CEUR-WS.org/Vol-3492/paper3.pdf

Can LLMs solve generative visual analogies?

Shrey Pandit!, Gautam Shroff?, Ashwin Srinivasan’ and Lovekesh Vig?

BITS Pilani, K.K. Birla Goa Campus, India
2TCS Research,New Delhi, India

Abstract

Recent experiments with large language models (LLMs) have provided some evidence that these models
can perform abstract analogical reasoning [1], including textual puzzles similar to Raven’s progressive
matrices. We consider a visual analogical reasoning task that was solved using neuro-symbolic tech-
niques in [2], and investigate how LLMs fare on this task. The task involves learning a sequence of
transformations by which a sample input/output pair of images are related so as to analogously transform
a test input. Note that unlike the analogical reasoning tasks in [1], this task involves generating an output
as opposed to selecting from a set of choices. We evaluated various LLMs including GPT-4, GPT 3.5-turbo
(ChatGPT), and GPT3 on this task for differing lengths of the sequence of transformations relating the
input and output. Our results suggest that GPT-4 performs the best overall, while GPT 3.5-turbo and
GPT3 perform strongly on shorter program lengths. At the same time, the performance of LLMs for this
task falls far short of the neuro-symbolic approach used earlier, and we speculate as to why this may be
the case, at least as of now.

Keywords

Large language models, GPT-4, Visual analogy, Neural analogical reasoning

1. Introduction

As in [2] we consider the class of visual reasoning problems as demonstrated in Figure 1c in
which each task involves a functional analogy (i.e., x : f(z) :: y : f(y)) wherein each shape in
the input image (here just one) is transformed to one or more positions in the output image via
a sequence of elementary transformations, e.g., shifts in the 3x3 grid. Given a solved example,
constructing the analogous output for a test input can be cast as a program synthesis problem
where we seek to discover a program consisting of one or more sequences of shifts that need to
be applied to each input shape in order to generate the output image. This program can then be
applied to a text image to generate an analogous output.

The neuro-symbolic approach in [2] achieved 100% success on a large collection of such
problems when presented in symbolic form and 94.7% success when given images. In contrast,
pure deep-learning approaches, including meta-learning could achieve 74% success at best as
also documented in [2].

TARML@IFCAI’2023: Workshop on the Interactions between Analogical Reasoning and Machine Learning, at I[JCAI'2023,
August, 2023, Macao, China
*Corresponding author.
& pandit.shrey.01@gmail.com (S. Pandit)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
; CEUR Workshop Proceedings (CEUR-WS.org)

30

Shrey Pandit et al. IARML@1JCAI’23 Workshop Proceedings

2. Experiments

We applied LLMs to solve such a visual analogy task, with the image translated into symbolic
form. We use the trained models provided by OpenAl API and give a few solved examples in
the prompt to help the LLMs learn.

Prompting We prompt the LLMs with a set of rules for the task, which includes information
on the allowed positional shifts, the set of permissible states, and the non-wrapping state of the
grid. As a hint, we also specify the expected program length in the prompt. We also provide a
set of solved examples to guide the LM’s learning process. Figure 1a illustrates a representative
example of the prompt.

Input Prompt
Rule: 1) The allowed state: . — H (
(20). (2.1). 222). shiftup e poi . wher

i

Solved example

Simple prompting: {input': {('0x', (2, 0))}, 'output’: {(0', (0, 1))},
'program': 'shiftdown’, 'shiftleft', 'shiftleft’, ‘out',

Solution
) Task

Chain of thought: {linput': {(0x', (2, 0))}, 'output': {(0x', (0, 1))},
‘program': {(2,0),'shiftdown’,(2,1),["T}, {(2.1). shiftleft',(1,1)["]},
{(1,1),'shiftieft',(0,1),["]}, {(0,1),'out',(0,1).[('0x', (0, 1))]}. I}, (C) Given eXample input—output

image pairs, generate the
(a) Prompt with rules, solved (b) Chain-of-thought vs. simple analogous output for the
examples and test input. prompting given query image.

Figure 1: Figure 1a showing the prompt rules, Figure 1b showing the comparison of COT vs. simple
prompting, and the Figure 1c showing overview of the entire process.

Program length 3 Program length 5
Best of Simple promptin Chain of thoughts Simple promptin Chain of thoughts
n outputs ple prompting g ple prompting g

1 14% 20% 5.4% 4.16%
GPT-3 3 26% 30% 1M11% 12.8%

5 30% 42% 23% 18.9%

1 10% 6% 6.12% 8%
GPT-3.5-turbo 3 16.3% 14% 22% 18%

5 33.3% 22% 12% 14%

1 18.36% 26% 22% 12%
GPT-4 3 38.77% 52% 26.5% 22%

5 40% 46% 39.58% 34%
Table 1

Table comparing the performance of GPT3, GPT 3.5-turbo, and GPT4 over program lengths 3 and 5, with
various different numbers of outputs and ways of prompting over 50 trials. In the above case, we are
providing ten solved examples.

Sampling The top prediction generated by a LM may not always be the optimal choice, so we
also evaluate results using the top-n predictions for consideration in determining the correctness
of the task. The task is deemed successful if any of the n predictions are accurate.

31

Shrey Pandit et al. IARML@1JCAI’23 Workshop Proceedings

GPT3

Tokens 2847 3690

Simple Prompting Accuracy 48% 32%

Chain-of-thought = Tokens 2345 3813
prompting Accuracy 42% 50%

Table 2
Chain-of-thought vs more examples for same token length.

Chain-of-thought prompting: Previous works such as [3] have shown that language-model
performance increases drastically in reasoning tasks when given chain-of-thought prompts. In
our context we provide a chain-of-thought by providing, with each step of the solved example,
the current state on the grid, positional shift, next position on grid, and the state of the output
buffer.

Changing the program length: We experimented with different program lengths (3 & 5);
empirically, increasing the program length makes the task more difficult.

3. Results and Conclusions

Referring to Table 1 we observe the following: (i) Chain-of-thought improves performance
over simple prompting, which was expected. (ii) Further, chain-of-thought prompting is also
better (albeit slightly) than providing more examples for similar token lengths, see Table 2. (ii)
Sampling more examples improves performance, also expected. (iii) Analogies involving longer
sequences (programs) are more difficult as expected; however we observe a drastic drop in
performance for GPT3 and GPT 3.5-turbo but only a marginal drop is observed for GPT4. While
the input prompts do affect the LLMs’ performance, it’s important to mention that a uniform
prompt template was used for all the analyzed LLMs in this study.

Overall the performance of LLMs for our simple visual analogy task fall far short of the
neuro-symbolic techniques used in [2]. We note that [2] relied search over possible sequences
that could successfully transform a text input to its output. LLMs do not explicitly search over
potential outputs. We speculate that incorporating elements of explicit search may enable LLMs
to perform better at generative analogies.

References

[1] W. et. al, Emergent analogical reasoning in large language models, arXiv:2212.09196 (2022).

[2] S. et. al, Solving visual analogies using neural algorithmic reasoning, AAAI (Student
Abstract) (2022).

[3] J. W. et. al, Chain of thought prompting elicits reasoning in large language models, NeurIPS
2022 (2022).

32

