

The natural counter-part, namely allowing attacks be-
tween sets of arguments, has not yet been widely stud-
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ied. However, some preliminary considerations were
performed, e.g. in [5] where defeat is modeled not based
on directed graphs but using rule-like statements; in [6]
with the aim of formalizing global conflicts; Nielsen and
Parsons [2] reduce these phenomena to SETAFs; and by
Gabbay and Gabbay [7] who investigate (among other no-
tions) cases where the attacking set applies conjunctively
and the attacked set is understood disjunctively.

In this work, we provide the first thorough analysis of
this setting. Naturally, the question arises of how to inter-
pret an attack from a set 𝐴 of arguments to another set 𝐵
of arguments? We investigate three natural notions that
capture different motivations: (i) universal defeat, i.e., ac-
cepting each 𝑎 ∈ 𝐴 defeats all 𝑏 ∈ 𝐵: we argue that this
amounts to merely a simplification of the representation
of SETAFs. (ii) indeterministic defeat, i.e., we model the
situation where it is unknown which subset of 𝐵 is at-
tacked by 𝐴. Hence, the main motivation for this concept
is to model incomplete information of an agent’s knowl-
edge base. Consequently, we show a close connection to
attack-incomplete frameworks [8, 9]. (iii) collective defeat,
i.e., we consistently generalize Dung’s notions of attack
and defense to be applicable to sets of arguments and
investigate the emerging properties. The study of collec-
tive defeat is motivated by corresponding phenomena in
structured argumentation [10, 11], where it is conceivable
that a set 𝐴 of arguments contradicts the conjunction of
the supports of a set 𝐵 of arguments, but not necessarily
the support of each 𝑏 ∈ 𝐵. This would result in the
attack (𝐴,𝐵), which is not natively featured in classical
(Dung-style) frameworks.
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Example 1. To illustrate the concept of collective defeat,
let us consider a situation in which three agents, Alice, Bob,
and Carol, plan a tandem-trip. At most two of them can
join the tandem, but not all of them at once. It could either
be that Alice rides tandem (a), Bob rides tandem (b), or
Carol rides tandem (c). However, we know that the bicycle
is a two-person tandem (t). Utilizing collective defeat, we
can depict the conflict between these statements as follows:

𝑡 𝑎 𝑏 𝑐

The set {𝑎, 𝑏, 𝑐} is collectively defeated by 𝑡. The intuition
is that none of the subsets of {𝑎, 𝑏, 𝑐} is affected by the
attack from 𝑡, but only the collection of the arguments is
attacked. We can safely accept each proper subset of the
set of all arguments {𝑎, 𝑏, 𝑐, 𝑡}; the ⊆-maximal acceptable
sets {𝑎, 𝑏, 𝑡}, {𝑎, 𝑐, 𝑡}, and {𝑏, 𝑐, 𝑡} model the outcome in
which exactly two of our agents enjoy their tandem-ride.

After briefly recalling the basic notions of SETAFs
and formally introducing our HYPAFs (Section 2) we
discuss the three defeat-modes, namely the simple case
of universal defeat (Section 3), indeterministic defeat
(Section 4), and collective defeat (Section 5). Finally, we
conclude in Section 7.

2. Argumentation and Set Attacks
In this section we briefly recall the definitions relevant
to SETAFs (argumentation frameworks with collective
attacks) and introduce our hyperframeworks (HYPAFs).

2.1. Collective Attacks (SETAFs)
Argumentation Frameworks with Collective Attacks
(SETAFs) were introduced by Nielsen and Parsons [2]
as a generalization of Dung’s AFs [1].

Definition 2 (SETAFs). A SETAF is a pair SF = (𝐴,𝑅)
where 𝐴 is a finite set of arguments, and 𝑅 ⊆ 2𝐴 ×𝐴 is
the attack relation1.

SETAFs SF = (𝐴,𝑅), where for all (𝑇, ℎ) ∈ 𝑅 it
holds that |𝑇 | = 1, amount to (standard Dung) AFs. We
usually write (𝑡, ℎ) to denote the set-attack ({𝑡}, ℎ).

An attack ({𝑎1, . . . , 𝑎𝑛}, 𝑏) is interpreted as follows:
if we accept all of 𝑎1, . . . , 𝑎𝑛 then 𝑏 is defeated. In order
to defend 𝑏 against this attack, it thus suffices to defeat one
of 𝑎1, . . . , 𝑎𝑛. Based on this intuition, the classical Dung-
semantics generalize as follows (for a recent overview,
see e.g. [3, 12]).

1While the original definition of SETAFs from Nielsen and Par-
sons [2] does not allow attacks of the form (∅, 𝑎), these attacks are
often included for convenience.

Definition 3. Let SF = (𝐴,𝑅) be a SETAF and 𝐸 ⊆
𝐴 a set of arguments. Then 𝐸 is conflict-free if for all
(𝑇, ℎ) ∈ 𝑅 it holds 𝑇 ⊆ 𝐸 ⇒ ℎ /∈ 𝐸. An argument
𝑎 ∈ 𝐴 is defended (in SF ) by a set 𝑆 ⊆ 𝐴 if for each
𝐵 ⊆ 𝐴, such that 𝐵 attacks 𝑎, also some 𝑆′ ⊆ 𝑆 attacks
some 𝑏 ∈ 𝐵. A set 𝑇 ⊆ 𝐴 is defended (in SF ) by 𝑆 if each
𝑎 ∈ 𝑇 is defended by 𝑆 (in SF ). Let 𝑆 be conflict-free in
SF , then:

• 𝑆 ∈ adm(SF ), if 𝑆 defends itself in SF ,
• 𝑆 ∈ com(SF ), if 𝑆 ∈ adm(SF ) and 𝑎 ∈ 𝑆 for

all 𝑎 ∈ 𝐴 defended by 𝑆,
• 𝑆 ∈ grd(SF ), if 𝑆 =

⋂︀
𝑇∈com(SF) 𝑇 ,

• 𝑆 ∈ pref(SF ), if 𝑆 ∈ adm(SF ) and ∄𝑇 ∈
adm(SF ) s.t. 𝑇 ⊃ 𝑆, and

• 𝑆 ∈ stb(SF ), if 𝑆 attacks 𝑎 for all 𝑎 ∈ 𝐴 ∖ 𝑆.

Example 4. Consider the SETAF SF 4 and its extensions.

𝑎

𝑏

𝑐

𝑑

SF 4:

adm(SF4)
com(SF4)
grd(SF4)
pref(SF4)
stb(SF4)

={∅, {𝑎, 𝑏}, {𝑐}, {𝑐, 𝑑}}
={∅, {𝑎, 𝑏}, {𝑐, 𝑑}}
={∅}
={{𝑎, 𝑏}, {𝑐, 𝑑}}
={{𝑎, 𝑏}, {𝑐, 𝑑}}

2.2. Towards HYPAFs
We proceed by defining HYPAFs as the faithful general-
ization of SETAFs where we allow sets of arguments in
the second position of the attack relation.

Definition 5 (HYPAFs). A HYPAF is a pair HF = (𝐴,𝑅)
where𝐴 is a finite set of arguments, and𝑅 ⊆ 2𝐴×(2𝐴∖∅)
is the attack relation.

For an illustration see Example 6. HYPAFs (𝐴,𝑅),
where for all (𝑇,𝐻) ∈ 𝑅 it holds that |𝐻| = 1, amount
to SETAFs. Note that we allow for the empty set in the
first position of an attack (i.e., (∅, 𝐻)), as to be in line
with our notion of SETAFs. The empty set in the second
position of an attack however (i.e., (𝑇, ∅)) we exclude.
This is due to the fact that an attack towards an empty set
of arguments is nonsensical and has no corresponding
counter-part in any argumentation scenario.

Example 6. Let the set {𝑎, 𝑏} attack the set {𝑐, 𝑑} and
{𝑐} attack {𝑎, 𝑏}, which we will illustrate as follows.

𝑎

𝑏

𝑐

𝑑

HF 6:

Since there are different ways to interpret attacks in a HY-
PAFs, we will introduce different viewpoints on the matter
in the next sections and illustrate their usefulness.
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3. Universal Defeat
Intuition. In this section we interpret an attack 𝑇 to 𝐻
in the way that 𝑇 defeats each element in 𝐻 individually.
In accordance with [5] we will call this notion universal
defeat. Given a HYPAF HF = (𝐴,𝑅) and an attack
(𝑇,𝐻) ∈ 𝑅, this interpretation of a hyper-attack would
be captured if the following implication holds:

If all arguments in 𝑇 are accepted, then
each ℎ ∈ 𝐻 is defeated.

However, as already observed by Nielsen and Par-
sons [2]2, this is mere syntactic sugar compared to usual
SETAFs: Since a collective attack (𝑇, ℎ) from 𝑇 to a sin-
gle argument ℎ encodes that ℎ is defeated whenever all
arguments in 𝑇 are accepted, the above requirement can
be captured by introducing the set

{(𝑇, ℎ) | (𝑇,𝐻) ∈ 𝑅, ℎ ∈ 𝐻}

of collective attacks. In the following definition we for-
malize this reduction of [2] in our terminology.

Definition 7. Let HF =(𝐴,𝑅) be a HYPAF and 𝑆⊆𝐴
a set of arguments. Then we say that 𝑆 is a 𝜎-extension of
HF iff𝑆 is a𝜎-extension of the SETAFSF = (𝐴, {(𝑇, ℎ) |
(𝑇,𝐻) ∈ 𝑅, ℎ ∈ 𝐻}).

Example 6 (ctd). Revisiting HF 6, when we interpret the
attacks in the mode of universal defeat, the hyperframe-
work HF 6 is equivalent to the SETAF SF 4 from Example 4.

4. Indeterministic Defeat
Intuition. This section aims at formalizing the intu-
ition that for an attack (𝑇,𝐻) ∈ 𝑅 it is not clear (i.e.
“non-deterministic”) which of the arguments in 𝐻 are
actually attacked by 𝑇 . That is, sets attacking sets are in-
terpreted as a form of incomplete information. Formally,
if we accept 𝑇 , then for each 𝐻 ′ ⊆ 𝐻 there shall be a
possible world where 𝐻 ′ is the precise set of arguments
which is defeated due to this attack.

Indeterministic attack has been discussed by Nielsen
and Parsons [2]. Here the underlying idea is as follows.
If (𝑇,𝐻) is an attack, then the set 𝑇 ∪𝐻 is certainly not
conflict-free. Since it is not clear how to draw more infor-
mation when interpreting (𝑇,𝐻) as an indeterministic
attack towards 𝐻 , [2] refrain from encoding more than
the definite conflicts we can be sure of. Thus they propose
the following3: an attack ({𝑡1, . . . , 𝑡𝑛}, {ℎ1, . . . , ℎ𝑚})
is mapped to the collective attacks

({𝑡1, . . . , 𝑡𝑛, ℎ1, . . . , ℎ𝑖−1, ℎ𝑖+1, . . . , ℎ𝑚}, ℎ𝑖)

2Note that in [2] this mode is called “collective defeat”.
3While [2] only explicitly mentions the attack
({𝑡1, . . . , 𝑡𝑛, ℎ2, . . . , ℎ𝑚}, ℎ1), we assume the whole construc-
tion includes the symmetric cases towards each ℎ𝑖 .

for each 1 ≤ 𝑖 ≤ 𝑚. Let us illustrate this approach.

Example 8. In the construction from [2], the HYPAF HF8

corresponds to the SETAF SF8.

𝑡1

𝑡2

ℎ1

ℎ2

ℎ3

HF8:
𝑡1

𝑡2

ℎ1

ℎ2

ℎ3

SF8:

While we indeed note that (I) {𝑡1, 𝑡2}∪{ℎ1, ℎ2, ℎ3} is now
conflicting, we want to point out some issues regarding this
reduction, violating the intuition of indeterministic attacks.

(II) In order to accept any argument ℎ𝑖, either an ar-
gument 𝑡𝑗 or ℎ𝑘 with 𝑘 ̸= 𝑖 has to be defeated. Thus
whether or not ℎ𝑖 is defended depends on the other ℎ𝑘 , but
their connection is an in-coming set-attack, not an internal
conflict.

(III) Any admissible set that contains 𝑡1 and 𝑡2 and at
least one ℎ𝑖 argument has to contain exactly 2 arguments
ℎ𝑖, ℎ𝑗 . However, why should adding ℎ2 to {𝑡1, 𝑡2, ℎ1} ren-
der the set admissible, although the only attack involving
ℎ2 is an in-coming one?

(IV) The arguments 𝑡𝑖 are necessarily involved in attacks
towards each ℎ𝑖, although by our interpretation of inde-
terminism there should be a possible scenario where the
arguments 𝑡𝑖 are not part of any attack towards a single
argument ℎ𝑖.

From this illustrating example, we can extract the fol-
lowing desired properties for indeterministic HYPAFs
corresponding to the observations (I)-(IV) from Exam-
ple 8.

Property I Whenever we have an attack (𝑇,𝐻) and a
jointly acceptable set of arguments 𝑆, we have
𝑇 ⊆ 𝑆 ⇒ 𝐻 ⊈ 𝑆.

Property II Given an attack (𝑇,𝐻) and two arguments
ℎ1, ℎ2 ∈ 𝐻,ℎ1 ̸= ℎ2, whether ℎ1 is defended
against the attack (𝑇,𝐻) does not depend on
whether ℎ2 is accepted or not.

Property III For an attack (𝑇,𝐻) for each 𝐻 ′ s.t. ∅ ⊆
𝐻 ′ ⊊ 𝐻 we model a situation where (𝑇,𝐻) does
not cause a conflict in 𝑇 ∪𝐻 ′.

Property IV An attack (𝑇,𝐻) should not be inter-
preted as an attack where for two ℎ1, ℎ2 ∈ 𝐻
the argument ℎ1 is part of an attack towards ℎ2.

In the following section, we will introduce a different
notion of indeterministic defeat that indeed satisfies all
desired properties (I)-(IV).
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4.1. Indeterministic HYPAFs
The underlying idea for our approach is to interpret the
set-attacks of the form (𝑇,𝐻) ∈ 𝑅 as a blueprint to
construct several SETAFs which represent possible worlds.
Given a SETAF, we can rely on the rich body of research
on this matter in order to assess acceptance of arguments.
The following example shall illustrate our proposal.

Example 9. Let us revisit Example 6. We can interpret
this as: either {𝑎, 𝑏} defeats only 𝑐, {𝑎, 𝑏} defeats only 𝑑,
or {𝑎, 𝑏} defeats both 𝑐 and 𝑑. We do not know which is
actually true, but we want to consider each possible scenario.
Likewise, {𝑐} could defeat 𝑎, 𝑏, or both 𝑎 and 𝑏. Each
combination of these scenarios corresponds to a SETAF as
illustrated below.

𝑎

𝑏

𝑐

𝑑

SF 9𝑎

𝑎

𝑏

𝑐

𝑑

SF 9𝑏

𝑎

𝑏

𝑐

𝑑

SF 9𝑐

𝑎

𝑏

𝑐

𝑑

SF 9𝑑

𝑎

𝑏

𝑐

𝑑

SF 9𝑒

𝑎

𝑏

𝑐

𝑑

SF 9𝑓

𝑎

𝑏

𝑐

𝑑

SF 9𝑔

𝑎

𝑏

𝑐

𝑑

SF 9ℎ

𝑎

𝑏

𝑐

𝑑

SF 9𝑖

In order to define semantics for indeterministic de-
feat we first introduce interpretations of HYPAFs in
order the capture the possible worlds. Note that our
HYPAFs with indeterministic defeat semantically coin-
cide with conjunctive-disjunctive argumentation net-
works [7]. Our approach extends this notion by defining
all standard (Dung-style) extension-based semantics, and
that our approach is syntactically close to the established
SETAFs.

Definition 10. Let HF = (𝐴,𝑅) be a HYPAF. For each
attack (𝑇,𝐻) ∈ 𝑅 we choose a set of interpreted collec-
tive attacks 𝑅𝐼

(𝑇,𝐻) s.t.

∅ ⊂ 𝑅𝐼
(𝑇,𝐻) ⊆ {(𝑇, ℎ) | ℎ ∈ 𝐻}.

An interpretation of HF is any SETAF SF 𝐼 =(𝐴,𝑅𝐼) s.t.

𝑅𝐼 =
⋃︁

(𝑇,𝐻)∈𝑅

𝑅𝐼
(𝑇,𝐻).

Example 9 (ctd). The SETAFs SF 9𝑎 to SF 9𝑖 depicted
above correspond to the interpretations of HF 6 from Ex-
ample 6. Each of these SETAFs realizes a possible world
underlying the HYPAF HF 6 in question.

For example, to construct SF 9ℎ we let

𝑅𝐼
({𝑎,𝑏},{𝑐,𝑑}) = {({𝑎, 𝑏}, 𝑐), ({𝑎, 𝑏}, 𝑑)}

𝑅𝐼
({𝑐},{𝑎,𝑏}) = {(𝑐, 𝑏)}

Next, we turn to the semantics of HYPAFs when inter-
preting attacks indeterministically. We define argument
acceptance in hyper-argumentation frameworks with
the following intuition: a set of arguments is possibly ac-
cepted (w.r.t. semantics 𝜎) if it is accepted in at least one of
the “instantiated” SETAFs. This leads us to the following
definition of extensions in indeterministic HYPAFs.

Definition 11. Let HF = (𝐴,𝑅) be a HYPAF. A set
𝐸 ⊆ 𝐴 is a (possible) 𝜎-extension of HF iff 𝐸 is an 𝜎-
extension for some interpretation of HF .

We omit “possible” and simply speak of extensions if
there is no risk of confusion.

Example 9 (ctd). In Example 9 we have that {𝑎, 𝑏} is a
stable extension; this is witnessed by the SETAF SF 9ℎ.

We will now illustrate the adequacy of this defini-
tion by showing that our indeterministic HYPAFs in-
deed satisfy the desired properties (I)-(IV). Again, let
HF = (𝐴,𝑅) be a HYPAF with (𝑇,𝐻) ∈ 𝑅.

1. This is satisfied by the definition of conflict-
freeness.

2. As desired, the attack (𝑇,𝐻) never maps to any
scenario where two arguments ℎ𝑖, ℎ𝑗 ∈ 𝐻 ap-
pear in the same collective attack (nor is ℎ𝑖 rele-
vant for the defense of ℎ𝑗 ).

3. In the interpretation where 𝑇 defeats 𝐻 ′ ⊆ 𝐻 ,
the attack causes no conflict in 𝑇 ∪ (𝐻 ∖𝐻 ′).

4. In the interpretation where 𝑇 defeats 𝐻 ′ ⊆ 𝐻 ,
there is no (partial) conflict between 𝑇 and 𝐻 ∖
𝐻 ′.

It is clear however that our properties (I)-(IV) can only
serve to cover a small subset of conceivable desiderata.
Hence, to better put our proposal in context and demon-
strate how it can be naturally captured by concepts from
the literature, in the following section we characterize
indeterministic HYPAFs by showing a semantic relation
to attack-incomplete frameworks with correlations.

4.2. Relation to Attack-Incomplete
SETAFs

As due to their similar construction, our indeterministic
interpretation of HYPAFs is close to attack-incomplete
frameworks (iAFs) [8]. In iAFs a subset of the attack
relation is uncertain, i.e., the reasoning agent is not
sure whether this attack exists or not. For their seman-
tics each possible scenario of taking or omitting an un-
certain attack is considered. In our setting, an attack
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(𝑇, {ℎ1, . . . , ℎ𝑛}) can be seen as the set of uncertain
attacks {(𝑇, ℎ1), . . . , (𝑇, ℎ𝑛)}. However, indetermin-
istic HYPAFs face an additional constraint, namely we
require at least one of these attacks to be present in each
scenario. [13] generalized iAFs by the addition of corre-
lations. OR-Correlations pose the additional constraint
that of a set 𝑅′ ⊆ 𝑅, at least one attack of 𝑅′ is present,
albeit unknown which one. The semantics are defined in
terms of completions, which correspond to our interpre-
tations. We can straightforwardly generalize iAFs with
OR-correlations to feature set attacks.

Definition 12. A iSETAF with correlations is a tuple
𝑖SF = (𝐴,𝑅,𝑅?,∆), where 𝐴 is a finite set of argu-
ments, 𝑅,𝑅? ⊆ 2𝐴 × 𝐴 are sets of certain/uncertain
attacks, and ∆ ⊆ 2𝑅

?

∖ ∅ is a set of OR-correlations.
A valid completion of 𝑖SF is a SETAF SF = (𝐴,𝑅′),
where 𝑅 ⊆ 𝑅′ ⊆ 𝑅? such that for each 𝐷 ∈ ∆ it holds
𝑅′ ∩ 𝐷 ̸= ∅. A set 𝑆 ⊆ 𝐴 is a possible 𝜎-extension of
𝑖SF if for at least one completion of 𝑖SF the set 𝑆 is a
𝜎-extension.

The following equivalence follows directly from the
respective definitions (cf. Definition 10, 12).

Theorem 13. Let HF = (𝐴,𝑅) be a HYPAF. 𝑆 ⊆ 𝐴 is
a 𝜎-extension of HF iff 𝑆 is a possible 𝜎-extension of the
iSETAF 𝑖SF = (𝐴, ∅, 𝑅?,∆) with

𝑅? = {(𝑇, ℎ) | (𝑇,𝐻) ∈ 𝑅, ℎ ∈ 𝐻},
∆ = {{(𝑇, ℎ) | ℎ ∈ 𝐻} | (𝑇,𝐻) ∈ 𝑅}.

Proof. The statement follows from Definition 10 and Def-
inition 12: there is a 1-to-1 correspondence between the
interpretations of HF and the valid completions of 𝑖SF .
An indeterministic attack

({𝑎1, . . . , 𝑎𝑚}, {𝑏1, . . . , 𝑏𝑛})

corresponds to the attacks

({𝑎1, . . . , 𝑎𝑚}, 𝑏1), . . . , ({𝑎1, . . . , 𝑎𝑚}, 𝑏𝑛),

together with a corresponding OR-correlation that in-
cludes all of these attacks.

Even though the iSETAFs we construct in Theorem 13
have no certain attacks, they are still effectively present
as an attack (𝑇, ℎ)∈𝑅? where {(𝑇, ℎ)}∈∆ is semanti-
cally equivalent to (𝑇, ℎ)∈𝑅. This is not surprising, as
these attacks correspond to (𝑇,𝐻) with |𝐻| = 1 in the
original HYPAF.

For the reverse direction, i.e., mapping iSETAFs as
HYPAFs, we have to pose a restriction on the iSETAFs,
namely that all uncertain attacks appear in at least one

OR-constraint, and all attacks that appear in an OR-
constraint together have the same tail, i.e., the following
properties hold: ⋃︁

𝐷∈Δ

𝐷 = 𝑅? (1)

{(𝑇1, ℎ1), . . . , (𝑇𝑛, ℎ𝑛)} ∈ ∆ ⇒ 𝑇1 = · · · = 𝑇𝑛 (2)

Clearly, the construction in Theorem 13 maps precisely
to those iSETAFs that satisfy both (1) and (2). Conversely,
we show next that every iSETAF adhering to (1) and (2)
can be seen as an equivalent HYPAF, i.e., the mapping is
bijective.

Theorem 14. Let 𝑖SF = (𝐴, ∅, 𝑅?,∆) be a iSETAF
adhering to (1), (2). A set 𝑆 ⊆ 𝐴 is a possible 𝜎-extension
of 𝑖SF iff 𝑆 is a 𝜎-extension of the HYPAF HF given as
the tuple

(𝐴, {(𝑇, {ℎ1, . . . , ℎ𝑛}) |{(𝑇, ℎ1), . . . , (𝑇, ℎ𝑛)}∈∆}).

Proof. As in Theorem 13, there is a 1-to-1 correspon-
dence between the interpretations of HF and the valid
completions of 𝑖SF that satisfies properties (1), (2). An
OR-correlation

{({𝑎1, . . . , 𝑎𝑚}, 𝑏1), . . . , ({𝑎1, . . . , 𝑎𝑚}, 𝑏𝑛)}

corresponds to the indeterministic attack

({𝑎1, . . . , 𝑎𝑚}, {𝑏1, . . . , 𝑏𝑛}).

Example 6 (ctd). Let us revisit HF 6 (left). The corre-
sponding iSETAF with OR-correlations is depicted below
(right). Note that its valid completions coincide with the
interpretations of our HYPAF (see Example 9).

𝑎

𝑏

𝑐

𝑑

HF6

𝑎

𝑏

𝑐

𝑑

with Δ :

({𝑎, 𝑏}, 𝑐)
OR

({𝑎, 𝑏}, 𝑑)

(𝑐, 𝑎)
OR
(𝑐, 𝑏)

𝑖SFHF6

Theorems 13 and 14 provide an exact characteriza-
tion of the relation between indeterministic HYPAFs and
iSETAFs with OR-correlations.

5. Collective Defeat
Intuition. In this section, we interpret a set-attack
(𝑇,𝐻) as a collective attack in the sense that whenever
𝑇 is acceptable, then the set 𝐻 of arguments (and thus,
each superset of 𝐻) is not. As demonstrated in our intro-
ductory Tandem Example 15, we want to formalize the
situation in which the set of arguments 𝐻 is attacked as

26



Yannis Dimopoulos et al. CEUR Workshop Proceedings 22–31

a whole but the attack does not affect any proper sub-
set of 𝐻 . We will see that with this new notion, the
preferred extensions of the HYPAF in Example 1 are
{𝑡, 𝑎, 𝑏}, {𝑡, 𝑎, 𝑐}, {𝑡, 𝑏, 𝑐} and thereby correspond to the
intuitive outcome. We emphasize that we do not aim to
reduce this attack to any conceivable notion of an attack
towards (some of) the individual arguments in 𝐻 .

Example 15. Let us consider the following HYPAF HF 15.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

HF 15:

i) Our first observation here is that the attack
({𝑎, 𝑏}, {𝑐, 𝑑, 𝑒}) should be redundant as it states
that 𝑐, 𝑑, 𝑒 cannot be collectively accepted since {𝑎, 𝑏} are
(they are unattacked). However, the attack ({𝑎, 𝑏}, {𝑐, 𝑑})
states already that 𝑐, 𝑑 cannot be collectively accepted,
which is a strictly stronger condition. ii) Secondly, both
{𝑎, 𝑏, 𝑐} and {𝑎, 𝑏, 𝑑} should be acceptable because the
attack ({𝑎, 𝑏}, {𝑐, 𝑑}) only forbids collective acceptance
of 𝑐 and 𝑑. iii) Moreover, 𝑔 should be acceptable w.r.t.
{𝑎, 𝑏} because in order to defeat 𝑔, {𝑐, 𝑑} are required
which in turn should be interpreted defeated. iv) Finally,
defending 𝑓 is harder than defending 𝑔 since defeating
{𝑐, 𝑑} collectively is easier than defeating 𝑐 specifically.

5.1. Semantics of Collective Defeat
Let us now define the standard concept required to gen-
eralize the usual AF semantics to capture the interaction
of sets of arguments.

Definition 16. Let HF = (𝐴,𝑅) be a HYPAF and let
𝑆, 𝑇 ⊆ 𝐴. We say that

• 𝑆 attacks 𝑇 iff there are 𝑆′ ⊆ 𝑆 and 𝑇 ′ ⊆ 𝑇 such
that (𝑆′, 𝑇 ′) ∈ 𝑅; we call 𝑆 an attacker of 𝑇 ;

• 𝑆 is conflict-free, 𝑆 ∈ cf(HF ), iff it does not attack
itself;

• 𝑆 defends 𝑇 iff 𝑆 attacks all attacker of 𝑇 , i.e. for
all (𝑈, 𝑇 ′) ∈ 𝑅 with 𝑇 ′ ⊆ 𝑇 , there are 𝑆′ ⊆ 𝑆
and 𝑈 ′ ⊆ 𝑈 such that (𝑆′, 𝑈 ′) ∈ 𝑅.

We abuse notation and write 𝑆 defends 𝑎 whenever
we mean that 𝑆 defends {𝑎}.

Example 15 (ctd). Recall HF 15. We have that both
𝑆1 = {𝑎, 𝑏, 𝑐} and 𝑆2 = {𝑎, 𝑏, 𝑑} are conflict-free since
{𝑎, 𝑏} only attacks {𝑐, 𝑑}, but none of them individually.
Moreover, {𝑎, 𝑏} defends 𝑔, but it does not defend 𝑓 . We
also want to mention that the conflict-free and defended
sets inHF 15 do not alter after removing ({𝑎, 𝑏}, {𝑐, 𝑑, 𝑒}),
i.e. the attack is indeed redundant.

We observe that if a set 𝑇 is defended by some set 𝑆,
then all individual arguments of 𝑇 are defended as well.

Lemma 17. Let (𝐴,𝑅) be a HYPAF and let 𝑆, 𝑇 ⊆ 𝐴. If
𝑆 defends 𝑇 then 𝑆 defends {𝑎} for each 𝑎 ∈ 𝑇 .

Proof. The statement follows from the observation that
each subset of a defended set is defended. Let 𝑆 ⊆ 𝐴
defend 𝑇 , let 𝑇 ′ ⊆ 𝑇 , and consider some attacker 𝐻
of 𝑇 ′. By definition of attacks, 𝐻 attacks 𝑇 as well. By
assumption, 𝑆 attacks 𝐻 and therefore also defends 𝑇 ′

against 𝐻 . Since 𝐻 was an arbitrary attacker, the claim
follows.

Using these underlying notions, the definitions of the
semantics naturally generalize to hyperframeworks.

Definition 18. Let HF = (𝐴,𝑅) be a HYPAF and let
𝑆 ∈ cf(HF ). Then

• 𝑆 is admissible, 𝑆 ∈ adm(𝐻), iff 𝑆 defends itself;
• 𝑆 is complete, 𝑆 ∈ com(𝐻), iff 𝑆 ∈ adm(HF )

and 𝑆 contains every set 𝑇 ⊆ 𝐴 it defends;
• 𝑆 is grounded, 𝑆 ∈ grd(HF ), iff 𝑆 is ⊆-minimal

in com(𝐻);
• 𝑆 is preferred, 𝑆 ∈ pref(HF ), iff 𝑆 is ⊆-maximal

in adm(𝐻);
• 𝑆 is stable, 𝑆 ∈ stb(HF ), iff 𝑆 attacks each 𝑇 ⊆
𝐴 ∖ 𝑆.

Example 15 (ctd). Consider again HF 15. We have that
𝑆 = {𝑎, 𝑏, 𝑔} is admissible ({𝑎, 𝑏} defends 𝑔). It is not
maximal though since 𝑆′ = {𝑎, 𝑏, 𝑐, 𝑔, 𝑒} ∈ adm(HF )
as well. The latter is preferred. Note that 𝑓 is not in any
admissible set since defending 𝑓 would require defeating 𝑐;
no set of arguments is capable though.

Interestingly, we can simplify our definitions for com-
plete and stable semantics.

Lemma 19. Let HF = (𝐴,𝑅) be a HYPAF. Then

• 𝑆 ∈ stb(𝐻) iff 𝑆 ∈ cf(HF ) and 𝑆 attacks each
set {𝑥} for all 𝑥 ∈ 𝐴 ∖ 𝑆;

• 𝑆 ∈ com(𝐻) iff 𝑆 ∈ adm(HF ) and 𝑆 contains
each argument it defends.

Proof. A stable set𝑆 attacks each singleton not contained
in 𝑆 by definition. In case each singleton is attacked, then
each superset is attacked as well.

First assume 𝑆 is complete. Then it is admissible and
contains each set 𝑇 it defends. Hence it contains each
singleton it defends. Now assume 𝑆 is admissible and
contains each defended argument. Let 𝑇 be defended by
𝑆. By Lemma 17, each argument 𝑎 ∈ 𝑇 is defended by
𝑆 as well. Hence 𝑇 ⊆ 𝑆, as desired.
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Having defined our HYPAF semantics formally, we
are now interested in their properties. Thereby, we pay
special attention to the behavior of Dung’s semantics in
AFs, because they are well-behaved w.r.t. several aspects.
We mention here the most common ones.

While stable extensions do not necessarily exist, we
expect each HYPAF to possess admissible, complete,
grounded, and preferred extensions. Moreover, the
grounded extension should be unique since it intuitively
formalizes the set of arguments one is willing to ac-
cept, even if the reasoning is cautious. The most im-
portant technical tool in order to ensure these properties
is Dung’s fundamental lemma [1].

Lemma 20 (Fundamental Lemma). Let 𝐹 = (𝐴,𝑅) be
an AF, 𝑆 ∈ adm(𝐹 ) and 𝑇, 𝑇 ′ ⊆ 𝐴 be sets of arguments
that are defended by 𝑆. Then

1. 𝑆′ = 𝑆 ∪ 𝑇 is admissible, and
2. 𝑇 ′ is defended by 𝑆′.

Moreover, we typically expect preferred extensions (i.e.
maximal admissible sets) to be complete. In summary, we
get the following properties which are typically desirable
for any generalization of Dung’s setting.

1. (Some version of) the fundamental lemma holds.
2. There is always at least one admissible, complete,

grounded, and preferred extension.
3. Every preferred extension is complete, and every

stable extension is preferred.

Let us first discuss the positive news:

Observation 21. Let HF be a HYPAF. Then

1. admissible and preferred extensions always exist;
and

2. each stable extension is preferred.

Both follows directly from the definitions: indeed, the
empty set as well as each stable extension defends itself,
moreover, each stable extension is ⊆-maximal admissible.

However, the following simple example already illus-
trates that the semantics we defined so far violate all of
the remaining properties.

Example 22. Let us consider the following HYPAF HF 22

in which the set {𝑎, 𝑏} attacks the set {𝑐, 𝑑}.

𝑎

𝑏

𝑐

𝑑
HF 22:

In HF 22, both sets {𝑎, 𝑏, 𝑐} and {𝑎, 𝑏, 𝑑} are conflict-free.
Moreover, they are also admissible since they defend them-
selves (in fact, no subset of them is attacked). Moreover,
they are preferred as {𝑎, 𝑏, 𝑐, 𝑑} /∈ cf(HF 22).

What are the complete extensions of the HYPAF? Coming
from the well-behaving SETAFs, we would expect that the
two preferred sets {𝑎, 𝑏, 𝑐} and {𝑎, 𝑏, 𝑑} are complete as
well. However, it turns out that our HYPAF HF 22 has no
complete extension at all. Let us consider the set {𝑎, 𝑏, 𝑐}:
By definition, the set is admissible, moreover, the argu-
ment 𝑑 is unattacked, hence {𝑑} is defended by {𝑎, 𝑏, 𝑐}.
However, we cannot extend {𝑎, 𝑏, 𝑐} with {𝑑} since the
resulting set {𝑎, 𝑏, 𝑐, 𝑑} is not conflict-free anymore.

This shows not only that com(HF 22) = ∅, but also the
fact that the fundamental lemma is violated.

From com(HF 22) = ∅ we also deduce grd(HF 22) = ∅.

We therefore conclude that the natural generalization
of the semantics admits unexpected behavior. In sum-
mary, the previous example illustrates the following ob-
servation regarding our HYPAF semantics.

Observation 23. Let HF be a HYPAF. Then

1. the fundamental lemma is in general violated;
2. complete and grounded extensions do not always

exist;
3. not every preferred extension is complete.

5.2. HYPAF Properties
In this section, we discuss complete and grounded seman-
tics in more depth. For this, we define the characteristic
function for HYPAFs as it is defined for (SET)AFs: ΓHF

applied to some set 𝑆 of arguments returns all arguments
which are defended by 𝑆. Due to Lemma 17 this also cap-
tures our intuition of defending sets of arguments.

Definition 24. Let HF = (𝐴,𝑅) be a HYPAF and let
𝑆 ⊆ 𝐴. We define the characteristic function as

ΓHF (𝑆) = {𝑎 ∈ 𝐴 | 𝑆 defends {𝑎}}.

Example 22 (ctd). We revisit HF 22. Then ΓHF22(∅)=
ΓHF22({𝑎, 𝑏}) = {𝑎, 𝑏, 𝑐, 𝑑} as each singleton is
unattacked.

We mention that our characteristic function is mono-
tonic.

Lemma 25. Let HF = (𝐴,𝑅) be a HYPAF and let 𝑆 ⊆
𝑇 ⊆ 𝐴. Then ΓHF (𝑆) ⊆ ΓHF (𝑇 ).

5.2.1. Complete Semantics

As for AFs and SETAFs, complete semantics can be al-
ternatively defined via the characteristic function. By
definition, the complete extensions are the conflict-free
fixed points of ΓHF .

Lemma 26. Let HF = (𝐴,𝑅) be a HYPAF. Then 𝑆 ∈
com(HF ) iff 𝑆 ∈ cf(HF ) and 𝑆 = ΓHF (𝑆).
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However, in contrast to Dung AFs and SETAFs, the
characteristic function might have no conflict-free fixed
points, as Example 22 demonstrates: {𝑎, 𝑏, 𝑐, 𝑑} is the
only fixed point of ΓHF22 . We can attribute the non-
existence of complete extensions to set-attacks in the
following sense: If the head of each attack contains at
least two arguments, then complete extensions do not
exist.

Lemma 27. Let HF = (𝐴,𝑅) be a HYPAF, 𝑅 ̸= ∅. If
|𝐻| > 1 for all (𝑇,𝐻) ∈ 𝑅 then com(HF ) = ∅.

Proof. Let 𝑎 ∈ 𝐴. We show that the singleton {𝑎} is not
attacked by any set 𝑆 of arguments. Suppose 𝑆 attacks
𝑎. Then there is a subset 𝑇 ′ ⊆ {𝑎} s.t. (𝑆′, 𝑇 ′) ∈ 𝑅 for
some 𝑆′ ⊆ 𝑆. This contradicts our assumption |𝐻| > 1
for each (𝑇,𝐻) ∈ 𝑅.

This result formalizes that our notion of attacks be-
tween sets is not suitably tailored to assess the status
of a single argument, but focuses on sets of arguments
instead.

Even in the special (somewhat well-behaving) case
where we do have fixed points for the characteristic func-
tion (i.e., there are complete extensions), we are not guar-
anteed to have the usual relations between the semantics
that we know from Dung’s notions.

Example 28. Note that even in case com(HF ) ̸= ∅ holds,
it is still not ensured that pref(HF ) ⊆ com(HF ) holds, as
HF 28 illustrates: the set {𝑏, 𝑐} is preferred, but not com-
plete (because {𝑏, 𝑐} defends 𝑎, but {𝑎, 𝑏, 𝑐} is not conflict-
free). However, the empty set of arguments is complete in
HF 28.

𝑎

𝑏

𝑐 𝑓

𝑑

𝑒

HF 28:

5.2.2. Grounded Semantics

Now let us turn our attention towards the grounded ex-
tension. In AFs and SETAFs, the grounded extension is
the least fixed point of the characteristic function. As is
folklore in the argumentation community, the grounded
extension can be computed by applying the character-
istic function to the empty set until a fixed point is at-
tained, i.e. we have grd(𝐹 ) = {Γ∞

𝐹 (∅)} whenever 𝐹 is
a Dung-AF. An analogous result holds true in SETAFs.
Since a HYPAF might have no conflict-free fixed points
(cf. Example 22), this does not hold for our HYPAFs,
i.e, grd(HF ) = {Γ∞

HF (∅)} is not true anymore (in Ex-
ample 22, ΓHF22(∅) contains all arguments and is not
conflict-free).

We do however obtain the following positive result.
While on the one hand we cannot guarantee that Γ∞

HF (∅)
is conflict-free, we can on the other hand be certain that
it is the only candidate for the grounded extension.

Proposition 29. Let HF = (𝐴,𝑅) be a HYPAF and let
𝑆 ⊆ 𝐴. It holds that

1. grd(HF ) = {Γ∞
HF (∅)} iff Γ∞

HF (∅) ∈ cf(HF );
2. grd(HF ) = ∅ iff Γ∞

HF (∅) /∈ cf(HF ).

Proof. By monotonicity of the characteristic function, it
holds that Γ∞

HF (∅) is conflicting iff ΓHF has no conflict-
free fixed points. By definition of grounded semantics,
we obtain the desired results.

Hence, ΓHF behaves as expected in case it admits a
conflict-free fixed point. As an immediate corollary, we
obtain that the grounded extension is unique whenever
it exists.

Corollary 30. For any HYPAF HF , |grd(HF )| ≤ 1.

Since there are never two grounded extensions, we
sometimes abuse notation and write grd(HF ) to denote
the unique grounded extension of HF . Another corollary
of Proposition 29 is that grd(HF ) is a subset of each com-
plete extension; i.e. grd(HF ) is the least set in com(HF ).

Corollary 31. If com(HF ) ̸= ∅, then grd(HF ) is the
least complete set.

5.3. Undirected Conflicts
We want to point out that with our new notion of col-
lective attack it is possible to model undirected conflicts
natively within our framework.

Example 32. We consider again the Tandem Example 15
from the introduction, but this time, we use only the argu-
ments 𝑎, 𝑏, and 𝑐 to model the conflict. Again, we have a
conflict if we accept all of them but no conflict if we only
accept a subset. In SETAFs we would model this scenario
with symmetric attacks towards each argument (see SF 32).
However, we see that this does not capture the intuition, as
in this case for example a singleton set cannot be accepted.
Our collective defeat allows for the attack (∅, {𝑎, 𝑏, 𝑐}) (see
HF 32), which is an intuitive way to model the conflict and
gives the desired behavior.

𝑎

𝑏

𝑐SF 32: 𝑎 𝑏 𝑐HF 32:

The following result illustrates that if we omit the
direction of attacks of a HYPAF, we retain the admissible
sets.
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Proposition 33. Let HF = (𝐴,𝑅) be a HYPAF and
𝑆 ⊆ 𝐴 a set of arguments. If 𝑆 ∈ adm(HF ), then 𝑆 ∈
adm(HF ′) where HF ′ = (𝐴, {(∅, 𝑇 ∪ 𝐻) | (𝑇,𝐻) ∈
𝑅}).

Proof. First note that every conflict-free set in HF ′ is
admissible. Moreover, every conflict-free set in HF is
also conflict-free in HF ′, as an attack (∅, 𝑇 ∪𝐻) in could
only cause a conflict in a set 𝑆 if 𝑇 ∪𝐻 ⊆ 𝑆, which also
causes a conflict in HF .

Note however that a version of Proposition 33 where
instead of admissible sets we consider semantics that
maximize the extensions (like grd, com, pref, and stb)
does not necessarily hold, as Example 34 illustrates.

Example 34. Consider the following (HYP)AF
HF 34 and its counterpart with undirected conflicts
HF ′

34. While ∅ is the only extension of HF 34 we have
grd(HF ′

34)=com(HF ′
34)=pref(HF ′

34)={{𝑏}}.

𝑎 𝑏HF 34: 𝑎 𝑏HF ′
34:

Regarding stable semantics, if in HF 34 we omit the self-
attack of argument 𝑎, the set {𝑎} is stable, but in the cor-
responding undirected pendant there is no stable extension.

6. Computational Complexity
In this section, we briefly investigate the computational
complexity of decision problems regarding our different
notions of HYPAFs. We assume the reader to be familiar
with the required notions; see e.g. [14] for an introduction
to complexity analysis in the context of argumentation.

We focus on verifying extensions, however other com-
putational problems are closely related and in most cases
the complexity can be obtained as a corollary.

First we have that HYPAFs with universal defeat can
be directly reduced to SETAFs (and vice versa). Thus
the complexity coincides with the respective results of
SETAFs [15], and can be found in the first line of Ta-
ble 1. Second, for verifying extensions in HYPAFs with
indeterministic defeat we observe a higher complexity.
Intuitively, the raised complexity (as depicted in Table 1,
second line) is due to the fact that in addition to the
standard computational costs arising from the respec-
tive problems on SETAFs, a witnessing interpretation
SETAF has to be guessed as well. Formally, we obtain
the lower bounds by carefully inspecting the hardness
proofs for attack-incomplete AFs [9] (for pref) and their
more general form allowing OR-correlations [13] (for
com, grd). We obtain the corresponding upper bounds
by generalizing the algorithms of [13] from the Attack-
Incomplete AFs to the attack-incomplete SETAFs setting.

The idea is to iteratively remove conflicting attacks and
attacks that it is impossible to defend against. Finally,
for collective defeat we obtain the same computational
properties as for SETAFs. The lower bound for preferred
semantics carries over directly from the SETAF case, up-
per bounds can straightforwardly be obtained by the fact
that conflict-freeness, defense, and the closure function
can be computed in polynomial time.

Theorem 35. Let HF = (𝐴,𝑅) be a HYPAF and 𝑆 ⊆ 𝐴
a set of arguments. For the problem of verifying whether 𝑆
is a 𝜎-extension of HF w.r.t. universal/indeterministic/col-
lective defeat, the complexity results in Table 1 hold.

Table 1
Complexity of verifying an extension

grd adm com pref stb
universal defeat in P in P in P coNP-c in P

indetermministic
defeat

NP-c in P NP-c ΣP
2 -c in P

collective
defeat

in P in P in P coNP-c in P

7. Discussion
In this paper, we provided three different defeat-modes
for hyperattacks: universal, indeterministic, and collec-
tive. It turns out that universal defeat simply amounts to
SETAF semantics. Our indeterministic defeat on the other
hand generalizes attack-incomplete SETAFs, which in
turn conservatively generalize attack-incomplete AFs [9].
Finally, we introduced collective defeat, which naturally
generalizes Dung’s original semantics to consider sets of
arguments. However, we observe undesirable behavior of
the characteristic function, i.e., the known well-behaved
properties of Dung’s framework are not preserved. In fu-
ture work, we want to address these issues. HYPAFs with
collective defeat resemble the semantics of ABA+ [11].
Future work comprises of a deeper analysis of this con-
nection. Moreover, we want to investigate the expressive-
ness of indeterministic and collective defeat and relate
the obtained results to SETAFs [16] and ADFs [17]. We
also plan to investigate alternative semantics for inde-
terministic defeat that do not heavily rely on the notion
of interpretations. Finally, our undirected conflicts are
similar in spirit to ideas due to [18]. In the future we
want to explore this connection.
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