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Abstract
The practice of API hooking in user-space is a common technique used by antivirus (AV) and endpoint
detection and response (EDR) software to monitor and control software execution on Windows systems.
This method of detection allows for the interception and examination of interactions between processes
and operating system services, making it a potential target for both simulated penetration testing and
malicious attacks. After an extensive analysis on how commercial antivirus software do implement
hooking techniques, this paper introduces a new approach, named Whisper2Shout, which enables
users to bypass API hooking in user-space. Unlike established unhooking methods, Whisper2Shout
does not rely on any operating system service monitored by antivirus or endpoint detection and response
software. We compare the advantages and disadvantages of Whisper2Shout with respect to similar
tools and we evaluate the effectiveness of Whisper2Shout by circumventing hooks on 16 commercial
antivirus programs and 4 endpoint detection and response software.
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1. Introduction

API hooking [1] is a technique in computer programming that allows modification of the behavior
of an application by intercepting its function calls to certain APIs1. This technique is used
by a variety of software, including Antivirus (AV) and Endpoint Detection and Response (EDR)
programs, to monitor the behavior of suspicious processes and detect malicious activities [2].
AV and EDR software utilize API hooking to keep track of both API and system calls made by
an application, allowing them to detect any suspicious behavior that might indicate malware or
other security threats. By hooking the APIs used by a process, the software can monitor the
data being passed to and from the API, and take appropriate actions based on the information
collected. This provides a powerful tool for security software to detect and respond to potential
threats in real-time, and helps to keep systems protected from malicious actors. API hooking is
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a remarkably effective method of detection, as it allows to take actions based on real-time events
that could trigger the identification of malicious software after it has started its execution.

From the perspective of an attacker, a way to evade these security products is to try to remove
the hooking. There are numerous documented techniques to remove user-space hooking (refer
to Section 2 for more details), though the sheer majority of them result in some Indicator Of
Compromise (IoC) 2 that could alert the AV/EDR.

In this paper we present Whisper2Shout, a novel unhooking technique which does not
require knowledge of the original (unhooked) library. This paper expands on our previous
work [3] by looking into a more comprehensive analysis of hooking techniques implemented
by AV/EDR and providing a detailed examination of the inner workings of our approach.

The idea behind our strategy is that even if an AV/EDR employs hooking in user-space, it
must save all the information about the original code of the hooked APIs in memory. This is
because if a process is considered not suspicious, the AV/EDR should allow transparent access
to the APIs without interfering with the execution of legitimate applications. The technique
focuses on identifying the memory location where this information is stored, and utilizing it to
retrieve the original bytes of the hooked APIs. Moreover, these operations should be executed
without alerting the AV/EDR. In summary, the contribution and novelties of this paper are:

• via an extensive analysis carried out on 16 AVs and 4 EDRs, we identify and classify
hooking techniques used by real world Windows AV/EDRs;

• we devise Whisper2Shout, a novel unhooking technique which does not rely on any
monitored OS service, and allows to selectively remove hooks on user-defined APIs;

The remainder of this paper is organized as follows: Section 2 highlights differences between
Whisper2Shout and other existing techniques, Section 3 discusses how hooking is employed
in the commercial AV/EDRs analyzed, Section 4 explains how our technique has been devised
and implemented; its effectiveness is assessed in Section 5, and Section 6 concludes this paper.

2. Related Work

Since API hooking is a technique commonly used by security software to detect suspicious
processes [2], there are various documented methods for the circumvention of user-space
hooking, such as those cited in [4], [5], [6], and [7]. However, these techniques need to retrieve
the unaltered library file (Dynamic Link Library - DLL) either by reading it from the disk or from
the memory of a remote process before the security software places the hooks. The detection of
such techniques is commonly facilitated by the Windows kernel via the deployment of minifilter
drivers [8]. Anti-malware software can register callbacks for a variety of system events, such as
file operations and process creation, through Windows [9], which notifies the AV and prompts
a deeper analysis that may result in detection. For instance, reading of the ntdll.dll file,
which should only be loaded at the time of process creation, is deemed suspicious and could
trigger detection.

Shellycoat [10] is a renowned technique that un-hooks a hooked DLL by loading an unaltered
version from disk. This technique employs the syscalls NtCreateFile, NtCreateSection,
2https://www.trendmicro.com/vinfo/us/security/definition/indicators-of-compromise
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and NtMapViewOfSection to i) load a fresh copy of the DLL in the process’ address space, ii)
copy the original bytes of its text section to the text section of the hooked DLL, and finally iii)
call NtUnmapViewOfSection to unload the previously loaded library.

However this technique, as well as all the aforementioned existing ones, could be detected
because of three main reasons:

1. NtCreateFile is called to open a system-reserved DLL that is not usually accessed by
user-space programs

2. NtMapViewOfSection is called to map a DLL that is already loaded in the process
address space (i.e. ntdll.dll is always loaded by the OS)

3. There is a (small) amount of time in which the DLL is mapped twice in the process address
space

Perun’s Fart [7] is another unhooking technique which does not require reading the clean
DLL from disk, and its main steps are:

• Spawn a new process in suspended state.
• Read memory from the new spawned process, at which point the target DLL has not been

tampered yet, so the bytes of the functions to be unhooked can be copied.
• Resume/kill the suspended process

Such a technique could trigger an IoC, i.e. reading the contents of the ntdll.dll file from a
suspended target process, which would be considered an abnormal and suspicious operation by
AVs and EDRs.

There are alternative means of covertly invoking API calls on Windows, as referenced by
[11] and [12]. However, their aim is not solely to evade hooking, but rather to develop more
comprehensive functionalities that can bypass antivirus software. Additionally, other strategies
for monitoring APIs, such as [13] and [14], exist. Nevertheless, our study concentrates on the
hooking methods utilized by commercial AV/EDR software, which are analyzed in greater depth
in Section 3.

The Whisper2Shout technique distinguishes itself from the previously documented methods
in that it does not require any syscall or API monitored in kernel-space to execute the unhooking
process. In contrast, all of these techniques necessitate, at some point, the ability to read the
contents of a fresh version of the DLL to be unhooked, whether it be by reading it from the
disk or another process’ memory, a task which involves the utilization of either APIs or system
calls. Whisper2Shout only requires the capability to traverse a series of pointers and the
capability to retrieve metadata about a memory region, abilities that are enabled by default for
all processes on Windows. Additionally, Whisper2Shout is resilient against hook monitoring.
The previous unhooking techniques remove the hooks from the original DLL and presume that
the AV/EDR will not interfere with its memory again. However, as we will explain later in
Section 4, certain AVs periodically verify if their hooks are in place and restore them if they
are not. Whisper2Shout circumvents this mechanism by misleading the AV during its hook
check. Lastly, it is worth to mention that all previously documented techniques aim to remove
all hooks within a specific DLL whereas Whisper2Shout enables selective removal of certain
hooks, a concept that will be made clearer in the following sections.



Figure 1: Layout of the NtClose function before being hooked.

Figure 2: Layout of the NtClose function after being hooked.

3. Hooking

The Whisper2Shout method was developed through an exploration of various commercial
AV/EDR programs with the aim of evaluating their utilization of API hooking and the way in
which it was executed. The research analyzed the contents of several Windows DLLs stored
in RAM to determine if and how the execution flow for each API was being redirected to a
location outside of the same DLL.

In general, API hooking is implemented by AVs/EDRs by injecting a custom library (DLL)
into the address space of a new process. The purpose of this library is to install hooks within
DLLs which contain critical APIs and/or syscalls. Let’s take as an example the NtClose API
contained in ntdll.dll and which is a simple wrapper for a syscall on Windows. The layout
of this API, and its corresponding assembly instructions, are shown in Figure 1. The insertion
of the hook occurs by overwriting the initial assembly instructions with a JMP [15] instruction,
redirecting the execution flow to a memory region dynamically allocated by the AV DLL and
classified as private. This memory region acts as a trampoline between the hooked API and
the DLL injected by the AV/EDR. As a matter of fact, this memory region often contains a
JMP to the AV DLL, which contains the code to determine whether the API invocation can be
deemed suspicious or not. If the invocation is not considered suspicious, the execution will
proceed running the original API instructions. However, if the invocation triggers an alarm,
the execution will be diverted to somewhere else, in a memory area controlled by the security
product. This layout is depicted in Figure 2, which shows how the execution flow of NtClose
is altered after the AV placed its hook.



Figure 3: NTDLL.LdrLoadDll hooked by AVG using inline hooking

Figure 4: Trampoline for jumping to AVG DLL

Figure 5: AV Checker function in AVG DLL

This analysis can be validated by looking at Figures 3, 4, 5 and 6, which show how AVG3

implements user-space API hooking. In particular:

• Figure 3 shows how AVG overwrites the original bytes of the API LdrLoadDll contained
in ntdll.dll.

• Figure 4 shows the content of the memory area which contains the trampoline to AVG
DLL.

• Figure 5 shows the code of AVG DLL which implements the logic to determine whether
the process should be classified as malicious or not.

• Figure 6 shows the trampoline containing the original instructions of LdrLoadDll, fol-
lowed by a JMP to go back to ntdll.dll

In order to classify AVs and EDRs with respect to hooking, and based on the observations
above, there are three main steps in which each AV/EDR can implement hooks differently from
the others, i.e. there are three features that can be used to classify:

1. how the AV implements the jump to the area containing the trampoline
2. how the AV DLL allocates the area containing the trampolines
3. how the AV implements the trampoline back to the original API.

For the first point, we observed that only two different techniques are used by AVs/EDRs to
divert execution of an API, i.e. i) a jmp instruction and ii) the sequence mov eax, N; jmp
rax;. These two techniques we observed are not exhaustive, however, our research determined
that these are the only techniques utilized in practice.

3https://www.avg.com/en-us/internet-security
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Figure 6: Trampoline created by AVG to execute back the hooked function

Figure 7: BitDefender trampoline to execute back the hooked function

For the second point, our research uncovered a recurring pattern with respect to memory
allocation to store pointers and trampolines essential for hooking. We discovered that the
memory type of all regions holding relevant information regarding hooks was designated as
Private (namely, MEMORY_BASIC_INFORMATION.Type == MEM_PRIVATE) [16].

For the third and last point, we identified the following two distinct techniques to execute the
original function from the hook: i) a jmp instruction that jumps back to the original function
(employed by the Detours hooking library [17]) and ii) the double-push technique [18]. An
example of hooking using the first of these two techniques is shown in Figure 6 (AVG); the
second one is shown in Figure 7 (Bitdefender4).

Our analysis was based on 16 commercial AV products and 4 commercial EDR software. The
results are shown in Table 1: for each AV/EDR we identified how they implement the three
main steps of hooking i.e. i) how they jump to the trampoline area ii) how they allocate the
trampoline area and iii) how they jump back to the original API.

4. Unhooking

The Whisper2Shout technique is based upon the aforementioned observations aimed at
restoring the preamble of hooked functions to their original state, without the requirement
of retrieving the content of the original library. To understand the techniques utilized, we

4https://www.bitdefender.com/
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Table 1
Comparison of how API hooking is employed by different AV and EDR software.

Antivirus/EDR jmp to trampoline private area trampoline back
AVG jmp ✓ long jmp
Avast jmp ✓ long jmp
BitDefender jmp ✓ double push
Comodo jmp ✓ long jmp
MalwareBytes jmp ✓ jmp
ESET Internet Security jmp ✓ long jmp
Sophos Home 3.0 jmp ✓ long jmp
Norton 360 jmp ✓ long jmp
Trend Micro jmp ✓ jmp
Dr. Web mov eax, N; jmp rax; ✓ jmp
Windows Defender p p p
Kaspersky p p p
Avira Prime p p p
McAfee Total Protection p p p
Webroot p p p
Qihoo 360 p p p
SentinelOne EDR jmp ✓ long jmp
CrowdStrike EDR jmp ✓ jmp
Cortex EDR p p p
Sophos EDR p p p

analyzed prior research on the topic [18] and the AVs/EDRs of Table 1, and thus devised a
general unhooking technique that can be applied to each identified hooking method. At its
core, the Whisper2Shout approach is to trace the arrows as depicted in Figure 2, traverse the
trampoline area, the AV DLL and the hooked DLL in order to locate the original instructions of
the hooked API and ultimately restore these instructions without alerting the AV/EDR.

The observation made in the previous section about the recurring pattern with respect to
memory allocation constitutes the fundamental block of our unhooking technique, as that
private memory regions contain all the necessary information for the unhooking process.
Figures 3, 4, 5, 6 illustrate the blocks utilized by AVG Internet Security to hook the function
NTDLL.LdrLoadDll. When a function is hooked, the pointer to the symbol within the the
Export Directory5 of the DLL is diverted to either a jump instruction or a sequence of well-known
instructions that redirect execution to a designated address located within a private memory
region - namely, short jmp or mov eax, N; jmp rax; - as demonstrated in Figures
8 and 9 for the case of the BitDefender antivirus. This private memory region contains the
trampolines both to the hooking DLL, which serves to divert the execution to the anti-malware
software, and to the original, hooked DLL, which will be utilized if the call is deemed legitimate
by the anti-malware software and the execution must proceed as intended. By accessing the
destination address of the jump located at the symbol address (i.e. the first arrow of Figure 2),

5https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
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Figure 8: CreateRemoteThreadEx hooked by BitDefender

Figure 9: BitDefender private memory region (highlighted in red) where the trampoline of
CreateRemoteThreadEx resides (highlighted in green)

we can call VirtualQuery6 to obtain the base address of the memory region that stores the
original prologue of the hooked function (Figure 8 shows the destination address of the jump,
Figure 9 depicts the private memory region containing that address and Figure 7 shows that the
trampoline to return back to the hooked function resides within the private area). It should be
noted that some security solutions might use different memory spaces to store the trampoline
containing the original function prologue. In the event the trampoline cannot be located in the
same memory area, it is necessary to scan all the Private memory regions in the address space
using multiple calls to VirtualQuery.

Once the memory region has been identified, it is necessary to examine it in search of
trampolines that facilitate a return to the original function. Each trampoline will comprise
the original prologue of a hooked function, as well as a pointer to an area located near to the
hooked function location - just a few bytes past its first instructions. Figures 1 and 2 display the
structure of the NtClose function before and after being hooked, respectively.

At this stage, the steps required to be taken diverge, as the method of determining whether
the trampoline leads to the desired unhooked function depends on the hooking technique
employed, i.e. a jump and the double-push technique.

When a jump is employed to return to the hooked function (as in the first hooking approach),
it becomes necessary to locate all jumps within that memory region, so as to evaluate the
destination of each jump and locate the memory region that houses the original function. Our
research has revealed that there exist two jump patterns utilized in assembly by anti-virus
programs, namely long and short jumps. In particular, we examine the private memory sector
searching for:

• long jumps (utilized by the e.g. Detours library) with opcode 0xFF25
• short jumps (employed by e.g. MalwareBytes 7) with opcode 0xE9.

In the case of the second technique (double-push), it is necessary to locate all sequences of
push rax; push rax; mov rax, addr in order to extract the destination address and
confirm that it points to the hooked function.

6https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualquery
7https://www.malwarebytes.com/

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualquery
https://www.malwarebytes.com/


Figure 10: CreateRemoteThreadEx unhooked

Once the trampoline has been correctly located, the bytes that precede the aforementioned
stub are the original bytes that were overwritten by the initial hook, and they must be rewritten
to the original symbol address in order to unhook the function.

First version of Whisper2Shout: Initially, we carried out the unhooking idea by iterating
over each hooked DLL and executing the following procedures:

1. Employ a direct system call to NtProtectVirtualMemory to adjust the memory per-
missions of the .text section to RW

2. Unhook the functions by writing each original stub at the corresponding symbol address
3. Call NtProtectVirtualMemory to restore the original memory permissions (RX)

The conclusive results are shown in Figure 10 for CreateRemoteThreadEx.

Final version of Whisper2Shout: During the evaluation of the initial version of our un-
hooking technique, we were met with a challenge posed by security products that employed a
more sophisticated technique and monitored the stability of their hooks, thereby nullifying our
modifications. To address this issue, we adjusted our strategy by opting to overwrite the AV
hooking trampoline with a jump to the original prologue function instead of overwriting the
hooks at the symbol address (as we previously did).

As a result, when the AV inspects its hooks, all the original jumps will remain unaltered,
directing towards the same locations where the AV positioned the hooking trampolines. How-
ever, the instructions there will no longer divert the execution towards the AV DLL. Essentially,
we have circumvented the hooking trampoline, guaranteeing the seamless execution of the
function as if no hooks were present, even in the presence of a jump at the symbol address.
Figure 11 depicts the layout of the NtClose function after being unhooked in this manner.

It is worth mentioning that all previous observations are still valid and allow us to traverse
the process address space and retrieve all original stubs in a clever way.

We have all the information that is necessary to restore the original execution path:

• we know the destination address of each jump located at the symbol address
• we have knowledge of the location of the original function stub.

After collecting all this information, we can initiate the unhooking process:

• Use a direct system call to NtProtectVirtualMemory to adjust the protection of the
memory region that stores the stub to RW.

• Add a short jump instruction - opcode 0xe9 - to jump to the original prologue.



Figure 11: Layout of the NtClose function after being unhooked.

• Revert the memory back to RX using another direct system call to
NtProtectVirtualMemory

The aforementioned operations can be executed to successfully unhook one API. At this stage,
we may opt to either i) indiscriminately apply this technique to all APIs within a user-defined
DLL, or ii) methodically iterate over all APIs, or a selected subset of user-defined APIs, and
remove the hook only if it is present.

To summarize, the final unhooking process of Whisper2Shout involves iterating the following
steps for each API the user desires to unhook:

• verify if the API has been hooked
• obtain the pointers to the hooking and original stubs
• overwrite the hooking stub with a jump to the original stub

5. Results

The efficacy of Whisper2Shout was tested against the antivirus software and endpoint detec-
tion and response systems listed in Table 1.

The testing process was executed in several steps. Initially, an anti-virus or endpoint detection
and response system was installed, followed by the creation of a test program using the C
programming language, for instance a simple “Hello World” program. The unhooking code was
then added to the program, which was opened in a debugger. Prior to executing the unhooking
code, it was verified that certain APIs were hooked, such as the LdrLoadDll API. Finally, after
executing the unhooking code, the same APIs were verified to be unhooked by walking through
the pointers in the debugger’s graphical user interface.

The number of hooked APIs goes up to approximately 90 in ntdll.dll and approximately
20 in kernel32.dll. A comprehensive list of hooked APIs for EDRs is provided in [19]. As
previously mentioned, it is worth to mention that Whisper2Shout can be configured to either



unhook all APIs within the memory space of a given process or methodically unhook a subset
of user-defined APIs. In the results provided in this paper the first option was adopted, in order
to obtain a more comprehensive analysis on the capabilities of our technique.

It was noted that not all of the anti-virus programs listed in the study employed API hooking.
However, for those that did, Whisper2Shout was able to successfully remove the hooks, and
we validated this result by analyzing the hooked APIs of each DLL and verifying that the hooks
set by the AVs/EDRs were no longer present.

As a demonstration of its potential, Whisper2Shout was utilized to pack a Cobalt Strike
beacon shellcode and several other payloads that were detected as malicious. The technique
was able to effectively bypass the security products that rely on API hooking, showcasing its
efficacy as a tool for evading detection.

6. Conclusions

The technique discussed in this paper allows to bypass user-space API hooking in a universal
way. The core of this mechanism lies in the observation that memory allocated by AVs/EDRs
is designated as Private in all products analyzed. This makes identifying the stub effortless,
as it cannot be mistaken for any other central libraries in memory, enabling us to pinpoint
the memory area assigned by the anti-virus Dll to accommodate the stubs. The steps taken
to acquire the necessary information are executed in a stealth manner as they only require
reading memory and following pointers within our own process address space. Moreover, calls
to NtProtectVirtualMemory are kept to a bare minimum, as we only use the system call
twice per Private memory area, once to set the region to RW and again to set it back to RX.
However, Whisper2Shout still suffers from the following two limitations:

• calls to NtProtectVirtualMemory, although kept to a bare minimum, can still alert
some AV/EDR

• the scanning technique itself could still be detected, for example, by setting a GUARD page
bit [20] on the memory of the trampolines and validate from the exception handler what
is the address of the offending instruction with respect to the return address on stack.

From a defensive viewpoint, user-space hooking is a crucial mechanism, and though bypasses
may be feasible, its utilization as part of a defense-in-depth strategy is imperative. Furthermore,
security products that monitor hook integrity are preferable, as they render attacker’s efforts
more arduous, increasing the likelihood of detection.

Finally, it is important to emphasize that anti-malware solutions are not impenetrable security
mechanisms that can guarantee protection against every possible threat, they are tools that
defenders can utilize to identify anomalies in monitored systems. Proper setup and tuning of
security software are crucial steps when installing a new anti-virus program in a network. The
ability to receive meaningful alerts would facilitate defenders in detecting and responding to
stealth attacks that may not be automatically identified as malicious but appear suspicious.
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