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Abstract  
Bioconvolving with Mixing transform is a cancelable biometric approach to protect biometric 

data and the user's privacy. This approach uses linear convolutions on biometric features to 

generate cancelable templates following the random transformation matrixes. This paper 

shows how the choice of the transformation matrixes impacts the protected system accuracy. 

Therefore, random matrix selection is not an optimal strategy. A heuristic algorithm is 

proposed to select the optimal transformation matrix that achieves the optimal protected system 

performance. The proposed heuristic is based on the minimum distance between the 

transformed mean template created by the EB-DBA and the transformed reference set. Two 

online signature verification systems have been protected by Bioconvonlving with Mixing 

transform to evaluate the proposed algorithm performance in terms of accuracy, False Negative 

Rate (FNR), and False Positive Rate (FPR). The experiments have been conducted on 

SVC2004, xLongSignDb, SUSig VisualSubCorpus, and SUSig BlindSubCorpus online 

signature datasets. The highest calculated Pearson index (r=0.87) shows a high correlation 

between the pro-posed heuristic and the system's accuracy. Therefore, the selected matrixes by 

the proposed heuristic allow for optimal system performance. The protected system accuracy 

improved to 11% using the selected transformation matrixes by the proposed heuristic 

compared to the random selection matrixes. Moreover, protecting the system using 

Bioconvolving, revised with the proposed heuristic, reduces accuracy at best by only 0.6 % 

compared to the unprotected system. 
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1. Introduction 

Biometric data must be protected for two main reasons: individuals’ privacy and the usability of the 

data itself. If the biometric data is compromised, it will not be able to be used anymore since it can be 

neither revoked nor renewed. Biometric data can be recovered from unprotected biometric templates, 

leading to severe privacy and security issues [1]. Therefore, several strategies have been developed to 

protect biometric templates [2]. Cancelable biometrics is a proposed methodology that involves 

intentional and repeatable transformations of biometric signals, providing a comparison of biometric 

patterns in the trans-formed domain, thus making it extremely complex to retrieve the original data. 

This strategy observes the unlikability, revocability, renewability, and non-invertibility requirements of 

ISO/IEC 24745 on biometric information protection [3]. However, the performance of the system 

protected with a cancelable biometrics approach is generally much lower than the performance of an 

unprotected system [4]. Several strategies based on cancelable biometrics are developed to protect 

different biometric data. Bioconvolving (BCV) [5] is proposed to protect biometric templates of online 
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signatures. Recently, BCV has been used to protect different biometric traits such as the face, iris, palm 

print, fingerprint, and ear [6]. 

The signature is considered a “no-invasive” biometric trait, so it is among the most accepted bio-

metric data. The purpose of the handwritten signature is individual identification, to secure the 

individual’s endorsement in a document. The handwritten signature is collected using specific 

electronic devices (i.e., tablet, PDA, or smartphone) to capture different information about the 

movement of a specific pen on the device [7]. The information commonly collected are the horizontal 

and vertical pen coordinates, the timestamp, and the pen pressure [8].  

BCV consists of dividing the biometric features of each user into a fixed number of parts, and then 

the feature parts are combined through linear convolution to obtain protected templates. The protected 

templates reside in the same original template domain. Therefore, the same matcher used for original 

templates can be used for protected templates. The Bioconvolving with Mixing transform (BCV-MT) 

is a security strategy to protect the biometric template, but the obtained performance is only sometimes 

satisfactory. This paper has shown how the choice of the transformation matrixes dramatically impacts 

system performance. Therefore, the random matrix selection in BCV-MT cannot be considered an 

optimal strategy, and then a heuristic algorithm to select the optimal transformation matrixes is 

proposed. The main research contributions are: 

 

• Show the impact of the transformation matrixes on the protected system accuracy through the 

matrix distribution analysis. 

• Develop a heuristic algorithm to select the optimal matrixes through the minimum distance 

between mean template and reference set. 

• Verify the correlation between the proposed heuristic and system accuracy.  

• Submit a comparative analysis of the obtained results by the BCV-MT with the selected matrixes 

through the proposed heuristic and the BCV-MT with the random selection matrixes. 

• Compare the results obtained by the systems protected through the proposed algorithm with the 

unprotected system results to show the proposed algorithm's effectiveness.  

 

This paper is organized as follows. Section 2 summarizes the main cancelable biometric approaches. 

Section 3 details the BCV-MT technique and describes the proposed heuristic. Experiments and results 

are provided in Section 4, and the conclusions and future development are detailed in Section 5. 

2. Related work 

The cancelable approaches are based on the intentional and repeatable distortion of the biometric data 

with the purpose of creating protected biometric templates. Several efforts have used different non-

invertible transformation strategies to create protected biometric templates. Harkeerat Kaur et al. [9] 

have used polynomial transformation to map biometric information. Other non-invertible 

transformation strategies used a projection matrix to project the feature vector into another feature 

vector of fewer dimensions. The projection matrix is generated by the user-specific key [10], [11]. To 

improve system security, random permutations have been used in addition to non-invertible functions. 

The permutation key is used to shuffle the feature vector values before applying the non-invertible 

function [12 - 14]. Recent efforts have been focused on developing approaches to reduce the tradeoff 

between performance, security, and privacy. Some efforts have adopted various hybrid approaches to 

improve recognition performance [15]. The hybrid approaches combine the increased performance of 

Biohashing with the increased security provided by non-invertible transformation [16], [17]. 

Biohashing is used to combine biometric information with user-specific information to protect and 

increase the discrimination of biometric information. In the same direction, cancelable multimodal 

biometric systems have been developed. These systems combine different biometric traits with the 

purpose of improving recognition accuracy [18 - 23]. Recently, WenchengYang et al. have proposed 

an alternative to BCV to improve the system's performance and security [24]. In contrast to BCV [25], 

has been applied linear convolution between a feature part (𝑏𝑖) selected by the feature vector 𝑏 =
[𝑏1, … , 𝑏𝑛], and a support vector (ℎ𝑗) selected from a vector pool  ℎ = [ℎ1, … , ℎ𝑛]. Therefore, the 

transformed feature has been obtained according to the following equation.  



 

𝑦 = 𝑐𝑜𝑛𝑣(𝑏𝑖, ℎ𝑗)       (1) 

 

The value of j-index has been generated by a feature-guided index generation algorithm. 

Specifically, the hash function ℎ𝑎𝑠ℎ(∙) is performed between a user-specific key (𝑘𝑖)selected from the 

key vector 𝑘 = [𝑘1, … , 𝑘𝑛], and a feature part (𝑏𝑖) as following equation. 

  

𝑗ℎ𝑒𝑥 = ℎ𝑎𝑠ℎ(𝑏𝑖, 𝑘𝑖,
′ 𝑆𝐻𝐴′)     (2) 

 

where ‘SHA’ represents the Secure Hash Algorithm SHA-256. The output of Equation 2 is a 

hexadecimal, and it is converted into an integer to obtain the j-index value. 

3. Materials and methods 

The following Section detailed the proposed algorithm to select the optimal transformation matrixes 

into the matrix selection domain. Before, the BCV-MT [25] approach and the feature-extraction is 

summarized. 

3.1. BCV-MT 

BCV-MT uses a non-invertible transformation adding the transformation matrixes to improve the 

template protection and renewability capability. In the first step is  defined the key vector 𝑑 of size 

(W+1) where 𝑑0 and 𝑑𝑊 are set to 0 and 100, respectively, and the other elements 𝑑𝑗 are different 

integer values between 1 and 99. Next, each feature of length L is divided into a fixed number of parts 

(W) of length 𝐿𝑗 = 𝑏𝑗 − 𝑏𝑗−1, where  

 

𝑏𝑗 = ⌈
𝑑𝑗

100
∙ 𝐿⌉ , 𝑗 = 1,… ,𝑊      (3) 

 

For example, given a feature vector 𝑎 of size 𝐿 =  200,𝑊 = 2 and a key vector 𝑑 = [0, 50,100] is 

computed the 𝑏𝑗 as follows. 

 

𝑏1 = ⌈
50

100
∙ 200⌉ = 100 

𝑏2 = ⌈
100

100
∙ 200⌉ = 200 

 

Consequently, 𝑎 has been divided into 2 parts: 𝑎′ = [𝑎1, 𝑎2, … , 𝑎𝑏1] and 𝑎′′ = [𝑎𝑏1+1 , 𝑎𝑏1+2 , … , 𝑎𝑏2] 

In [25] is demonstrated that the recognition performance degradation is due to the increase of the 

parameter 𝑊. In the next step, the transformation matrix (𝐶) has been created. It is composed of 𝐹 rows 

and 𝑊 columns. F is the online signature features number and W is the fixed number of feature parts. 

An example of a transformation matrix (𝐶), for F=5 and W=2 is shown below. 

 

C =  

(

 
 

3 1
4
1
2
5

5
2
4
3)

 
 

 

 

Each column of 𝐶 is obtained as a shuffle of the vector [1, …, F]T, and the i-th row 𝐶[𝑖, 𝑗], 𝑗 =
1,… ,𝑊 is employed to define the feature parts on which to apply the linear convolution (∗), to obtain 

the transformed features according to the following equation. 

 

𝑡𝑓𝑖 = (𝑓(𝐶[𝑖,𝑗]),𝑃1 ∗ … ∗ 𝑓(𝐶[𝑖,𝑊]),𝑃𝑊), 𝑖 = 1,… , 𝐹     (4) 



 

In this way, are generated F transformed features. Therefore, the original number of features is equal 

to the number of transformed features. The total number of transformation matrixes which can be 

generated is then equal to (𝐹!)(𝑊−1). It is the matrix selection domain for the proposed algorithm. 

To perform deconvolution, an attacker must know at least one feature to obtain the original feature. 

So, the only way to achieve the original features is to perform a brute-force attack with an extremely 

high computational cost. In the BCV-MT [4], the transformation matrixes have been randomly 

generated through a random shuffle. A significant impact of the transformation matrixes on the system 

accuracy has been verified, as shown in Section 4. Therefore, the proposed algorithm has been 

developed to select the optimal transformation matrixes. 

3.2. Feature extraction 

Feature–extraction is an important process in implementing the proposed algorithm because it 

determines the feature number 𝐹 and thus the matrix selection domain equal to (𝐹!)(𝑊−1).  
The online signature features generally consist of horizontal and vertical pen coordinates (x, y), 

timestamp (t), and pen pressure (p). Therefore, the online signature is a sequence of elements: (𝑧𝑖), 𝑖 =
1,… ,𝑀 where each element consists of 4-tuple: (𝑥𝑖, 𝑦𝑖 , 𝑡𝑖,𝑝𝑖). The feature extraction process consists 

of representing an online signature in fixed feature domains. Five domains are obtained by the 4-tuple 

in the implemented feature – extraction. They are displacement (s), velocity (v), acceleration (a), path 

tangent angle (ta), and pressure (p). The five features have been extracted following the equations 

below. 

• Displacement: 𝑠𝑖 = √(𝑥𝑖+1 − 𝑥𝑖)
2 + (𝑦𝑖+1 − 𝑦𝑖)

2 

• Velocity: 𝑣𝑖 = 
𝑠𝑖

(𝑡𝑖+1−𝑡𝑖)
 

• Acceleration: 𝑎𝑖 = 
𝑣𝑖

(𝑡𝑖+1−𝑡𝑖)
 

• Path tangent angle: 𝑡𝑎𝑖 = tan
−1 (

(𝑦𝑖+1−𝑦𝑖)

(𝑥𝑖+1−𝑥𝑖)
) 

• Pressure: the pressure domain is an originally data, therefor no conversion was performed. 

 

Further to the feature extraction, each online signature consists of five features (𝑠, 𝑣, 𝑎, 𝑡𝑎, 𝑝). 

3.3. Proposed algorithm 

The proposed algorithm is applied after the feature–extraction and before the BCV-MT. It is based on 

a heuristic to select the optimal transformation matrixes in matrix selection domain in BCV-MT. The 

proposed heuristic is the minimum distance between a mean template (𝑆𝐸𝐵) and the users’ genuine 

signatures [𝑔1, . . , 𝑔𝑀]. The mean template is generated using EB-DBA algorithm [26] on the users’ 

genuine signatures. The first step of EB-DBA is generating a Euclidean Barycenter sequence (EB) by 

the set of genuine signatures. The EB is the first computed average sequence and the input of the DBA 

algorithm [27]. DBA is an iterative algorithm used to refine the computed average sequence. Next, the 

computed mean template is transformed by BCV-MT using a matrix (𝑇𝑘) of the selection domain 
[𝑇1, … , 𝑇𝑁]. The same matrix is used to transform the users’ genuine signatures. For each matrix 𝑇𝑘 the 

following steps are performed. 

The mean template and the genuine signatures are transformed according the BCV-MT using the 

transformation matrix (𝑇𝑘) according to the following equation. 

 

𝑡𝑔𝑓𝑖 = (𝑔𝑓(𝑇𝑘[𝑖,𝑗]),𝑃1 ∗ … ∗ 𝑔𝑓(𝑇𝑘[𝑖,𝑊]),𝑃𝑊), 𝑖 = 1,… , 𝐹     (5) 

 

The average distance (𝑑𝑘) between transformed mean template (𝑇𝑆𝐸𝐵) and transformed genuine 

signatures [𝑡𝑔1, . . , 𝑡𝑔𝑀] is calculated by Dynamic Time Warping (DTW) [28] as details to the following 

equation.  

 



𝑑𝑘 = 
∑ 𝐷𝑇𝑊 (𝑇𝑆𝐸𝐵 ,   𝑡𝑔𝑧)
𝑧=1
𝑀

𝑀
        (6) 

 

The computed average distance (𝑑𝑘) is put into the distances vector [𝑑1, … , 𝑑𝑁]. 
The distances vector [𝑑1, … , 𝑑𝑁] includes all computed distances between the transformed mean 

template and transformed genuine signatures using all the transformation matrixes in the selection 

domain. The last step is selected the index (min) of the minimum value in the distances vector 

[𝑑1, … , 𝑑𝑁]. Consequently, the optimal transformation matrix is the matrix 𝑇𝑚𝑖𝑛 in the selection domain 
[𝑇1, … , 𝑇𝑁]. 

The selected matrix is the optimal transformation matrix to be used in BCV-MT to transform the 

users’ biometric template.  

Details of the proposed algorithm are described in Algorithm 1. 

 

Algorithm 1: 
Input: The set of user’s genuine signatures [𝑔1, . . , 𝑔𝑀] and the matrix selection domain [𝑇1, … , 𝑇𝑁]. 
Output: Transformation matrix selected. 

 

1| SEB = EB-DBA([𝑔1, . . , 𝑔𝑀])            //compute mean template of genuine signatures 

2| for k = 1 … N: 

2.1| TSEB = Bioconvolving(SEB, Tk) //transform mean template with Tk 

2.2| for z = 1 … M: 

2.2.1|    tgz = Bioconvolving(gz, Tk) //transform genuine signature with Tk 

2.2.2|    dtz = DTW(TSEB, tgz)       // distance between transformed mean template and transformed genuine signature    

2.2.3|     [𝑑𝑡1, … , 𝑑𝑡𝑀]        𝑑𝑡𝑧      //put the computed distance in the vector   

2.3| return  𝑑𝑡𝑧 

2.4|    𝑑𝑘 = 
∑ (𝑑𝑡𝑧)
𝑧=1
𝑀

𝑀
               //compute the average distance      

2.5|    [𝑑1, … , 𝑑𝑁]         𝑑𝑘            //put the average distance into the distances vector 

3| return    [𝑑1, … , 𝑑𝑁] 
4| min = index_min([𝑑1, … , 𝑑𝑁]) //index of the minimum value in the distances vector 

5| selected_matrix = 𝑇𝑚𝑖𝑛   //matrix with index ‘min’ in selection matrix domain 

4. Experiments and results 

To prove the validity of the proposed method, three different experiments have been performed. The 

reported experiments are conducted using 4 online signature datasets outlined below. 

 

• SVC2004 in the version Task2 [29] 

• xLongSignDb [30]. 

• BlindSubCorpus is a version of the SUSig dataset [31]. 

• VisualSubCorpus is a version of the SUSig dataset [31]. 

 

Each dataset is split into a training data set and a test data set. The training data set contains 7 genuine 

and 7 false signatures for each user. The test data set contains 3 genuine and 3 false signatures for each 

user. After the feature – extraction, each signature is defined by 5 features (𝐹) and each feature has 

been divided into 2 parts (𝑊). Consequently, the matrix selection domain is equal to (𝐹!)(𝑊−1) = 120. 

The experiments employ two different online signature verification systems to prove the performance 

of the protected systems using BCV-MT revised with the proposed algorithm. The first system 

implements a multiple-template approach comparing a test sample with all the reference samples. The 

system computes the distances between the signatures using DTW and then classify them into genuine 

or false class by the SVM with gaussian kernel [32]. The second system implements single-template 

approach compares a test sample with a mean template generated from the reference samples. It is based 

on time-series averaging and local stability-weighted dynamic time warping [33]. The system uses a 

mean template and the references set to construct the local stability sequence (LS). It is used in the 

DTW cost function, thus implementing the LS-DTW algorithm. LS-DTW algorithm is used to compute 

the distances between the mean template and the reference signatures. The distances are classified using 



a SVM with gaussian kernel into genuine and false class. The conducted experiments and their results 

are detailed in the following. 

4.1. Distribution of the transformation matrixes 

The matrix distribution analysis is conducted to prove the impact of the transformation matrixes in 

BCV-MT. The protected multiple-template system accuracy using each matrix of the selection matrix 

domain and the matrixes frequency into each accuracy class has been calculated. The range [0.5;1] is 

divided into 13 equal intervals and each one represents an accuracy class. Figure 1 shows the bar charts 

of the matrix distribution analysis for each dataset. 

 

 

 
Fig. 1. Bar charts of the matrix distribution for each dataset. 

 

Figure 1 shows that the number of matrixes is widely scattered, for each dataset used. It evidences 

that the system accuracy changes based on the transformation matrix used. Moreover, the variance and 

the average accuracy (ACCAverage) are calculated to prove the variability of the matrix distribution, 

and the results are reported in Table 1. 

 

Table 1 
Variance and average accuracy computed for each dataset. 

Dataset Variance ACCAverage 

SVC2004 Task2 0.00299 0.770 
xLongSignDb 0.00512 0.842 

VisualSubCorpus 0.00153 0.911 
BlindSubCorpus 0.00712 0.854 

 



Table 1 shows the highest variance on dataset BlindSubCorpus, xLongSignDb and SVC2004 Task2. 

Therefore, the random transformation matrix selection may not be the correct approach because the 

system accuracy is highly variable depending on the selected transformation matrix. 

4.2. Correlation between distance and accuracy 

The following experiment is conducted to prove the correlation between the computed distance and the 

system accuracy. The multiple-template system accuracy is calculated for each transformation matrix 

in the selection domain. The system accuracy is related to the distance calculated between the mean 

template and genuine signatures transformed for each matrix in the selection domain. This relationship 

is reported in the scatter plots in Figure 2 for each dataset. 

 

 

 
Fig. 2. Scatter plot on the correlation between distance and accuracy. 

 

Figure 2 shows the accuracy degradation due to the increased distance calculated. The slope of the 

regression line in Figure 2 (red line) describes the incidence of the distance on system accuracy. 

Moreover, the Pearson correlation coefficient (r) to measure the correlation between distance and 

accuracy has been calculated. The regression line slope and the correlation coefficient are reported in 

Table 2. 

 

Table 2 
Regression line slope and Pearson coefficient (r) between distance and accuracy. 

Dataset Regression line slope r 

SVC 2004 Task2 (-2.5) ∙ 1010 -0.73 
xLongSignDB (-3.7) ∙ 1010 -0.68 

VisualSubCorpus (-1.7) ∙ 1010 -0.32 
BlindSubCorpus (-7 .2) ∙ 1010 -0.87 

 



The Pearson coefficient shows a high linear negative relationship between the distance and accuracy 

for each dataset. The Pearson coefficient computed on the VisualSubCorpus dataset is lower than the 

other computed coefficient. Then, in VisualSubCorpus, the system accuracy does not decrease visibly 

with increasing distance, as shown in Figure 2 and Table 2. However, Figure 2 shows that the highest 

accuracy values are concentrated where the distance is lowest. Therefore, selecting the transformation 

matrix based on the minimum distance is a good heuristic for all used datasets. 

4.3. Proposed algorithm performance and comparative analysis 

In the last experiment, the multiple-template system and the single-template system are protected by 

the BCV-MT using the random matrix selection and the matrix selection by the proposed algorithm The 

random matrix selection is implemented using 4 transformation matrixes randomly generated and 

shown below. 

 

Matrix 1: 

(

 
 

3 0
4
1
0
2

4
3
1
2)

 
 
    Matrix 2: 

(

 
 

0 4
2
3
4
1

1
0
3
2)

 
 

 Matrix 3: 

(

 
 

4 0
2
3
1
0

1
3
4
2)

 
 

 Matrix 4: 

(

 
 

3 2
0
2
4
1

3
1
0
4)

 
 

 

 

Accuracy, False Negative Rate (FNR), False positive Rate (FPR), and delta average accuracy 

(∆ACC) are calculated to evaluate the results. The ∆ACC computes the difference between the 

unprotected system accuracy and the protected system accuracy average. Table 3 shows the results. 

 

Table 3 
Performance comparison between the BCV-MT with random matrixes selection, BCV-MT with the 
selected matrixes by the proposed algorithm and the unprotected system. 

SVC2004 

 Single template Multiple template 

 FPR FNR ACC ∆ACC FPR FNR ACC ∆ACC 

BCV-MT with Matrix 1 0.219 0.307 0.742 0.192 0.254 0.245 0.751 0.180 
BCV-MT with Matrix 2 0.377 0.254 0.680 0.254 0.377 0.149 0.743 0.188 
BCV-MT with Matrix 3 0.333 0.280 0.695 0.239 0.333 0.237 0.711 0.220 
BCV-MT with Matrix 4 0.289 0.298 0.718 0.216 0.377 0.219 0.702 0.229 

BCV-MT optimal matrix 0.149 0.184 0.817 0.117 0.122 0.131 0.854 0.077 
Unprotected system 0.035 0.105 0.934  0.061 0.071 0.931  

 

xLongSignDb 

 Single template Multiple template 

 FPR FNR ACC ∆ACC FPR FNR ACC ∆ACC 

BCV-MT with Matrix 1 0.234 0.222 0.774 0.188 0.320 0.123 0.780 0.151 
BCV-MT with Matrix 2 0.345 0.148 0.757 0.205 0.419 0.098 0.746 0.185 
BCV-MT with Matrix 3 0.098 0.087 0.912 0.050 0.136 0.136 0.865 0.066 
BCV-MT with Matrix 4 0.099 0.099 0.909 0.053 0.148 0.086 0.882 0.049 

BCV-MT optimal matrix 0.098 0.024 0.921 0.041 0.086 0.061 0.911 0.020 
Unprotected system 0.049 0.024 0.962  0.061 0.074 0.931  

 
 
 
 
 



VisualSubCorpus 

 Single template Multiple template 

 FPR FNR ACC ∆ACC FPR FNR ACC ∆ACC 

BCV-MT with Matrix 1 0.025 0.170 0.901 0.070 0.037 0.109 0.931 0.002 
BCV-MT with Matrix 2 0.333 0.246 0.713 0.258 0.420 0.134 0.724 0.209 
BCV-MT with Matrix 3 0.125 0.047 0.915 0.056 0.134 0.058 0.902 0.031 
BCV-MT with Matrix 4 0.217 0.120 0.833 0.138 0.284 0.066 0.839 0.094 

BCV-MT optimal matrix 0.076 0.065 0.934 0.037 0.068 0.076 0.932 0.006 
Unprotected system 0.052 0.018 0.971  0.061 0.075 0.938  

 

BlindSubCorpus 

 Single template Multiple template 

 FPR FNR ACC ∆ACC FPR FNR ACC ∆ACC 

BCV-MT with Matrix 1 0.344 0.138 0.764 0.157 0.425 0.092 0.747 0.187 
BCV-MT with Matrix 2 0.241 0.144 0.812 0.109 0.270 0.115 0.814 0.120 
BCV-MT with Matrix 3 0.149 0.098 0.882 0.039 0.229 0.058 0.863 0.071 
BCV-MT with Matrix 4 0.178 0.109 0.860 0.061 0.247 0.063 0.841 0.093 

BCV-MT optimal matrix 0.068 0.034 0.951 -0.030 0.034 0.028 0.968 -0.034 
Unprotected system 0.126 0.042 0.921  0.061 0.078 0.934  

 
Table 3 shows that the performance of protected systems using BCV-MT revised by the proposed 

algorithm is better than the BCV-MT with random matrix selection. Moreover, the ∆ACC shows how 

the accuracy variation between the protected system accuracy with BCV-MT revised by proposed 

algorithm and the unprotected system is not drastically reduced, range from 0.6% to 11%. Therefore, 

the selected matrixes are among the best matrixes in the matrix selection domain. The proposed 

algorithm has been executed on the Azure Virtual Machine of Fsv2 series with the following datasheet. 

CPU Intel Xeon Platinum 8370C with turbo clock speed of 3.4 GHz, RAM 16 Gb and O.S. Linux. The 

average execution times (in milliseconds) of the proposed algorithm for each user are reported in Table 

4. 

 

Table 4 
Execution time in milliseconds for selecting the optimal matrix for each user. 

Dataset Execution time (ms) 

SVC 2004 Task2 33200 
xLongSignDB 42930 

VisualSubCorpus 33970  
BlindSubCorpus 26221  

 
Table 4 shows fast execution time. Therefore, the proposed algorithm can be implemented in real-

world scenarios. Moreover, the proposed algorithm is used only in the enrollment phase, and then the 

cost of execution time does not impact the verification system's usability. 

5. Conclusions and future work 

In this work, a heuristic approach has been introduced to improve the performance of the online 

signature verification systems protected using BCV-MT. In BCV-MT, the transformation matrixes 

significantly impact the system performance. The matrix distribution analysis showed that a random 

matrix choice could compromise the protected system performance. To solve this issue, the proposed 

heuristic selects the optimal transformation matrixes through the minimum distance parameter between 

the transformed mean template and the transformed genuine signatures. This parameter showed a high 



correlation with the system accuracy. Consequently, using BCV-MT revised with the proposed 

algorithm is an optimal strategy to protect the biometric template, drastically reducing system 

performance. A limitation of the proposed heuristic is the increase of the matrix selection domain. The 

size of the domain grows factorial as features increase and exponential as features part increase. 

Therefore, a significant number of features or feature parts would expand the matrix selection domain, 

and then the proposed algorithm would become computationally costly in terms of time. However, the 

increase of the feature parts involves the reduction of the recognition performance [25]. Moreover, the 

proposed algorithm is used only in the training phase, and the cost can be acceptable. The proposed 

heuristic could be implemented in different biometric systems to protect different biometric data in 

future work. In fact, BCV has also been used to protect biometric traits such as the face, iris, palm print, 

fingerprint, and ear [6].  Finally, the proposed heuristic could be improved to automatically generate 

the optimal transformation matrix based on the input biometric features. 
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