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Abstract
The Trustworthy-AI Medical Image Analysis group at the University of Brescia is a team dedicated to advancing the field of
medical image analysis through collaborative research activities. The group’s efforts are concentrated on the development
of innovative systems and solutions to address complex image interpretation challenges, specifically within two imaging
modalities: Brain MRI and Chest X-ray, and their corresponding anatomical districts.

The group’s research efforts are aimed at improving the accuracy, speed, and efficiency of image interpretation, with a
focus on ensuring the reliability and safety of AI-assisted medical decision-making processes. By leveraging advanced deep
learning techniques, the group aims to develop cutting-edge algorithms that can accurately and efficiently analyze medical
images, aiding in the detection, diagnosis, and treatment of various medical conditions.
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1. Introduction
The research on deep learning architectures and methods
represents the mainstream in the medical image analysis
domain, with countless academic contributions and an
increasingly relevant market sector in the field of digital
healthcare management.
In this report, we summarize some of the activities

of our research group in the fields of Brain MRI and
Chest X-rays, emphasizing the motivation of the adopted
approaches, themain results, and the collaborative nature
of the works.
All the described activities have in common the fact

that they involve some challenging aspects related to the
presence of unmet needs on both new and consolidated
diagnostic image interpretation tasks.
On Brain MRI volumes we fight the scanner effect

to obtain fast and robust multi-site brain segmentation
(Sec.2), presenting preliminary activities tackling some
open issues about cortical thickness estimation (Sec.3).
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On Chest X-rays (CXR) we present some activities
related to COVID-19 prognosis related to our partici-
pation in two initiatives: a Best Practice study case in
the Z-inspection® framework; and as winners of the ex-
plainability track of the AI4COVIDHackathon sponsored
by CINI Lab AIIS (Sec.4). Still on CXR, we present our
research on new perspectives about the possibility to
predict relevant risk factors related to common cardio-
vascular diseases (Sec.5).

2. Fighting the scanner effect in
brain MRI segmentation on
multi-site data

Many clinical and research studies of the human brain
require accurate structural MRI segmentation. While
traditional atlas-based methods can be applied to vol-
umes from any acquisition site, recent deep learning al-
gorithms ensure high accuracy only when tested on data
from the same sites exploited in training (i.e., internal
data). Performance degradation experienced on external
data (i.e., unseen volumes from unseen sites) is due to the
inter-site variability in intensity distributions induced by
different MR scanner models, acquisition parameters, and
unique artefacts. To mitigate this site-dependency, often
referred to as the scanner effect, we propose LOD-Brain , a
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3D convolutional neural network with progressive levels-
of-detail (LOD), able to segment brain data from any site
[1]. Coarser network levels are responsible for learning
a robust anatomical prior helpful in identifying brain
structures and their locations, while finer levels refine
the model to handle site-specific intensity distributions
and anatomical variations. We ensure robustness across
sites by training the model on an unprecedentedly rich
dataset aggregating data from open repositories: almost
27,000 T1w volumes from around 160 acquisition sites, at
1.5 - 3T, from a population spanning from 8 to 90 years
old. Extensive tests demonstrate that LOD-Brain produces
state-of-the-art results, with no significant difference in
performance between internal and external sites, and
robust to challenging anatomical variations. Its porta-
bility paves the way for large-scale applications across
different healthcare institutions, patient populations, and
imaging technology manufacturers.

2.1. Methods
We introduce LOD-Brain , a progressive level-of-detail net-
work for training a robust brain MRI segmentation model
from a huge variety of multi-site and multi-vendor data.
LOD-Brain architecture is organised on multiple levels of
detail (LOD), as shown in Fig. 1. Each level is a convo-
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Figure 1: LOD-Brain architecture selected for the experiments
on the brain MRI segmentation task. The lower level learns
a coarse and site-independent brain representation, while
the superior one incorporates the learnt spatial context, and
refines segmentation masks at finer scales.

lutional neural network (CNN) that processes 3D brain
data at a different scale obtained via progressively down-
sampling the input volume. Thanks to the rich variability
of brain samples coming from 70 datasets from different
MRI acquisition sites, the proposed architecture learns,
at lower levels, a robust brain anatomical prior. Con-
currently, higher levels handle site-specific intensity dis-
tributions and scanner artefacts. Through inter-level
connections between networks and a bottom-up train-
ing procedure, such architecture integrates contributions

from all levels to produce an accurate and fast segmenta-
tion.

2.2. Results
LOD-Brain shows outstanding generalisation capabilities,
as it performs better than other state-of-the-art solutions
on almost every novel site, with no need for retraining
nor fine-tuning, and with no relevant performance off-
set in segmenting either internal or external sites. Fur-
thermore, it proves to be general and robust across sites
against different population demographics, anatomical
challenges, clinical conditions, and technical specifica-
tions (e.g., field strength, manufacturer).

As an open-source tool, LOD-Brain can be used off-the-
shelf on unseen scans from novel sites. Segmentation
masks are returned very quickly (a few seconds on a
GPU) thanks to a reduced number of model parameters
(300𝐾), if compared to other state-of-the-art solutions.

A comparative assessment of our method against state-
of-the-art techniques (we use FreeSurfer[2] as silver GT
reference) is proposed here in terms of both brain seg-
mentation performance and model complexity. The con-
sidered benchmark methods are: QuickNat [3], SynthSeg
[4], 3D-UNet [5], CEREBRUM [6], FastSurferCNN [7].
Fig. 2 shows the obtained results on the whole testing
set grouped by segmented brain structure. Obtained re-
sults highlight LOD-Brain as one of the most competing
methods on all brain labels, as it yields the best scores in
almost all target structures and on the majority of exter-
nal datasets with good-quality ground truth labels. The
number of parameters for each model is also reported,
highlighting LOD-Brain as the best overall model in terms
of performance-to-complexity ratio. Many more details
about methods, results as well as code, model, and demo
are available on the project website. For example, it is
relevant to note the high performance achieved on the
ABCD dataset, despite it includes volumes from 32 di-
verse scanners, previously skull-stripped and aligned to
MNI152 reference space (a common procedure in this
domain).

3. A method for estimating
cortical thickness in Brain MRI

Studying brain anatomical deviations from normal pro-
gression along the lifespan is essential to understand
inter-individual variability and its relation to the onset
and progression of several clinical conditions [8]. Among
available quantitative measurements, mean cortical thick-
ness across the brain has been associated with normal
ageing and neurodegenerative conditions like mild cog-
nitive impairment, Alzheimer’s disease, frontotemporal

https://rocknroll87q.github.io/LOD-Brain/
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Figure 2: Performance comparison (results grouped by brain
structure): QuickNat [3], SynthSeg [4], 3D-UNet [5], CERE-
BRUM [6], FastSurferCNN [7], and our method. Results are
computed on the test set of 5, 956 volumes, using FreeSurfer[2]
as GT reference and grouped for brain structure. Number of
parameters for each model are reported.

dementia, Parkinson’s disease, amyotrophic lateral scle-
rosis, and vascular cognitive impairment. Automatic
techniques, such as FreeSurfer[2] and CAT12 Toolbox
[9] offer out-of-the-box cortical thickness estimates, but
with an excessively long computational time (up to 10
hours per volume). Moreover, comparison studies have
found systematic differences between these approaches
[10], with discrepancies particularly pronounced in clini-
cal data [11], questioning the reliability of these CT es-
timations. As more and more studies in medicine and
neuroscience analyse hundreds to thousands of brain
MRI scans, there is a growing need for automatic, fast,
and reliable tools for cortical thickness estimation.

3.1. Methods
We propose a method for estimating cortical thickness
fromMRI in just a few seconds [12]. The proposed frame-
work, shown in Figure 3, exploits our recent achieve-
ments in deep learning segmentation methods [6, 1] for
extracting grey and white matter segmentation masks
and the related probability maps from an MRI T1w vol-
ume. All these volumes are given as inputs to a Con-
volutional Neural Network trained to compute both the
external grey matter surface (or pial) and the related
thickness.

T1w

LOD-Brain
WM

distance
segmentation and
probability maps

set
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surface
level set

Mesh Creation
+ post-processing

DNN

Trilinear
interpolation

Cortical
thickness

Figure 3: Framework for cortical thickness and surface esti-
mation.
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(a) Visual results

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

FreeSurfer

LH entorhinal LH inferior parietal LH inferior temporal

LH lateral occipital LH lingual LH middle temporal

LH pericalcarine LH posterior cingulate LH precuneus

LH superior parietal LH superior temporal LH frontal pole

LH temporal pole RH entorhinal RH inferior parietal

DeepThickness

[mm] [mm] [mm]

Our DNN method

(b) Cortical thickness maps comparison

Figure 4: (a) - Visual results of FreeSurfer mesh and CT over-
lay, FreeSurfer mesh and our DNN method overlay, and our
DNNmethod mesh and overlay. (b) - Comparison of the distri-
butions of the cortical thickness values of 12 left hemisphere
regions for FreeSurfer (blue) and our DNN method (orange)
on one testing subject in mm. Dotted lines represent aver-
age values; higher symmetry in distributions denotes higher
region-wise cortical thickness similarity. Similar results are
obtained for the right hemisphere and other subjects.

The supervised model is trained, with volumes ob-
tained by FreeSurfer [2] as ground truth. The network
architecture resembles a 3D U-Net, with 4 levels of con-
volutional layers, and two output branches predicting the
pial surface and the cortical thickness. Training, valida-
tion, and testing volumes are obtained from the AOMIC
dataset, counting 1311, 100, and 500 volumes respectively.



3.2. Results
In Figure 4-(a), we show qualitative results highlighting
how our method performs with respect to FreeSurfer,
in both the mesh generation and the cortical thickness
estimation. In Figure 4-(b), we compare numerically the
cortical thickness estimation distributions obtained with
FreeSurfer and ourmethod on a testing subject. Our DNN
method [12] is the first DL-based approach for cortical
thickness estimation on structural MRI. The extraction
of cortical thickness distributions in just a few seconds
unlocks the ability to quickly draw population trajecto-
ries for thousands of healthy subjects’ data, creating an
atlas with different distributions for different brain areas.

4. Trustworthy AI for COVID-19
severity estimation and
prognosis

Although during the COVID-19 pandemic, the AI-based
interpretation of CXRs focused largely on COVID-19 di-
agnosis, few studies addressed other relevant tasks such
as severity estimation, deterioration, and prognosis also
trying to explain the models’ decisions. A recent inter-
national hackathon sponsored by CINI Lab AIIS during
the Dubai Expo 2020 sought to develop machine learning
(ML) models to predict COVID-19 prognosis and explain
their predictions in a clinically interpretable manner. The
hackathon dataset included CXRs and clinical features
collected during triage for a large number of subjects. To
calculate the prognostic value, a deep learning model esti-
mated the lung compromise degree from the CXRs, which
was considered alongside the clinical features. Then, we
trained and evaluated multiple models to identify the
best-performing, fine-tuning them before inference and
generating visual and numerical explanations to justify
their predictions. Our model achieved high accuracy,
ranking second in the final rankings with 75% and 73.9%
in sensitivity and specificity. In terms of explainability, it
was agreed to be the most interpretable by health profes-
sionals and was ranked first. Our study [13] highlights
the potential of ML models in helping physicians formu-
late trustworthy COVID-19 prognoses, contributing to
the efforts to improve the allocation of limited healthcare
resources.

4.1. Methods
The dataset included a blind test set and a training set
with more than 1100 subjects, characterized by 38 clinical
features and a CXR image. After imputing missing values
in the former and improving the quality of the latter, we
exploited BSNet [14] to predict the multi-regional lung
compromise index Brixia-score [15] for each training

subject from its CXR. A posthoc trustworthy assessment,
called Z-Inspection® [16], was applied to this network
and its deployment in the radiology department of the
ASST Spedali Civili clinic in Brescia, Italy during the pan-
demic time. The predicted Brixia-score and other parame-
ters were found as clinically significant by a model-based
feature extraction procedure and constituted the feature
set on which multiple models were trained on. Once
identified the best-performing on an internal validation
set, we employed it to predict the prognosis for the sub-
jects in the test set. Finally, we produced both visual and
numerical explanations to justify the model’s predictions
from both a global and a patient-specific perspective.

4.2. Results
The best-performing model was a Random Forest (RF).
The RF proved to be accurate on the test set and was
ranked second in the final rankings with 75% and 73.9%
in sensitivity and specificity, respectively. From a global
perspective, the most important features to our RF to
make its decisions were blood pressure, Brixia-score, and
LDH enzyme concentration. Conversely, from a patient-
specific perspective, we used SHapley Additive exPlana-
tions (SHAP [17]) values-based charts to justify the RF’s
predictions. Such charts, of which an example is depicted
in Fig. 5, show which clinical features pushed the RF to
predict a certain prognosis, how “strongly”, and which
ones pushed it to predict the opposite prognosis.

Figure 5: SHAP values-based chart showing patient-specific
features (in red) that drove the RF to predict a severe prognosis
against other features (in blue) that pushed it to predict a mild
prognosis. The final prediction was correctly severe .

Finally, the last patient-specific explanation, shown in
Fig. 6, was provided by the explainability map produced
by BSNet highlighting which regions of the lungs con-
tributed most to which local severity score.
All these explanations were agreed to be highly inter-
pretable by a panel of health professionals and radiolo-
gists. For this reason, our model was ranked first in the
final clinical explainability ranking.

5. AI to predict cardiovascular
risk factors from Chest X-rays

Coronary artery disease (CAD) is the single leading cause
of mortality, premature death, and morbidity worldwide.
Artificial intelligence (AI) could help identify markers
present within first-line diagnostic imaging routinely per-
formed in patients referred for suspected angina, such as



Figure 6: From left to right, a patient’s pre-processed CXR,
its predicted Brixia-score and the corresponding super-pixel-
based explainability map of the lungs. The higher a super-
pixel’s colour saturation, the greater that superpixel’s contri-
bution to the regional severity score associated with the same
colour.

CXRs. The objective of our work is to train, test, and clin-
ically validate deep learning (DL) algorithms for detect-
ing the presence of significant CAD based on CXRs [18].
The CXR modality is ubiquitous and carries a plethora
of information concerning the patient’s health status,
including direct and indirect signs of CAD. Our DL algo-
rithm can predict, with high sensitivity, the presence of
severe CAD in patients referred for suspected angina. It
could be used to pre-test significant CAD probability in
outpatient clinics, emergency room settings, and CAD
screening in more extensive settings. Further studies are
required to externally validate the algorithm and develop
a clinically applicable tool.

5.1. Methods
Data from patients undergoing chest radiography and
coronary angiography were retrospectively analysed.
A deep convolutional neural network (DCNN) was
designed to detect significant CAD from the patient
posteroanterior/anteroposterior chest radiograph. The
DCNN was trained for binary classification of severe
CAD absence/presence (at least one diseased coronary
vessel with ≥ 70% stenosis). Coronary angiography re-
ports were used as the ground truth. Sensitivity, speci-
ficity, and area under the receiver operating characteristic
curve (AUC) of the DCNN were calculated. Multivariate
analysis was performed to identify independent correla-
tion among the presence of significant CAD (dependent
variable), DCNN prediction, and CAD risk factors.

5.2. Results
Information of 7728 patients referred for suspected
anginawas reviewed. Severe CADwas present in 4482 pa-
tients (58%; 1% left main, 28% one vessel, 16% two vessels,
and 12% 3 vessels). Patients were randomly divided for
training (70%; n = 5454) and fine-tuning/testing (10%; n =
773) of the algorithm. Internal validation was performed
with the remaining patients (20%; n = 1501). The DCNN
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Patients were randomly divided for training (70%; n = 5454) and 
fine-tuning/testing (10%; n = 773) of the algorithm. Internal validation 
was performed with the remaining patients (20%; n = 1501). The DCNN 
had a processing time of about 20 s to analyse the whole internal vali-
dation set on a workstation with an Nvidia Titan E Graphics Processing 
Unit (GPU) with 12GB of memory. 

Clinical characteristics of patients who tested negative compared to 
those who tested positive for the DCNN-based chest radiography pre-
diction of severe CAD are reported in Table 2. Jhen using an operating 
cut-point with high sensitivity, the algorithm had a sensitivity of 0.90 
and specificity of 0.31 to detect significant CAD in the internal valida-
tion group (AUC 0.73; 95% CI DeLong, 0.69–0.76). The operating point 
leading to the maBimum sensitivity-specificity sum produced a sensi-
tivity of 0.71 CCI 0.66–0.77D and a specificity of 0.63 CCI 0.56–0.6D 
(Table 3). The positive predictive value (PPE) and negative predictive 
value (NPE), calculated using the cohort prevalence of severe CAD 
(53%), were 0.68 and 0.66 respectively. 

Angina status improved the prediction when adding to the AI-based 
chest radiograph interpretation (AUC 0.77; 95% CI DeLong, 0.74–0.80). 
Finally, the Diamond-Forrester prediction achieved an AUC of 0.70 
(95% AUC CI: 0.66–0.73), with the point of maBimum sensitivity- 
specificity sum having a sensitivity of 0.68 (CI 0.61–0.74) and speci-
ficity of 0.63 (CI 0.56–0.70) (Fig. 1). 

At binary logistic regression, the DCNN prediction was the strongest 
independent determinant of severe CAD (p < 0.001; OR: 1.040; CI: 
1.032–1.048) (Table 4). 

The DCNN could differentiate patients according to the presence and 
eBtension of severe CAD starting from the chest radiograph. Fig. 2 shows 
the comparison, within the validation group, of the scores attributed 
from the DCNN according to the distribution of CAD severity and its 
eBtension (normal coronaries, moderate noncritical CAD, severe single- 
vessel CAD, and severe multivessel CAD). 

5353 (eat maps 

Attention maps were created considering the DCNN with the highest 
performance. Heat map activations are primarily localized to the cardiac 
silhouette, left ventricular apeB, pulmonary bases, pulmonary paren-
chyma, costophrenic sinuses, pulmonary hila, thoracic aorta, supra- 
aortic vessels, and clavicle region (Fig. 3, panels A-F). 

4. Discussion 

Study findings can be summarized as follows: 1) Our DL-based so-
lution can predict, from a one proIection chest radiograph, the presence 
of severe CAD; 2) Results are confirmed with invasive coronary 

angiography and are internally validated on a large dataset covering 
years of clinical routine in a typical large hospital setting, where mul-
tiple vendor acAuisitions are made in both AP and PA proIections (good 
intrinsic generalizability); 3) At internal validation, the DCNN could 
differentiate severity and eBtension of CAD;4) Although the accuracy of 
the DCNN prediction is already superior to that achieved by accepted 
risk scores such as the Diamond-Forrester, adding the angina type to the 

Table 2 
Demographic/clinical information in patients who tested negative and positive 
on the DCNN-based chest radiography prediction of severe CAD (operating point 
leading to the maBimum sensitivity-specificity sum). Continuous variables re-
ported as mean and standard deviation.   

Algorithm tested 
negative 

Algorithm tested 
positive 

p2value 

Age 75 ± 13 74 ± 12 0.172 
BMI 25 ± 4 27 ± 4 <0.001 
Biological SeB (male) 37% 77% <0.001 
Severe CAD 29% 63% <0.001 
Absent Angina 43% 32% <0.001 
Atypical Angina 33% 31% <0.001 
Typical Angina 24% 37% <0.001 
Diamond Forrester 

score 
47.2 ± 29.4 61.3 ± 29.2 <0.001 

BMI = body mass indeB. 

Table 3 
DCNN performance for prediction of significant CAD on chest radiographs 
compared to Diamond-Forrester performance. For each setup the first row refers 
to the Sensitivity-Optimized Algorithm while the second row to the Specificity- 
Optimized Algorithm.   

Sensitivity Specificity 

Diamond Forrester 0.94 (CI 0.95 0.91–0.97) 0.22 (CI 0.95 0.16–0.28) 
0.68 (CI 0.95 0.62–0.75) 0.64 (CI 0.95 0.57–0.71) 

AI 0.90 (CI 0.95 0.86–0.94) 0.32 (CI 0.95 0.25–0.38) 
0.72 (CI 0.95 0.65–0.78) 0.63 (CI 0.95 0.56–0.70) 

AI + Diamond Forrester 0.90 (CI 0.95 0.86–0.94) 0.35 (CI 0.95 0.28–0.41) 
0.64 (CI 0.95 0.57–0.70) 0.76 (CI 0.95 0.70–0.82) 

AI + Angina Type 0.90 (CI 0.95 0.86–0.94) 0.36 (CI 0.95 0.30–0.44) 
0.67 (CI 0.95 0.60–0.73) 0.77 (CI 0.95 0.71–0.84) 

AI = artificial intelligence. 

Fig. 1. Receiver operating characteristic (ROC) curves for the binary classifi-
cation of the presence significant coronary artery disease (CAD) demonstrating 
area under the curve (AUCs) of 0.77 for AI + angina Type; 0.76 for AI + Dia-
mond Forrester; 0.73 for AI and 0.70 for Diamond Forrester. 

Table 4 
Predictors of CAD at logistic regression analysis.   

OR (CI 95%) p2value 

Age 1.013 (1.004-1.023) 0.006 
BMI 1.003 (0.977–1.029) 0.842 
Biological SeB (male) 1.022 (0.783–1.333) 0.873 
Diamond Forrester score 1.022 (1.018–1.026) <0.001 
AI prediction 1.040 (1.032–1.048) <0.001 

BMI = body mass indeB; AI = artificial intelligence. 
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Figure 7: Receiver operating characteristic (ROC) curves for
the binary classification of the presence significant coronary
artery disease (CAD) demonstrating area under the curve
(AUCs) of 0.77 for AI + angina Type; 0.76 for AI + Diamond
Forrester; 0.73 for AI and 0.70 for Diamond Forrester.

had a processing time of about 20 s to analyse the whole
internal validation set on a workstation with an Nvidia
Titan V Graphics Processing Unit (GPU) with 12GB of
memory. At binary logistic regression, the DCNN pre-
diction was the strongest independent determinant of
severe CAD (p<0.0001; OR: 50.7; CI: 24.0-107.0). Age
(p=0.006; OR: 1.01; CI: 1.0-1.02) and Diamond-Forrester
score (p<0.0001; OR: 1.022; CI: 1.018-1.026) were also
independently related to CAD, although with lower sig-
nificance and odds-ratios. Using an operating cut-point
with high sensitivity, the DCNN had a sensitivity of 0.90
and specificity of 0.31 to detect significant CAD in the
internal validation group (AUC 0.73; 95% CI DeLong, 0.69-
0.76). Adding to the AI chest radiograph interpretation,
patient age and angina status improved the prediction
(AUC 0.77; 95% CI DeLong, 0.74-0.80). ROC curves for the
binary CAD classification are reported in Fig.7. Atten-
tion maps were created considering the DCNN with the
highest performance. Heat map activations are primarily
localized to the cardiac silhouette, left ventricular apex,
pulmonary bases, pulmonary parenchyma, costophrenic
sinuses, pulmonary hila, thoracic aorta, supra-aortic ves-
sels, and clavicle region (Fig.8, panels A-F).
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the DCNN predicts severe CAD independently of the risk factors, sug-
gesting that the system provides supplementary information in the risk 
assessment model. This finding is confirmed because the DCNN has 
overcome the prediction of already accepted and used screening tools 
based on clinical factors, like the Diamond-Forrester score. 

As eBpected, the algorithm cannot easily predict clinical variables 
such as angina status from the chest radiograph. This information is 
crucial in identifying patients at risk of having severe CAD. Adding the 
information concerning the angina status to the DCNN allowed us to 
improve the accuracy in predicting severe CAD (AUC from 0.73 to 0.77), 
with sensitivity values around 90%. 

Je know that non-invasive investigations, like the treadmill stress 
test, already have a sensitivity and specificity of approBimately 75% 
when targeting patients with a CAD prevalence of 25% C30D. The per-
formance of these tests has been achieved after years of clinical practice 
and optimization. It cannot be compared to our DCNN that has Iust been 
deployed and will undergo optimization after acAuiring additional pa-
tients for analysis. Moreover, stress testing presents some logistic limi-
tations, reAuires additional organizational efforts, and cannot be used in 
specific setting such as to facilitate prompt triaging. 

Finally, we must emphasize performing adeAuate image mining to 
prevent training and selection biases. Thanks to the timely screening 
that allowed us to eBclude patients with previous cardiac interventions, 
including cardiac surgery, PCI, and cardiac electronic devices 

implantation, we identified no secondary confounding factors in the 
radiographs that may have inKuenced the DCNN decision process and 
identification of CAD patients. Although this selection a priori may have 
biased the training of our DCNN and have included patients at lower risk 
for CAD, we did not want to train a system to understand the presence of 
CAD by detecting the direct signs of the previous interventions. In our 
training and testing phases, we have included chest radiographs per-
formed in the sitting and standing position, in emergent and elective 
settings, and images produced by nine different portable and stationary 
radiographic machines available in our Institution. In our facility most 
of the patients that undergo chest radiography while in bed do it simply 
for logistical/organizational and patient’s safety reasons. Because the 
radiology department has a separate facility, it is at times easier to 
perform a bed radiography with a portable device in the emergency 
room or directly in the cardiology department or catheterization labo-
ratory. Je have removed every image where cables for monitoring and 
ECG-patches were visible and may have suggested the patient status. In 
our research setting we have been very careful in eBcluding additional 
selection biases that may have suggested to the DCNN the clinical status 
of the patient and lead the system to derive the presence of severe CAD 
diagnosis. 

Fig. 3. (A-F). Heat-maps of 6 patients affected by severe CAD. Areas suggestive of CAD presence are highlighted in degrees of green tonality. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Figure 8: (A-F). Heat maps of 6 patients affected by severe
CAD. Areas suggestive of CAD presence are highlighted in
degrees of green tonality.
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