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Abstract
Adaptive scaffolding of students’ planning activities shows significant potential for helping students
regulate their learning in challenging tasks. Large language modeling provides new capabilities for
augmenting such scaffolds in real-time game-based learning environments. We introduce a novel plan
generation framework that leverages a text-representation of students’ interactions in a game-based
learning environment, Crystal Island. We formalize the plan generation task as follows: given a
sequence of gameplay events, completed goals, and target goals, a language model trained on T5-small
will generate a set of low-level actions to accomplish the given target goals. Gameplay data collected
from 144 middle school students is used as input for the model, with 11,610 total event sequences. The
generated plans are then evaluated against plans students created during gameplay through a planning
support tool. The construction of this framework is designed so it will mimic a real-time system, in
that it generates plans at the same point in gameplay that students do. We compare generated plans to
students’ plans based on how many low-level actions in the plans match. We also analyze how many
actions match when mapped to high-level actions or action categories. Results show that the generated
plans did largely match high-level actions with fewer low-level actions than the students’ ones. This
implies that the generated plan can guide the students to achieve their goals in more efficient ways.
These results demonstrate potential for using language models for enhancing adaptive environments
through hinting or prompting to plan efficiently in real-time.
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1. Introduction

Self-regulated learning (SRL) in Winne and Hadwin’s theoretical model is goal-driven learning
that involves formulating goals, developing plans, and monitoring and adapting their goals and
plans [1, 2, 3]. Supporting students’ SRL processes can help them navigate challenging learning
tasks like science problem-solving [4]. In particular, game-based learning environments have
the potential to foster positive emotions through supporting goal setting and planning [5] and
demonstrate the capability of adapting to individual learner strategies as students’ navigate
through gameplay in real-time. These learning environments generate significant amount of
student data, which are essential to train machine learning models for student-adaptive learning.
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However, typically only a fraction of the data is transformed into numbers and used by machine
learning models.

With the recent developments in large language models (LLMs), there are new possibilities
for data representations using trace data obtained from game-based learning environments
as natural language to help support such SRL processes. Generally, LLMs are pretrained with
a large corpus of text data to enable general language understanding and generation, while
fine-tuning LLMs with domain-specific data allows to solve the problems important to the target
domain application. This functionality creates many opportunities for educational applications,
particularly in generating assistive educational content for students like practice problems,
step-by-step solutions, and explanations [6]. Our work investigates the application of language
models for generating plans meant to assist in students SRL processes and science problem-
solving.

This work explores the use of a language model (T5) to generate potential plans for students
as they navigate a science game-based learning environment, Crystal Island. A plan is defined
as a series of low-level actions that can be enacted in gameplay. Textual representations of
students’ problem-solving activities in the game serve as input into the language model, as well
as student selected goals. The language model outputs a plan, which is a series of low-level
actions, that can be completed in the game. We evaluate the generated plans against plans
created by students while playing the game. Our work aims to understand the effectiveness of
using language models to generate plans in a game-based learning environment and discuss the
implications for enhancing students’ learning in real-time.

2. Related Work

Classical planning in AI involves the generation of action sequences in a given environment,
which we extend to the task of plan generation in this work [7]. Techniques for plan generation
have been explored for several years in the field of automated planning [8, 9, 10]. More recent
approaches to plan generation involve hierarchical planning [11], and narrative plan generation
with self-supervised learning [12]. These techniques can be applied to educational settings
where the environment is finite and small. For example, graph networks are used to evaluate
and enhance student planning in Betty’s Brain [13] and have also been used for study plan
generation [14]. However, game-based learning environments present a unique challenge for
plan generation tasks due to the size and nature of the environment.

To generate useful plans for students in real-time, an understanding of their underlying
strategies is needed. However, students’ gameplay in game-based learning environments is
incredibly idiosyncratic and exploratory. Recently the natural language processing (NLP) field
has had much success through the development of large language models, such as tasks for
summarization (BART [15]), code assisting (Copilot [16]), and dialog generation (GPT3 [17],
LaMDA [18]). Our work aims to explore the performance of language models for the task of
plan generation in the game-based learning environment Crystal Island.

Prior work in Crystal Island has explored the task of plan and goal recognition, which is a
classification problem for predicting students’ goals and plans based on their gameplay [19, 20].
Long-short term memory networks were shown to have performed best for the constructed



Figure 1: An example interaction with the planning support tool.

multi-task classification problem, with students’ problem-solving activities being represented
through one-hot encoding vectors [21, 22]. To our knowledge, language models have not been
used to represent students’ problem-solving activities for plan generation tasks. Through textual
representations of the trace log data and textual output of plans that can be enacted in the game,
language models like T5 [23] have the potential to generate more interpretable and generalizable
plans.

3. Game-Based Learning Environment

3.1. Learning Environment

Crystal Island is a narrative game-based learning environment that teaches eighth grade
microbiology concepts. Students are tasked with exploring a remote island to discover the
source and treatment plan of a mysterious illness that has plagued the island. In this version
of the game, students are presented with a planning support tool, meant to scaffold students’
planning processes and help them navigate the narrative. Throughout the game, students are
prompted to create plans through a drag-and-drop interface (Figure 1). In this work, we define
plans to be goal clamps (green) with at least one nested low-level action (blue) inside the goal
clamp. Students are able to access the planning support tool at any point in the game voluntarily
as well. There were 20 goals and 55 low-level actions to choose from in the planning support
tool. These goals and actions are categorized into high-level goals and actions.



3.2. Dataset

This work utilizes a dataset collected during the COVID-19 pandemic in a remote asynchronous
science classroom. A total of 144 middle school students (60% female, average age 13.2 years)
played the Crystal Island version containing the planning support tool over a two-day time
span. Students played Crystal Island for an average of 94.7 minutes (SD = 47.7). They also
completed a demographic survey, as well as pre- and post-tests. Students’ problem-solving
activities in the game and their planning support tool use were logged automatically as they
played. The trace logs generated from these interactions were used in the analysis presented in
this work and students’ plans were used as a source for evaluating the generated plans.

4. Methods

In this section, we present a plan generation framework that takes in students’ gameplay
interactions and a goal as input. Using a fine-tuned LLM, plans are generated from the framework
which consists of a series of low-level actions that can be enacted in the game. These plans are
then evaluated against plans students created using the planning support tool.

4.1. Input Representation

We refer to a sequence of students’ interactions with Crystal Island as an event sequence.
These are logged automatically while each student is playing the game. To construct an input
representation, we derived three key features from the event sequences: event type, event
argument, and event location. The event type refers to 9 possible in-game activities students
can complete within the learning environment. For example, reading a book and talking to a
character are two types of events in the game. Event arguments are phrases that provide more
detail to the event type. For example, if the event type is talking to a non-playable character,
then the event argument could be the name of the character. Lastly, the event location is the
location in the game where the event took place. There are 24 fine-grained locations in the
game. The given example of event can be denoted as 𝑒 = (𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑎𝑡𝑖𝑜𝑛, 𝐸𝑙𝑖𝑠𝑒, 𝐿𝑎𝑏).

Once these three components were constructed for each event a student took, we segmented
event sequences for each student according to their use of the planning support tool. Formally,
we represent the input 𝐼 ∶ [𝐸 = (𝑒𝑖, 𝑒𝑖+1, ..., 𝑒𝑖+𝑘), 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ∶ 𝒢𝑐, 𝐺𝑜𝑎𝑙𝑠 ∶ 𝒢𝑡] where 𝐸 is an event
sequence, consisting of a series of events, 𝒢𝑐 indicates a set of completed goals, which can be an
empty set, and 𝒢𝑡 is the target goals the student set during planning. The aim of this framework
is to generate potential plans for students, so we constructed event sequences based on the
potential for real-time use. In a real-time system, the input to any model would be the action
students took up to the point of prediction. A typical interaction in Crystal Island would be a
sequence of gameplay events (𝐸1), then a planning tool interaction where they create one or
more plans with a target goal (𝒢𝑡 = {Explore camp}), then another series of events (𝐸2) and then
another planning tool interaction for the next goal (𝒢𝑡 = {Learn about outbreak}) and so on until
they finish playing. A students’ plan consists of a goal and a series of low-level actions. Since
students interactions with the planning support tool were dispersed throughout gameplay, they
serve as good points for real-time prediction of the next plan a student would make. Thus, we



used the sequence of student events completed up to the point of a planning tool usage and
predict possible plans at every event in the sequence.

For example, given the typical interaction with Crystal Island, then the first row of input
would be 𝐼 = [𝐸1, 𝒢𝑡 = {Explore camp}, 𝒢𝑐 = {}], since there were no completed goals. Then, in
the case that a student enacted all low-level actions from plan 1 during 𝐸2 then the next row
of input would be 𝐼 = [𝐸2, 𝒢𝑡 = {Learn about outbreak}, 𝒢𝑐 = {Explore camp}]. We constructed
event sequences cumulatively with the maximum event sequence length being 30 (the median
length of event sequences).

4.2. Language Model Construction

In this work, we leverage a language model to understand the student’s game trace logs as
text and generate the corresponding plans to achieve target goals. In the first part, the input
is not a general natural language, but consists of a list of actions and location information
used in the Crystal Island game domain, and thus an encoder is needed to understand the
contextual representation of these characteristic inputs. In the second part, the generated plan
can include actions of various lengths, and this problem is one of language generation rather
than classification, so a decoder capable of language generation is required. That is, for our task,
we need a Seq2Seq model with both an encoder and a decoder [24]. Various Seq2Seq language
models currently exist, such as Transformer [25] and BART [15]. We chose to use T5 for this task,
as T5 has the advantage of being easy to use by formatting both input and output into textual
strings for various NLP tasks [23]. We trained T5-small for our plan generation models with
the following hyperparameters: learning rate = 0.0003, batch size = 4, input max_length=1024,
weight_decay=0.01, and warmup=1000.

4.3. Evaluation

We evaluated the language-model generated plans from the framework with the plans students
created. The key evaluation metric is the percentage of actions that match between the student’s
plans (SP) and the generated plans (GP), with a higher percentage being better. We considered
three cases for our evaluation: (1) 𝑆𝑃 = 𝐺𝑃 : the case where the amount of low-level actions
in the generated plans was the same as the students plan, (2) 𝑆𝑃 < 𝐺𝑃 : the case where the
generated plan had more low-level actions than the student plan, and (3) 𝑆𝑃 > 𝐺𝑃: the case
where the students’ plan had more actions than the generated plan. For each of these cases, we
examine how many true matches occur for each GP. A true match is when a predicted low-level
action from a GP is present in the SP. For each generated plan, we counted the number of
low-level actions that were a true match and divided that by the number of low-level actions in
the GP, denoted as 𝑝𝐿. Using the high-level action mappings derived from the planning support
tool, we derived a similar score based on how many high-level actions from the GP are present
in the high-level SP, denoted as 𝑝𝐻. For example, take the “explore camp” plan in Figure 1.
The low-level actions in this case are the four “go to” actions nested inside the goal. For our
analysis, we would examine true matches between these and the GP low-level actions. Then we
would map these low-level actions to the high-level actions and calculate 𝑝𝐻, which in this case
would all be “explore”. This analysis helps to better understand the quality of plan generation



Figure 2: Distribution of difference in plan size and percent of matches across all generated plans.

and highlights potential for future work in enhancing students’ planning processes, further
discussed in Section 6.

5. Results

Figure 2 shows the distribution of difference in plan size between students’ plans and the
generated plans (left), as well as the distribution of match percentages for both low (center) and
high-level actions (right). In the left boxplot, the median of the difference in plan size is 0.0
(mean=0.0, SD=3.4). A negative plan size represents the scenario where students plans were
larger. The largest difference in plan size was 26, meaning students included 26 more low-level
actions in their plan than the generated plan. This occurrence serves as an example of when
the language models could help students build plans more efficiently. In the center boxplot, the
median of match percentage in low-level actions (𝑝𝐿) is 0.0% (mean=25.2%, SD=32.3%).

Out of 11,610 generated plan instances, 8.1% of these plans contained all low-level actions that
were in the students’ plans (exact matches) and 51.2% had no low-level actions that matched the
low-level actions of the corresponding student plan. In the right boxplot, the median of match
percentage in high-level actions (𝑝𝐻) is 66.7% (mean=59.8% , SD=41.9%). For the high-level
actions, we saw an increase in exact matches to 44.4% and a decrease in no matches to 24.8%.
This indicates that while the GP did not match students’ low-level actions as much, the generated
plans still produced low-level actions in the same category as the student.

This is also demonstrated in Table 1 for both low-level and high-level action matching, as
we see an increase in match percentage for all cases. The first case where the generated plan
and the student plan were the same size (SP = GP) had the highest percentage of low-level
matching. This set of generated plans could be seen as most accurate as they were the closest
to students’ plans. The second case with the biggest increase in match percentage was the case
where the size of the students plan was larger than the generated plan (SP > GP). This indicates



Table 1
The percent of true matches between generated plans and students’ plans for low-level and high-level
actions.

Groups Low-level actions (𝑝𝐿) High-level actions (𝑝𝐻)

𝑆𝑃 = 𝐺𝑃 34.7% 66.0%
𝑆𝑃 < 𝐺𝑃 16.1% 46.8%
𝑆𝑃 > 𝐺𝑃 30.2% 71.2%
Overall 25.2% 59.8%

that though the students plan was more detailed, the generated plan had fewer low-level actions
but in the same high-level category. This could potentially be a more efficient generated plan,
which in real-time could help the student maneuver the game faster or learn more educational
content. The third case where the student plan size was less than the generated plan size (SP
< GP) had a much lower match percentage for both the low and high-level actions. This case
needs to be explored further to better understand why the model was producing more actions
and if they are viable actions for the goal. For example, a closer analysis will be needed, such as
whether there is any correlation between the type of goal and the size of the plan, or whether a
larger plan focuses on the effectiveness to achieve a goal rather than focusing on the efficiency.

6. Discussion

Overall, results demonstrate the promise of using language models to generate plans to prompt
students’ gameplay. We find that over half of the low-level actions generated by the framework
align with the same high-level action category that students’ used for a given plan. This indicates
that even in cases where the exact matches were low, plans still contained low-level actions
within the same category. Actions within the same category generally serve a similar purpose
in the narrative of the game. For example, the Explore goal category contains primarily “go to”
actions, which all serve as an exploration of the environment. An example plan from a student
included: go to infirmary, go to lead scientist’s quarters, go to laboratory, go to living quarters,
speak with lab technician, read about smallpox, speak with virus expert. The plan predicted
in this case was: go to infirmary, go to lead scientist’s quarters, go to laboratory, go to living
quarters, read about how diseases spread, speak with camp nurse, and speak with patients. In
this case, all of the ”go to” actions align and the ”read” and ”speak with” actions differ. All
action categories match between the two. Further analysis can be done to examine the specific
differences in predicted plans. For example, one of the differences in the predicted plan from the
student plan is the action speak with camp nurse. Generally, it is good to speak with the camp
nurse early in the game, so prompting a student to do so could be beneficial to their gameplay.
Anecdotally, we observed that some unmatched low-level action plans were found in the other
students’ plans with the same target goals. This could be because the model generates most
probable plans rather than the one personalized to a specific student. If these predictions were
implemented in a real-time scenario, they could serve as more instructive hints to students or
potentially more efficient plans, allowing the game to dynamically adapt to students’ strategies.



A limitation of this work is that the ground truths of optimal plans are unknown or difficult
to obtain. In this work, we take the students’ plans as ground truth; however, we noticed a
large range of planning activities. Students’ use of the planning support tool varied between
students for how often they opened the planning and how many plans they created throughout
gameplay. While our language models seemed to generate plans similar to students’, since we
cannot evaluate the quality of plans it is hard to tell if the generated plans are “better” plans than
what the student created. Additionally, there are several strategies that students could take in
the game, which adds complexity to plan evaluation. In educational games, there are typically
two overarching strategies: to win the game and to learn the curricular content. Depending on
a students’ primary goal, this could affect how an adaptive system would prompt students. To
partially address this issue, we used an existing hierarchy to map low-level actions to high-level
actions as a point for evaluation. One potential avenue for future work could be to create a
larger hierarchy of actions that align with science problem solving to assess if plans follow a
trajectory of scientific reasoning. This hierarchy could help evaluate both student and system
generated plans.

Another interesting finding was that the language model sometimes produced low-level
actions that can be played in the game, but are not present for students to select in the planning
support tool. For example, students are able to pick up items in the game to test for various
diseases. An output low level action was “pick up yogurt”, which is an item that can be picked
up in the game but it is not presented as an option for students. In the design of the planning
tool, we limited the number of low-level actions presented to students so as not to overwhelm
them. Thus, “pick up yogurt” was intentionally excluded, since it is not necessary to solve the
mystery. However, it is interesting that the model was able to generate coherent low-level
actions. This case identifies another potential area of using LLMs to generate diverse content for
SRL scaffolding. The planning support tool was human designed, but considerable human effort
could be reduced to have goals and actions created by LLMs trained on gameplay data. This
model-based content generation could be extended to other online-based learning environments,
where trace logs can have textual representations.

7. Conclusion and Future Work

This work introduces a framework that utilizes textual-representations of students’ problem-
solving actions within Crystal Island as input for a T5-small-based language model to generate
plans that are evaluated against real-world plans created by students. Results show the potential
for using such language models for providing adaptive support to students in real-time through
generated plans. Currently, the framework is able to produce plans similar to plans that students
created, with half of actions in generated plans aligning with the same action category as
students’ planned actions.

These findings highlight future work in many areas. Plan validation for science problem-
solving in game-based learning environments is an open problem that requires investigation.
More work needs to be done to interpret the quality of both student and system generated plans.
Exploring the performance of other LLMs in this framework is another potential avenue for
future work. Additionally, applying a scientific reasoning hierarchical-based approach to the



language models has the potential to both help evaluate plans and enhance the generation of
plans. Lastly, identifying how LLMs could enhance existing scaffolding in a real-time version of
Crystal Island has the potential to enhance students’ learning experiences.
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