
On Computing Relevant Features for Explaining NBCs⋆

Yacine Izza1, Joao Marques-Silva2

1CREATE, National University of Singapore, 1 CREATE Way, 138602, Singapore
2IRIT, CNRS, 118 Route de Narbonne, 31062 Toulouse, France

Abstract
Despite the progress observed with model-agnostic explainable AI (XAI), it is the case that model-agnostic XAI can produce
incorrect explanations. One alternative are the so-called formal approaches to XAI, that include abductive explanations.
Unfortunately, abductive explanations also exhibit important drawbacks, the most visible of which is arguably their size.
The computation of relevant features serves to trade off probabilistic precision for the number of features in an explanation.
However, even for very simple classifiers, the complexity of computing sets of relevant features is prohibitive. This paper
investigates the computation of relevant sets for Naive Bayes Classifiers (NBCs), and shows that, in practice, these are easy to
compute. Furthermore, the experiments confirm that succinct sets of relevant features can be obtained with NBCs.

Keywords
Naive Bayes, Explainability, Dynamic Programming

1. Introduction
The advances in Machine Learning (ML) in recent years
motivate an ever increasing range of practical applica-
tions of Artificial Intelligence (AI) systems. In some do-
mains, the use of AI systems is premised on the avail-
ability of mechanisms for explaining the often opaque
operation of ML models. Some uses of ML models are
deemed high-risk given the impact that their operation
can have on people [2]. (Other authors refer to high-
stakes applications [3].) For high-risk AI systems, a crit-
ical requirement is rigor, either when reasoning about
these systems, or when explaining their predictions.

Recent years have witnessed a growing interest in
eXplainable AI (XAI) [4, 5, 6, 7, 8, 9]. The best-known
XAI approaches can be broadly categorized as model-
agnostic methods, that include for example LIME [10],
SHAP [11] and Anchor [12], and intrinsic interpretabil-
ity [3, 8], for which the explanation is represented by the
actual (interpretable) ML model. Intrinsic interpretabil-
ity may not represent a viable option in some uses of
AI systems. On the other hand, model-agnostic meth-
ods, although locally accurate, can produce explanations
that are unsound [13], in addition to displaying several
other drawbacks [14, 15, 16, 17]. Unsound explanations
are hopeless whenever rigor is a key requirement; thus,
model-agnostic explanations ought not be used in high-
risk settings. Indeed, it has been reported [13] that an

ENIGMA-23, September 03–04, 2023, Rhodes, Greece
⋆

A longer version of this paper has been published at Int. J. Approx.
Reason. Vol 159 (2023) [1].

" izza@comp.nus.edu.sg (Y. Izza); joao.marques-silva@irit.fr
(J. Marques-Silva)
� 0000-0002-7774-1945 (Y. Izza); 0000-0002-6632-3086
(J. Marques-Silva)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

explanation 𝑋 can be consistent with different predicted
classes. For example, for a bank loan application, 𝑋
might be consistent with an approved loan application,
but also with a declined loan application. An explanation
that is consistent with both a declined and an approved
loan applications offers no insight to why one of the loan
applications was declined. There have been recent efforts
on rigorous XAI approaches [18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], most
of which are based on feature attribution, namely the
computation of so-called abductive explanations (AXp’s).
However, these efforts have mostly focused on the scal-
ability of computing rigorous explanations, with more
recent work investigating input distributions [34]. Nev-
ertheless, another important limitation of rigorous XAI
approaches is the often unwieldy size of explanations. Re-
cent work studied probabilistic explanations, as a mecha-
nism to reduce the size of rigorous explanations [41, 42].
Probabilistic explanations have extended model-agnostic
approaches [41], and so can suffer from unsoundness.
Alternatively, more rigorous approaches to computing
probabilistic explanations have been shown to be compu-
tationally hard, concretely hard for NP𝑃𝑃 , and so most
likely beyond the reach of modern automated reasoners.

This paper builds on recent work [42] on rigorous
probabilistic explanations, and investigates their prac-
tical scalability. However, instead of considering classi-
fiers represented as boolean circuits (as in [42]), the paper
specifically considers the family of naive Bayes classifiers
(NBCs). Earlier work showed that rigorous explanations
of NBCs, concretely AXp’s, are computed in polynomial
time, and that their enumeration is achieved with polyno-
mial delay [43]. Unfortunately, the size of explanations
was not investigated in this earlier work. This paper
studies probabilistic explanations for the concrete case of
NBCs. For the case of categorical features, the paper re-

75

mailto:izza@comp.nus.edu.sg
mailto:joao.marques-silva@irit.fr
https://orcid.org/0000-0002-7774-1945
https://orcid.org/0000-0002-6632-3086
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

lates probabilistic explanations of NBCs with the problem
of counting the models of (restricted forms) of integer
programming constraints, and proposes a dynamic pro-
gramming based, pseudo-polynomial algorithm for com-
puting approximate (or locally-minimal) explanations.
Such approximate explanations offer important theoreti-
cal guarantees: i) approximate explanations are not larger
than some rigorous explanation; ii) approximate explana-
tions are not smaller than some rigorous probabilistic ex-
planation; and iii) approximate explanations offer strong
probabilistic guarantees on their precision. More impor-
tantly, the experimental results demonstrate that succinct
explanations, with sizes that can be deemed within the
grasp of human decision makers [44], can be very effi-
ciently computed with most often a small decrease in the
precision of the explanation.

The paper is organized as follows. Section 2 introduces
the definitions and notation used throughout the paper.
Section 3 summarizes the computation of explanations
for NBCs proposed in earlier work [43]. Section 4 de-
tails the approach proposed in this paper for computing
locally-minimal probabilistic AXp’s. Section 5 presents
experimental results confirming that precise short locally-
minimal AXp’s can be efficiently computed. Section 6
concludes the paper.

2. Preliminaries

2.1. Classification problems
This paper considers classification problems, which
are defined on a set of features (or attributes) ℱ =
{1, . . . ,𝑚} and a set of classes 𝒦 = {𝑐1, 𝑐2, . . . , 𝑐𝐾}.
Each feature 𝑖 ∈ ℱ takes values from a domain D𝑖. In
general, domains can be categorical or ordinal, with val-
ues that can be boolean, integer or real-valued but in
this paper we restrict 𝒦 = {0, 1}, i.e. binary classi-
fiers, and all features are categorical. (Throughout the
paper, we also use the notations ⊖ and ⊕ to denote,
resp. class 0 and class 1.) Feature space is defined as
F = D1 × D2 × . . .× D𝑚; |F| represents the total num-
ber of points in F if none of the features is real-valued.
For boolean domains, D𝑖 = {0, 1} = B, 𝑖 = 1, . . . ,𝑚,
and F = B𝑚. The notation x = (𝑥1, . . . , 𝑥𝑚) denotes
an arbitrary point in feature space, where each 𝑥𝑖 is a
variable taking values fromD𝑖. The set of variables associ-
ated with features is 𝑋 = {𝑥1, . . . , 𝑥𝑚}. Moreover, the
notation v = (𝑣1, . . . , 𝑣𝑚) represents a specific point
in feature space, where each 𝑣𝑖 is a constant represent-
ing one concrete value from D𝑖. An ML classifier M is
characterized by a (non-constant) classification function
𝜅 that maps feature space F into the set of classes 𝒦, i.e.
𝜅 : F→ 𝒦. An instance (or observation) denotes a pair
(v, 𝑐), where v ∈ F and 𝑐 ∈ 𝒦, with 𝑐 = 𝜅(v). (We also

use the term instance to refer to v, leaving 𝑐 implicit.)

2.2. Formal explanations
We now define formal explanations. In contrast with the
well-known model-agnostic approaches to XAI [10, 11,
12, 5], formal explanations are model-precise, i.e. their
definition reflects the model’s computed function. Prime
implicant (PI) explanations [18] denote a minimal set of
literals (relating a feature value 𝑥𝑖 and a constant 𝑣𝑖 ∈
D𝑖) that are sufficient for the prediction. PI-explanations
are related with abduction, and so are also referred to
as abductive explanations (AXp) [19]. Formally, given
v = (𝑣1, . . . , 𝑣𝑚) ∈ F with 𝜅(v) = 𝑐, an AXp is any
minimal subset 𝒳 ⊆ ℱ such that,

∀(x ∈ F).
[︁⋀︁

𝑖∈𝒳
(𝑥𝑖 = 𝑣𝑖)

]︁
→(𝜅(x) = 𝑐) (1)

i.e. the features in 𝒳 are sufficient for the prediction
when these take the values dictated by v, and 𝒳 is irre-
ducible. Also, a non-minimal set such that (1) holds is a
WeakAXp. AXp’s can be viewed as answering a ‘Why?’
question, i.e. why is some prediction made given some
point in feature space. Contrastive explanations [45] of-
fer a different view of explanations, but these are beyond
the scope of the paper.

2.3. 𝛿-relevant sets
𝛿-relevant sets were proposed in more recent work [42]
as a generalized formalization of explanations. 𝛿-relevant
sets can be viewed as probabilistic PIs, with AXp’s repre-
senting a special case of 𝛿-relevant sets where 𝛿 = 1, i.e.
probabilistic PIs that are actual PIs. We briefly overview
the definitions related with relevant sets. The assump-
tions regarding the probabilities of logical propositions
are those made in earlier work [42]. Let Prx(𝐴(x)) de-
note the probability of some proposition 𝐴 defined on
the vector of variables x = (𝑥1, . . . , 𝑥𝑚), i.e.

Prx(𝐴(x)) = |{x∈F:𝐴(x)=1}|
|{x∈F}|

Prx(𝐴(x) |𝐵(x)) = |{x∈F:𝐴(x)=1∧𝐵(x)=1}|
|{x∈F:𝐵(x)=1}|

(2)
(Similar to earlier work, it is assumed that the features are
independent and uniformly distributed [42]. Moreover,
the definitions above can be adapted in case some of
the features are real-valued. As noted earlier, the paper
studies only categorical features.)

Definition 2.1 (𝛿-relevant set [42]). Consider 𝜅 : B𝑚 →
𝒦 = B, v ∈ B𝑚, 𝜅(v) = 𝑐 ∈ B, and 𝛿 ∈ [0, 1]. 𝒮 ⊆ ℱ
is a 𝛿-relevant set for 𝜅 and v if,

Prx(𝜅(x) = 𝑐 |x𝒮 = v𝒮) ≥ 𝛿 (3)

(where the restriction of x to the variables with indices
in 𝒮 is represented by x𝒮 = (𝑥𝑖)𝑖∈𝒮).

76

(Observe that Prx(𝜅(x) = 𝑐 |x𝒮 = v𝒮) is often re-
ferred to as the precision of 𝒮 [12, 21].) Thus, a 𝛿-relevant
set represents a set of features which, if fixed to some pre-
defined value (taken from a reference vector v), ensures
that the probability of the prediction being the same as
the one for v is no less than 𝛿.

Definition 2.2 (Min-𝛿-relevant set). Given 𝜅, v ∈ B𝑚,
and 𝛿 ∈ [0, 1], find the smallest 𝑘, such that there exists
𝒮 ⊆ ℱ , with |𝒮| = 𝑘, and 𝒮 is a 𝛿-relevant set for 𝜅 and
v.

With the goal of proving the computational complexity
of finding a minimum-size set of features that is a 𝛿-
relevant set, earlier work [42] restricted the definition to
the case where 𝜅 is represented as a boolean circuit.

(Boolean circuits were restricted to propositional for-
mulas defined using the operators ∨, ∧ and ¬, and using
a set of variables representing the inputs; this explains
the choice of inputs over sets in earlier work [42].)

2.4. Naive Bayes Classifiers (NBCs)
NBC [46] is a Bayesian Network model [47] character-
ized by strong conditional independence assumptions
among the features. Given some observation x ∈ F, the
predicted class is given by:

𝜅(x) = argmax𝑐∈𝒦 (Pr(𝑐|x)) (4)

Using the Bayes theorem, Pr(𝑐|x) can be computed as
follows: Pr(𝑐|x) = Pr(𝑐,x)/Pr(x). In practice, we compute
only the numerator of the fraction, since the denominator
Pr(x) is constant for every 𝑐 ∈ 𝒦. Moreover, given
the conditional mutual independency of the features, we
have:

Pr(𝑐,x) = Pr(𝑐)×
∏︁

𝑖
Pr(𝑥𝑖|𝑐)

Furthermore, it is also common in practice to apply loga-
rithmic transformations on probabilities of Pr(𝑐,x), thus
getting:

log Pr(𝑐,x) = log Pr(𝑐) +
∑︁

𝑖
log Pr(𝑥𝑖|𝑐)

Therefore, (4) can be rewritten as follows:

𝜅(x) = argmax𝑐∈𝒦

(︁
log Pr(𝑐) +

∑︁
𝑖
log Pr(𝑥𝑖|𝑐)

)︁
(5)

For simplicity, and following the notations used in [43],
we use lPr to denote the logarithmic probabilities, thus
getting:

𝜅(x) = argmax𝑐∈𝒦

(︁
lPr(𝑐) +

∑︁
𝑖
lPr(𝑥𝑖|𝑐)

)︁
(6)

(Note that also for simplicity, it is common in practice
to add a sufficiently large positive threshold 𝑇 to each
probability and then use only positive values.)

Running Example. Consider the NBC depicted graph-
ically in Figure 1 1. The features are the discrete random
variables 𝑅1, 𝑅2, 𝑅3, 𝑅4 and 𝑅5. Each 𝑅𝑖 can take val-
ues t or f denoting, respectively, whether a listener likes
or not that radio station. Random variable 𝐺 denotes
an age class, which can take values Y and O, denoting
young and older listeners, respectively. The target class⊕
denotes the prediction yes (i.e. the listener likes the radio
station) and⊖ denotes the prediction no (i.e. the listerner
does not like the radio station). Thus, 𝒦 = {⊖,⊕}. Let
us consider v = (𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5) = (t, f , f , f , t).
We associate 𝑟𝑖 to each literal (𝑅𝑖 = t) and¬𝑟𝑖 to literals
(𝑅𝑖 = f). Using (6), we get the values shown in Figure 2.
(Note that to use positive values, we added 𝑇 = +4
to each lPr(·).) As can be concluded, the classifier will
predict ⊕.

3. Explaining NBCs in Polynomial
Time

This section overviews the approach proposed in [43]
for computing AXp’s for binary NBCs. The general idea
is to reduce the NBC problem into an Extended Linear
Classifier (XLC) and then explain the resulting XLC. Our
purpose is to devise a new approach that builds on XLC
formulation to compute 𝛿-relevant sets for NBCs. Hence,
it is useful to recall first the translation of NBCs into
XLCs and AXp’s extraction from XLCs.

3.1. Extended Linear Classifiers
We consider an XLC with categorical features. (Recall
that the paper considers NBCs with binary classes and cat-
egorical data.) Each feature 𝑖 ∈ ℱ has 𝑥𝑖 ∈ {1, . . . , 𝑑𝑖},
(i.e. D𝑖 = {1, . . . , 𝑑𝑖}). Let,

𝜈(x) ≜ 𝑤0 +
∑︁

𝑖∈ℱ
𝜎(𝑥𝑖, 𝑣

1
𝑖 , 𝑣

2
𝑖 , . . . , 𝑣

𝑑𝑖
𝑖) (7)

𝜎 is a selector function that picks the value 𝑣𝑟𝑖 iff 𝑥𝑖 takes
value 𝑟. Moreover, let us define the decision function,
𝜅(x) = ⊕ if 𝜈(x) > 0 and 𝜅(x) = ⊖ if 𝜈(x) ≤ 0.

The reduction of a binary NBC, with categorical fea-
tures, to an XLC is completed by setting: 𝑤0 ≜ lPr(⊕)−
lPr(⊖), 𝑣1𝑖 ≜ lPr(𝑥𝑖 = 1|⊕) − lPr(𝑥𝑖 = 1|⊖),
𝑣2𝑖 ≜ lPr(𝑥𝑖 = 2|⊕) − lPr(𝑥𝑖 = 2|⊖), . . . , 𝑣𝑑𝑖𝑖 ≜
lPr(𝑥𝑖 = 𝑑𝑖|⊕)− lPr(𝑥𝑖 = 𝑑𝑖|⊖). Hence, the argmax
in (6) is replaced with inequality to get the following:

lPr(⊕)− lPr(⊖)+
∑︁𝑚

𝑖=1

∑︁𝑘=𝑑𝑗

𝑘=1
(lPr(𝑥𝑖 = 𝑘|⊕) −

lPr(𝑥𝑖 = 𝑘|⊖))(𝑥𝑖 = 𝑘) > 0 (8)

1This example of an NBC is adapted from [43], which is initially
reported in [48, Ch.10].

77

𝐺

𝑅2 𝑅3𝑅1 𝑅4 𝑅5

𝐺 Pr(𝐺)

⊖ 0.90

𝐺 Pr(𝑅1|𝐺)

⊕ 0.95
⊖ 0.03

𝐺 Pr(𝑅2|𝐺)

⊕ 0.05
⊖ 0.95

𝐺 Pr(𝑅3|𝐺)

⊕ 0.02
⊖ 0.34

𝐺 Pr(𝑅4|𝐺)

⊕ 0.20
⊖ 0.75

𝐺 Pr(𝑅5|𝐺)

⊕ 0.95
⊖ 0.03

Figure 1: Running example.

Pr(⊕) Pr(𝑟1|⊕) Pr(¬𝑟2|⊕) Pr(¬𝑟3|⊕) Pr(¬𝑟4|⊕) Pr(𝑟5|⊕) lPr(⊕|v)
Pr(·) 0.10 0.95 0.95 0.98 0.80 0.95
lPr(·) 1.70 3.95 3.95 3.98 3.78 3.95 21.31

(a) Computing lPr(⊕|v)

Pr(⊖) Pr(𝑟1|⊖) Pr(¬𝑟2|⊖) Pr(¬𝑟3|⊖) Pr(¬𝑟4|⊖) Pr(𝑟5|⊖) lPr(⊖|v)
Pr(·) 0.90 0.03 0.05 0.66 0.25 0.03
lPr(·) 3.89 0.49 1.00 3.58 2.61 0.49 12.06

(b) Computing lPr(⊖|v)

Figure 2: Deciding prediction for v = (t, f , f , f , t)

Example 1. Figure 3a shows the resulting XLC formula-
tion for the example in Figure 2. We also let f be associ-
ated with value 1 and t be associated with value 2, and
𝑑𝑖 = 2.

3.2. Explaining XLCs
We now describe how AXp’s can be computed for XLCs.
For a given instance x = a, define a constant slack (or
gap) value Γ given by,

Γ ≜ 𝜈(a) =
∑︁

𝑖∈ℱ
𝜎(𝑎𝑖, 𝑣

1
𝑖 , 𝑣

2
𝑖 , . . . , 𝑣

𝑑𝑖
𝑖) (9)

Computing an AXp corresponds to finding a subset-
minimal set of literals 𝒮 ⊆ ℱ such that (1) holds, or
alternatively,

∀(x ∈ F).
⋀︁

𝑖∈𝒮
(𝑥𝑖 = 𝑎𝑖) → (𝜈(x) > 0) (10)

under the assumption that 𝜈(a) > 0. Thus, the pur-
pose is to find the smallest slack that can be achieved
by allowing the feature not in 𝒮 to take any value (i.e.
universal/free features), given that the literals in 𝒮 are
fixed by a (i.e.

⋀︀
𝑖∈𝒮(𝑥𝑖 = 𝑎𝑖)).

Let 𝑣𝜔𝑖 denote the smallest (or worst-case) value associ-
ated with 𝑥𝑖. Then, by letting every 𝑥𝑖 take any value,
the worst-case value of 𝜈(e) is,

Γ𝜔 = 𝑤0 +
∑︁

𝑖∈ℱ
𝑣𝜔𝑖 (11)

Moreover, from (9), we have: Γ = 𝑤0 +
∑︀

𝑖∈ℱ 𝑣𝑎𝑖
𝑖 . The

expression above can be rewritten as follows,

Γ𝜔 = 𝑤0 +
∑︀

𝑖∈ℱ 𝑣𝑎𝑖
𝑖 −

∑︀
𝑖∈ℱ (𝑣𝑎𝑖

𝑖 − 𝑣𝜔𝑖)

= Γ−
∑︀

𝑖∈ℱ 𝛿𝑖 = −Φ
(12)

𝑤0 𝑣11 𝑣21 𝑣12 𝑣22 𝑣13 𝑣23 𝑣14 𝑣24 𝑣15 𝑣25
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32 -2.97 3.46

(a) Example reduction of NBC to XLC (Example 1)

Γ 𝛿1 𝛿5 𝛿2 𝛿3 𝛿4 Φ

9.25 6.43 6.43 5.90 3.23 2.49 15.23

(b) Computing 𝛿𝑗 ’s for the XLC (Example 2)

Figure 3: Values used in the running example (Example 1 and Example 2)

78

where 𝛿𝑖 ≜ 𝑣𝑎𝑖
𝑖 − 𝑣𝜔𝑖 , and Φ ≜

∑︀
𝑖∈ℱ 𝛿𝑖 − Γ = −Γ𝜔 .

Recall the goal is to find a subset-minimal set 𝒮 such that
the prediction is still 𝑐 (whatever the values of the other
features):

𝑤0 +
∑︁

𝑖∈𝒮
𝑣𝑎𝑖
𝑖 +

∑︁
𝑖/∈𝒮

𝑣𝜔𝑖 = −Φ+
∑︁

𝑖∈𝒮
𝛿𝑖 > 0

(13)
In turn, (13) can be represented as the following knapsack
problem [49]:

min
∑︀𝑚

𝑖=1 𝑝𝑖

such that
∑︀𝑚

𝑖=1 𝛿𝑖𝑝𝑖 > Φ

𝑝𝑖 ∈ {0, 1}
(14)

where the variables 𝑝𝑖 assigned value 1 denote the indices
included in 𝒮 . Note that, the fact that the coefficients in
the cost function are all equal to 1 makes the problem
solvable in log-linear time.

Example 2. Figure 3b shows the values used for
computing explanations for the example in Figure 2. For
this example, the sorted 𝛿𝑗 ’s become ⟨𝛿1, 𝛿5, 𝛿2, 𝛿4, 𝛿3⟩.
By picking 𝛿1, 𝛿2 and 𝛿5, we ensure that the pre-
diction is ⊕, independently of the values assigned
to features 3 and 4. Thus {1, 2, 5} is an AXp for
the NBC shown in Figure 1, with the input instance
(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) = (t, f , f , f , t). (It is easy to
observe that 𝜅((t, f , f , t, t)) = 𝜅((t, f , t, f , t)) =
𝜅((t, f , t, t, t)) = 𝜅((t, t, f , f , t)) =
𝜅((t, t, f , t, t)) = 𝜅((t, t, t, f , t)) = ⊕.)

4. 𝛿-Relevant Sets for NBCs
This section investigates the computation of 𝛿-relevant
sets in the concrete case of NBCs.

Observe that Definition 2.2 imposes no restriction on
the representation of the classifier that is assumed in ear-
lier work [42], i.e. the logical representation of 𝜅 need not
be a boolean circuit. As a result, we extend the definitions
from earlier work [42], as detailed below.

4.1. Weak, Locally-Minimal & Smallest
Probabilistic AXp’s

A weak probabilistic AXp (WeakPAXp) is a set of fixed
features for which the conditional probability of predict-
ing the correct class 𝑐 exceeds 𝛿, given 𝑐 = 𝜅(v). Thus,
𝒮 ⊆ ℱ is a WeakPAXp if,

WeakPAXp(𝒮;F, 𝜅,v, 𝛿)
:= Prx(𝜅(x) = 𝑐 |x𝒮 = v𝒮) ≥ 𝛿 (15)

:=
|{x ∈ F : 𝜅(x) = 𝑐 ∧ (x𝒮 = v𝒮)}|

|{x ∈ F : (x𝒮 = v𝒮)}|
≥ 𝛿

which means that the fraction of the number of models
predicting the target class and consistent with the fixed
features (represented by 𝒮), given the total number of
points in feature space consistent with the fixed features,
must exceed 𝛿. (The main difference to (3) is that features
and classes are no longer required to be boolean. Also, the
definition makes explicit the parameterizations assumed.)
Moreover, a probabilistic AXp (PAXp)𝒳 is a WeakPAXp
that is also subset-minimal,

PAXp(𝒳 ;F, 𝜅,v, 𝛿) :=

WeakPAXp(𝒳 ;F, 𝜅,v, 𝛿) ∧ (16)

∀(𝒳 ′ ⊊ 𝒳).¬WeakPAXp(𝒳 ′;F, 𝜅,v, 𝛿)

Minimum-size PAXp’s (MinPAXp, or smallest PAXp)
generalize Min-𝛿-relevant sets in Definition 2.2. Further-
more, we define an locally-minimal probabilistic AXp
(LmPAXp) 𝒳 as a WeakPAXp such that the removal of
any single feature 𝑖 from 𝒳 will falsify WeakPAXp(𝒳 ∖
{𝑖};F, 𝜅,v, 𝛿). Formally:

LmPAXp(𝒳 ;F, 𝜅,v, 𝛿) :=

WeakPAXp(𝒳 ;F, 𝜅,v, 𝛿) ∧ (17)

∀(𝒳 ∖ {𝑖}).¬WeakPAXp(𝒳 ∖ {𝑖};F, 𝜅,v, 𝛿)

As stated earlier, the main purpose of this paper is
to investigate the computation of LmPAXp explana-
tions. The next section introduces a pseudo-polynomial
time algorithm for computing LmPAXp’s. Although,
LmPAXp are not minimal subset/cardinality, our exper-
iments show that the proposed approach computes (in
pseudo-polynomial time) succinct [44] and highly precise
approximate explanations.

4.2. Counting Models of XLCs
Earlier work [50, 51, 52, 53] proposed the use of dynamic
programming (DP) for approximating the number of fea-
sible solutions of the 0-1 knapsack constraint, i.e. the
#knapsack problem. Here we propose an extension of the
basic formulation, to allow counting feasible solutions of
XLCs.

We are interested in the number of solutions of,∑︁
𝑗∈ℱ

𝜎(𝑥𝑗 , 𝑣
1
𝑗 , 𝑣

2
𝑗 , . . . , 𝑣

𝑑𝑗
𝑗) > −𝑤0 (18)

where we assume all 𝑣𝑖𝑗 to be integer-valued, and non-
negative (e.g. this is what the translation from NBCs to
XLCs yields). Moreover, (18) can be written as follows:

∑︁
𝑗∈ℱ

𝜎(𝑥𝑗 ,−𝑣1𝑗 ,−𝑣2𝑗 , . . . ,−𝑣
𝑑𝑗
𝑗) < 𝑤0 (19)

which reveals the relationship with the Knapsack con-
straint.

79

For each 𝑗, let us sort the −𝑣𝑖𝑗 in non-decreasing or-
der, collapsing duplicates, and counting the number of
duplicates, obtaining two sequences:

⟨𝑤1
𝑗 , . . . , 𝑤

𝑑
′
𝑗

𝑗 ⟩

⟨𝑛1
𝑗 , . . . , 𝑛

𝑑
′
𝑗

𝑗 ⟩

such that 𝑤1
𝑗 < 𝑤2

𝑗 < . . . < 𝑤
𝑑
′
𝑗

𝑗 and each 𝑛𝑖
𝑗 ≥ 1 gives

the number of repetitions of weight 𝑤𝑖
𝑗 .

Counting. Let 𝐶(𝑘, 𝑟) denote the number of solu-
tions of (19) when the subset of features considered is
{1, . . . , 𝑘} and the sum of picked weights is at most 𝑟.
To define the solution for the first 𝑘 features, taking into
account the solution for the first 𝑘− 1 features, we must
consider that the solution for 𝑟 can be obtained due to
any of the possible values of 𝑥𝑗 . As a result, for an XLC
the general recursive definition of 𝐶(𝑘, 𝑟) becomes,

𝐶(𝑘, 𝑟) =
∑︁𝑑

′
𝑘

𝑖=1
𝑛𝑖
𝑘 × 𝐶(𝑘 − 1, 𝑟 − 𝑤𝑖

𝑘)

Moreover, 𝐶(1, 𝑟) is given by,

𝐶(1, 𝑟) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑟 < 𝑤1
1

𝑛1
1 if 𝑤1

1 ≤ 𝑟 < 𝑤2
1

𝑛1
1 + 𝑛2

1 if 𝑤2
1 ≤ 𝑟 < 𝑤3

1

. . .∑︀𝑑
′
1

𝑖=1 𝑛
𝑖
1 if 𝑤𝑑

′
1

1 ≤ 𝑟

In addition, if 𝑟 < 0, then𝐶(𝑘, 𝑟) = 0, for 𝑘 = 1, . . . ,𝑚.
Finally, the dimensions of the 𝐶(𝑘, 𝑟) table are as follows:

1. The number of rows is 𝑚.
2. The (worst-case) number of columns is given by:

𝑊 ′ =
∑︁
𝑗∈ℱ

𝑛
𝑑′𝑗
𝑗 × 𝑤

𝑑′𝑗
𝑗 (20)

𝑊 ′ represents the largest possible value, in the-
ory. However, in practice, it suffices to set the
number of columns to 𝑊 = 𝑤0 + 𝑇 , which is
often much smaller than 𝑊 ′.

Example 3. Consider the following problem. There are 4
features, ℱ = {1, 2, 3, 4}. Each feature 𝑗 takes values in
{1, 2, 3}, i.e. 𝑥𝑗 ∈ {1, 2, 3}. The prediction should be 1
when the sum of the values of the 𝑥𝑗 variables is no less
than 8. We set 𝑤0 = −7, and get the formulation,∑︁

𝑗∈{1,2,3,4}

𝜎(𝑥𝑗 , 1, 2, 3) > 7

where each 𝑥𝑗 picks value in {1, 2, 3}. We translate to
the extended knapsack formulation and obtain:∑︁

𝑗∈{1,2,3,4}

𝜎(𝑥𝑗 ,−1,−2,−3) < −7

Table 1
DP table for Example 3

𝑘

𝑟
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 3 3 3 3 3 – – – –
2 0 0 1 3 6 8 9 9 9 – – – –
3 0 0 0 1 4 10 17 23 16 – – – –
4 0 0 0 0 1 5 15 31 50 – – – –

We require the weights to be integer and non-negative,
and so we sum to each 𝑤𝑘

𝑗 the complement of the most
negative 𝑤𝑘

𝑗 plus 1. Therefore, we add +4 to each 𝑗 and
+16 to right-hand side of the inequality. Thus, we get∑︁

𝑗∈{1,2,3,4}

𝜎(𝑥𝑗 , 3, 2, 1) < 9

For this formulation, 𝑥𝑗 = 1 picks value 3. (For example,
we can pick two 𝑥𝑗 with value 1, but not 3, as expected.)

In this case, the DP table size will be 4 × 12, even
though we are interested in entry 𝐶(4, 8). Table 1 shows
DP table, and the number of solutions for the starting
problem, i.e. there are 50 combinations of values whose
sum is no less than 8.

By default, the dynamic programming formulation
assumes that features can take any value. However, the
same formulation can be adapted when features take a
given (fixed) value. Observe that this will be instrumental
for computing LmPAXp’s.

Consider that feature 𝑘 is fixed to value 𝑙. Then, the
formulation for 𝐶(𝑘, 𝑟) becomes:

𝐶(𝑘, 𝑟) = 𝑛𝑙
𝑘 ×𝐶(𝑘− 1, 𝑟−𝑤𝑙

𝑘) = 𝐶(𝑘− 1, 𝑟−𝑤𝑙
𝑘)

Given that 𝑘 is fixed, then it is the case that 𝑛𝑙
𝑘 = 1.

Example 4. For Example 3, assume that 𝑥2 = 1 and
𝑥4 = 3. Then, the constraint we want to satisfy is:∑︁

𝑗∈{1,3}

𝜎(𝑥𝑗 , 1, 2, 3) > 3

Following a similar transformation into knapsack formu-
lation, we get ∑︁

𝑗∈{1,3}

𝜎(𝑥𝑗 , 3, 2, 1) < 5

After updating the DP table, with fixing features 2 and
4, we get the DP table shown in Table 2. As a result, we
can conclude that the number of solutions is 6.

The table 𝐶(𝑘, 𝑟) can be filled out in pseudo-
polynomial time. The number of rows is 𝑚. The number
of columns is 𝑊 (see (20)). Moreover, the computation
of each entry uses the values of at most 𝑚 other entries.
Thus, the total running time is: Θ(𝑚2 ×𝑊).

80

Table 2
DP table for Example 4

𝑘

𝑟
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 3 3 3 3 3 – – – –
2 0 0 0 0 1 2 3 3 3 – – – –
3 0 0 0 0 0 1 3 6 8 – – – –
4 0 0 0 0 0 0 1 3 6 – – – –

From XLCs to Positive Integer Knapsacks. To as-
sess heuristic explainers, we consider NBCs, and use a
standard transformation from probabilities to positive
real values [54]. Afterwards, we convert the real values
to integer values by scaling the numbers. However, to
avoid building a very large DP table, we implement the
following optimization. The number of decimal places of
the probabilities is reduced while there is no decrease in
the accuracy of the classifier both on training and on test
data. In our experiments, we observed that there is no
loss of accuracy if four decimal places are used, and that
there is a negligible loss of accuracy with three decimal
places.

Assessing explanation precision. Given a Naive
Bayes classifier, expressed as an XLC, we can assess ex-
planation accuracy in pseudo-polynomial time. Given
an instance v, a prediction 𝜅(v) = ⊕, and an ap-
proximate explanation S, we can use the approach de-
scribed in this section to count the number of instances
consistent with the explanation for which the predic-
tion remains unchanged (i.e. number of points x ∈ F
s.t. (𝜅(x) = 𝜅(v) ∧ (x𝒮 = v𝒮))). Let this number
be 𝑛⊕ (given the assumption that the prediction is ⊕).
Let the number of instances with a different prediction
(⊖ ≠ 𝜅(v))2 be 𝑛⊖. Hence, the conditional probabil-
ity (2) can be defined, in the case of NBCs, as follow:

Prx(𝜅(x) = ⊕ |x𝒮 = v𝒮) =
𝑛⊕

|{x ∈ F : (x𝒮 = v𝒮)}|

Observe that the numerator |{x ∈ F : 𝜅(x) = ⊕ ∧
(x𝒮 = v𝒮)}| is expressed by the number of models 𝑛⊕,
i.e. the points x in feature space that are consistent with
v given 𝒮 and with prediction ⊕. Further, we have

Prx(𝜅(x) = ⊕ |x𝒮 =v𝒮) =

1− Prx(𝜅(x) = ⊖ |x𝒮 = v𝒮)

= 1− 𝑛⊖

|{x ∈ F : (x𝒮 = v𝒮)}|

where 𝑛⊖ = |{x ∈ F : 𝜅(x) = ⊖ ∧ (x𝒮 = v𝒮)}|.
2As we are in binary setting, then ⊖ = ¬⊕ = ¬𝜅(v)).

4.3. Computing LmPAXp’s
Algorithm 1 depicts our method for computing
LmPAXp’s given a prediction function 𝜅 of an NBC, an
input instance v and a threshold 𝛿. The procedure Lm-
PAXp is referred to as a deletion-based algorithm3; it
starts from a set of features 𝒮 , e.g. initialized to ℱ and
then it iteratively drops features while the updated set
𝒮 remains a WeakPAXp. The function isWeakPAXp
implements the approach described in the previous sec-
tion, which measures explanation precision by exploit-
ing a pseudo-polynomial algorithm for model count-
ing. Hence, it is implicit that the DP table is updated
at each iteration of the loop in the LmPAXp procedure.
More specifically, when a feature 𝑖 is newly set univer-
sal, its associated cells 𝐶(𝑖, 𝑟) are recalculated such that

𝐶(𝑘, 𝑟) =
∑︀𝑑

′
𝑘

𝑖=1 𝑛
𝑖
𝑘 ×𝐶(𝑘− 1, 𝑟−𝑤𝑖

𝑘); and when 𝑖 is
fixed, i.e. 𝑖 ∈ 𝒮 , then 𝐶(𝑖, 𝑟) = 𝐶(𝑖− 1, 𝑟 − 𝑣𝑗𝑖) where
𝑣𝑗𝑖 ≜ lPr(𝑣𝑖 = 𝑗|𝑐)− lPr(𝑣𝑖 = 𝑗|¬𝑐). Furthermore, we
point out that in our experiment, 𝒮 is initialized to an
AXp 𝒳 that we compute initially for all tested instances
using the outlined (polynomial) algorithm in Section 3.
It is easy to observe that features not belonging to 𝒳 do
not contribute in the decision of 𝜅(v) (i.e. their removal
does not change the value of 𝑛⊖ that equals to zero) and
thus can be set universal at the initialisation step, which
allows us to improve the performance of Algorithm 1.

Moreover, we apply an heuristic order over 𝒮 that aims
to remove earlier less relevant features and thus to pro-
duce shorter approximate explanations. Typically, we or-
der 𝒮 following the increasing order of 𝛿𝑖 values, namely
the reverse order applied to compute the AXp. Con-
ducted preliminary experiments using a (naive heuristic)
lexicographic order over the features show less succinct
explanations.

Finally, notice that Algorithm 1 can be used to com-
pute an AXp, i.e. an LmPAXp with 𝛿 = 1. Nevertheless,
the polynomial time algorithm for computing AXp’s pro-
posed in [43] remains a better choice to use in case of
AXp’s than Algorithm 1 which runs in pseudo polyno-
mial time.

Example 5. Let us consider again the NBC of the run-
ning example (Example 1) and v = (t, f , f , f , t). The
corresponding XLC is shown in Figure 3b (Example 2).
Also, consider the AXp {1, 2, 5} of v and 𝛿 = 0.85. The
resulting DP table for 𝒮 = {1, 2, 5} is shown in Table 3.
Note that for illustrating small tables, we set the num-
ber of decimal places to zero (greater number of decimal
places, i.e. 1,2, etc, were tested and return the results).
(Also, note that the DP table reports “—” if the cell is not
calculated during the running of Algorithm 1.) Moreover,

3This sort of algorithm can be traced at least to the work of
Valiant[55], but some authors [56] argue that it is also implicit
in works from the 19th century [57].

81

Algorithm 1 Computing one LmPAXp

Input: Classifier 𝜅, instance v, threshold 𝛿
Output: LmPAXp 𝒮

1: procedure LmPAXp(𝜅,v, 𝛿)
2: 𝒮 ← {1, . . . ,𝑚}
3: for 𝑖 ∈ {1, . . . ,𝑚} do
4: if isWeakPAXp(𝒮 ∖ {𝑖}, 𝜅(x) = 𝑐, 𝛿) then
5: 𝒮 ← 𝒮 ∖ {𝑖}
6: return 𝒮

we convert the probabilities into positive integers, so we
sum to each 𝑤𝑘

𝑗 the complement of the most negative
𝑤𝑘

𝑗 plus 1. The resulting weights are shown in Figure 4.
Thus, we get

∑︀
𝑖∈{1,2,3,4,5} 𝜎(𝑥𝑖, 𝑤

1
𝑖 , 𝑤

2
𝑖) < 17. Ob-

serve that the number of models 𝑛⊕ = 𝐶(5, 16), and
𝐶(5, 16) is calculated using 𝐶(4, 16− 𝑤2

5) = 𝐶(4, 15),
i.e. 𝐶(4, 15) = 𝐶(5, 16) (feature 5 is fixed, so it is al-
lowed to take only the value 𝑤2

5 = 1). Next, 𝐶(4, 15) =
𝐶(3, 15−𝑤1

4)+𝐶(3, 15−𝑤2
4) = 𝐶(3, 12)+𝐶(3, 14)

(feature 4 is free, so it is allowed to take any value of
{𝑤1

4, 𝑤
2
4}); the recursion ends when k=1, namely for

𝐶(1, 5) = 𝐶(2, 6) = 𝑛2
1 = 1, 𝐶(1, 7) = 𝐶(2, 7) =

𝑛2
1 = 1, 𝐶(1, 8) = 𝐶(2, 8) = 𝑛2

1 = 1 and 𝐶(1, 10) =
𝐶(2, 11) = 𝑛2

1 = 1 (feature 1 is fixed and takes value
𝑤2

1). Next, Table 4 (resp. Table 5 and Table 6) report the
resulting DP table for 𝒮 = {2, 5} (resp. 𝒮 = {1, 5}
and 𝒮 = {1}). It is easy to confirm that after dropping
feature 2, the precision of 𝒮 = {1, 5} becomes 87.5%,
i.e. 7

8
= 0.875 > 𝛿. Furthermore, observe that the re-

sulting 𝒮 when dropping feature 1 or 2 and 5, are not
WeakPAXp’s, namely, the precision of {2, 5} is 6

8
=

0.75 < 𝛿 and the precision of {1} is 9
16

= 0.5625 < 𝛿.
In summary, Algorithm 1 starts with 𝒮 = {1, 2, 5}, then
at iteration#1, feature 1 is tested and since {2, 5} is not
WeakPAXp then 1 is kept in 𝒮 ; at iteration#2, feature 2
is tested and since {1, 5} is a WeakPAXp, then 𝒮 is up-
dated (i.e. 𝒮 = {1, 5}); at iteration#3, feature 5 is tested
and since {1} is not a WeakPAXp, then 5 is saved in 𝒮 .
As a result, the delivered LmPAXp is {1, 5}.

Let us underline that we could initialize 𝒮 to ℱ , in
which case the number of models would be 1. However,
we opt instead to always start from an AXp. In the exam-
ple, the AXp is {1, 2, 5} which, because it is an AXp, the
number of models must be 4 (i.e. 22, since two features
are free).

For any proper subset of the AXp, with 𝑟 free variables,
it must be the case that the number of models is strictly
less than 2𝑟 . Otherwise, we would have an AXp as a
proper subset of another AXp; but this would contradict
the definition of AXp. The fact that the number of models
is strictly less than 2𝑟 is confirmed by the examples of
subsets considered. It must also be the case that if𝒮 ′ ⊆ 𝒮 ,

then the number of models of 𝒮 ′ must not exceed the
number of models of 𝒮 . So, we can argue that there is
monotonicity in the number of models, but not on the
precision.

𝑊 𝑤1
1 𝑤2

1 𝑤1
2 𝑤2

2 𝑤1
3 𝑤2

3 𝑤1
4 𝑤2

4 𝑤1
5 𝑤2

5

16 7 1 1 6 3 6 1 3 7 1

Figure 4: #knapsack problem of Example 5

Properties of LmPAXp’s. In addition to the comments
above, and by carefully computing LmPAXp’s, these can
exhibit important properties. Let𝒳 denote an AXp. Then,
for any LmPAXp𝒜 obtained using𝒳 as the seed, i.e.𝒜 is
required to be a subset of 𝒳 , then we have the following
properties:

1. 𝒜 ⊆ 𝒳 ;
2. There exists a probabilistic abductive explanation
ℰ such that ℰ ⊆ 𝒜; and

3. 𝒜 is a 𝛿-relevant set (see Definition 2.1).
Thus, an LmPAXp 𝒜 can be made to be a superset of
some PAXp, a subset of some AXp, and such that 𝒜
exhibits the strong probabilistic properties of 𝛿-relevant
sets.

5. Experimental Results
This section evaluates the algorithm proposed for com-
puting LmPAXp’s. The evaluation aims at assessing not
only the succinctness and precision of computed expla-
nations but also the scalability of our solution.

5.1. Experimental setup
The benchmarks used in the experiments comprise pub-
licly available and widely used datasets that originate
from UCI ML Repository4 and Penn ML Benchmarks5.
The number of training data (resp. features) in the target
datasets varies from 336 to 14113 (resp. 10 to 37) and on
average is 3999.1 (resp. 20.0). All the NBCs are trained
using the learning tool scikit-learn6. The data split for
training and test data is set to 80% and 20%, respectively.
Model accuracies are above 80% for the training accuracy
and above 75% for the test accuracy.

A prototype implementation of the proposed approach
for computing relevant sets is developed in Python. To
compute AXp’s, we use the Perl script implemented by
[43].The prototype implementation was tested with vary-
ing the threshold 𝛿 ∈ {0.90, 0.93, 0.95, 0.98}. When

4https://archive.ics.uci.edu
5https://epistasislab.github.io/pmlb/
6https://scikit-learn.org

82

https://archive.ics.uci.edu
https://epistasislab.github.io/pmlb/
https://scikit-learn.org

Table 3
DP table for 𝒮 = {1, 2, 5} (Example 5)

𝑘

𝑟
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 — — — — 1 — 1 1 — 1 — — — — — —
2 0 — — — — — 1 — 1 1 — 1 — — — — —
3 0 — — — — — — — — — — — 2 — 2 — —
4 0 — — — — — — — — — — — — — — 4 —
5 0 — — — — — — — — — — — — — — — 4

Table 4
DP table for 𝒮 = {2, 5} (Example 5)

𝑘

𝑟
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 — — — — 1 — 1 2 — 2 — — — — — —
2 0 — — — — — 1 — 1 2 — 2 — — — — —
3 0 — — — — — — — — — — — 3 — 3 — —
4 0 — — — — — — — — — — — — — — 6 —
5 0 — — — — — — — — — — — — — — — 6

converting probabilities from real values to integer val-
ues, the selected number of decimal places is 3. (As out-
lined earlier, we observed that there is a negligible ac-
curacy loss from using three decimal places.) In order
to produce explanations of size admissible for the cogni-
tive capacity of human decision makers [44], we selected
three different target sizes for the explanations to com-
pute: 9, 7 and 4, and we compute a LmPAXp for the input

instance when its AXp 𝒳 is larger than the target size
(recall that 𝒮 is initialized to 𝒳); otherwise we consider
the AXp is succinct and the explainer returns 𝒳 . For
example, assume the target size is 7, an instance v1 with
an AXp 𝒮1 of 5 features and an second instance v2 with
an AXp 𝒮2 of 8 features, then for v1 the output will be
𝒮1 and for v2 the output will be a subset of 𝒮2.

For each dataset, we run the explainer on 200 instances

Table 5
DP table for 𝒮 = {1, 5} (Example 5)

𝑘

𝑟
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 — 1 1 — 1 — 1 1 — 1 — — — — — —
2 0 — — — — — 1 — 2 2 — 2 — — — — —
3 0 — — — — — — — — — — — 3 — 4 — —
4 0 — — — — — — — — — — — — — — 7 —
5 0 — — — — — — — — — — — — — — — 7

Table 6
DP table for 𝒮 = {1} (Example 5)

𝑘

𝑟
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 1 1 1 1 — 1 1 — 1 — — — — — —
2 0 — 0 1 — 1 1 — 2 2 — 2 — — — — —
3 0 — — — — — 1 — 1 — — — 3 — 4 — —
4 0 — — — — — — — — 2 — — — — — 7 —
5 0 — — — — — — — — — — — — — — — 9

83

Table 7
Assessing ApproxPAXp explanations for NBCs. Columns m and #I show, respectively, number of features and tested instances
in the Dataset. Column A% reports in (%) the training accuracy of the classifier. Column 𝛿 reports in (%) the used value of
the parameter 𝛿. LmPAXp≤9 and LmPAXp≤7 denote, respectively, LmPAXp’s of (target) length 9 and 7. Columns Length
and Precision report, respectively, the average explanation length and the average explanation precision (± denotes the
standard deviation). W% shows in (%) the number of success/wins where the explanation size is less or equal than the target
size. Finally, the average runtime to compute an explanation is shown (in seconds) in Time.

Dataset (m #I) NBC AXp LmPAXp≤9 LmPAXp≤7

A% Length Length Precision W% Time Length Precision W% Time
adult (13 200) 81.37 6.8± 1.2 6.8± 1.1 99.99± 0.2 100 0.074 5.9± 1.0 98.87± 1.8 99 0.058
agaricus (23 200) 95.41 10.3± 2.5 6.9± 3.1 97.62± 2.1 95 0.954 5.3± 3.2 96.59± 1.6 92 1.273
chess (37 200) 88.34 12.1± 3.7 7.7± 3.8 98.51± 1.4 68 0.404 5.5± 4.4 97.90± 0.9 64 0.483
vote (17 81) 89.66 5.3± 1.4 5.3± 1.4 100± 0.0 100 0.000 5.3± 1.3 99.93± 0.3 100 0.008
kr-vs-kp (37 200) 88.07 12.2± 3.9 7.3± 3.9 98.29± 1.4 64 0.416 6.0± 4.3 97.89± 1.1 64 0.453
mushroom (23 200) 95.51 10.7± 2.3 6.5± 2.6 97.35± 1.8 96 1.011 5.1± 2.5 96.52± 1.0 90 1.130
threeOf9 (10 103) 83.13 4.2± 0.4 4.2± 0.4 100± 0.0 100 0.000 4.2± 0.4 100± 0.0 100 0.000
xd6 (10 176) 81.36 4.5± 0.9 4.5± 0.8 100± 0.0 100 0.000 4.5± 0.8 100± 0.0 100 0.000
mamo (14 53) 80.21 4.9± 0.8 4.9± 0.7 100± 0.0 100 0.000 4.9± 0.7 100± 0.0 100 0.000
tumor (16 104) 83.21 5.3± 0.9 5.3± 0.8 100± 0.0 100 0.000 5.2± 0.6 99.83± 0.7 100 0.012

randomly picked from the test data or on all instances if
there are less than 200.

The experiments are conducted on a MacBook Air with
a 1.1GHz Quad-Core Intel Core i5 CPU with 16 GByte
RAM running macOS Monterey.

5.2. Results
Table 7 summarizes the results of our experiments for
𝛿 = 0.95 and target size 9 and 7. The complete re-
sults of the empirical evaluation are reported in [1].
(Note that the same observations are perceived on the
results obtained with the remaining parameters, i.e. 𝛿 ∈
{0.90, 0.93, 0.98} and LmPAXp≤ 4.) As can be observed
for all considered settings, the locally-minimal explana-
tions are succinct, in particular the average sizes of the
explanations are invariably lower than the target sizes.
Moreover, theses explanations offer strong guarantees of
precision, as their average precisions are strictly greater
than 𝛿 with significant gaps (e.g. above 97%, in column
LmPAXp≤7, for datasets adult, vote, threeOf9, xd6, mamo
and tumor and above 95% for chess and kr-vs-kp). An
important observation from the results, is the gain of
succinctness (explanation size) when comparing AXp’s
with LmPAXp’s. In fact, for some datasets, the AXp’s are
too large (e.g. for chess and kr-vs-kp datasets, the average
number of features in the AXp’s is 12), exceeding the
cognitive limits of human decision makers [44] (limited
to 7 ± 2 features). To illustrate that, one can focus on
the dataset agaricus or mushroom and see that for a tar-
get size equals to 7, the average length of the LmPAXp’s
(i.e. 5.3 and 5.1, resp.) is 2 times less than the average
length of the AXp’s (i.e. 10.3 and 10.7, resp.). Besides, the
results show that 𝛿 = 0.95 is a good probability thresh-

old to guarantee highly precise and short approximate
explanations.

Despite the complexity of the proposed approach be-
ing in pseudo polynomial, the results demonstrate that
in practice the algorithm is effective and scales for large
datasets. As can be seen, the runtimes are negligible for
all datasets, never exceeding 2 seconds for the largest
datasets (i.e. agaricus or mushroom) and the average is
0.33 seconds for all tested instances across all datasets
and all settings. Furthermore, we point out that the im-
plemented prototype was tested with 4 decimal places to
assess further the scalability of the algorithm on larger DP
tables, and the results show that computing LmPAXp’s is
still feasible, e.g. with agaricus the average runtime when
the target size set to 7 is 10.08 seconds.

The table also reports the number of explanations be-
ing shorter than or of size equal to the target size over
the total number of tested instances. We observe that
for both settings LmPAXp≤9 and LmPAXp≤7 and for the
majority of datasets and with a few exceptions the frac-
tion is significantly high, e.g. varying for 96% to 100% for
adult dataset. However, in our assessment we observed
that for LmPAXp≤4 despite the poor percentage of wins
for some datasets, it is the case that the average lengths
of computed explanations are close to 4 (see Table 13
in [1]).

Overall, the experiments demonstrate that our ap-
proach efficiently computes succinct and provably precise
explanations for NBCs. The results also showcase empir-
ically the advantage of the algorithm, i.e. in practice one
may rely on the computation of LmPAXp’s, which pays
off in terms of (1) performance, (2) succinctness and (3)
sufficiently high probabilistic guarantees of precision.

84

6. Conclusion
This paper builds on recent work on computing rigor-
ous probabilistic explanations [42], and investigates the
concrete case of NBCs. The paper proposes a pseudo-
polynomial algorithm for computing the number of
points in feature space predicting a specific class, and re-
lates this problem with that of computing a rigorous prob-
abilistic explanation. Furthermore, the paper proposes
an algorithm for computing locally minimal probabilistic
explanations, which offers strong guarantees in terms of
precision. The experimental results confirm that short
and precise probabilistic explanations can be efficiently
computed in the case of NBCs.

Two lines of future work can be envisioned. One line
is to investigate the complexity of explaining multi-class
NBCs and extend the approach for computing locally
minimal probabilistic explanations for multi-class Naive
Bayes models. Furthermore, one might be interested in
computing smallest probabilistic explanations instead
of approximates. Hence, another line of research is to
devise a logical (Satisfiability Modulo Theories, SMT)
encoding for computing cardinality minimal probabilistic
explanations.

Acknowledgments
This work was supported by the AI Interdisciplinary In-
stitute ANITI, funded by the French program “Investing
for the Future – PIA3” under Grant agreement no. ANR-
19-PI3A-0004, and by the H2020-ICT38 project COALA
“Cognitive Assisted agile manufacturing for a Labor force
supported by trustworthy Artificial intelligence”, and by
the National Research Foundation, Prime Minister’s Of-
fice, Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme.

References
[1] Y. Izza, X. Huang, A. Ignatiev, N. Narodytska, M. C.

Cooper, J. Marques-Silva, On computing probabilis-
tic abductive explanations, Int. J. Approx. Reason.
159 (2023) 108939.

[2] EU, Artificial Intelligence Act, http://tiny.cc/ahcnuz,
2021.

[3] C. Rudin, Stop explaining black box machine learn-
ing models for high stakes decisions and use inter-
pretable models instead, Nature Machine Intelli-
gence 1 (2019) 206–215.

[4] G. Montavon, W. Samek, K. Müller, Methods for
interpreting and understanding deep neural net-
works, Digit. Signal Process. 73 (2018) 1–15.

[5] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Gi-
annotti, D. Pedreschi, A survey of methods for ex-

plaining black box models, ACM Comput. Surv. 51
(2019) 93:1–93:42.

[6] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen,
K. Müller (Eds.), Explainable AI: Interpreting, Ex-
plaining and Visualizing Deep Learning, Springer,
2019.

[7] W. Samek, K. Müller, Towards explainable artificial
intelligence, in: [6], 2019, pp. 5–22.

[8] C. Molnar, Interpretable Machine Learning, Lean-
pub, 2020. http://tiny.cc/6c76tz.

[9] W. Samek, G. Montavon, S. Lapuschkin, C. J. An-
ders, K. Müller, Explaining deep neural networks
and beyond: A review of methods and applications,
Proc. IEEE 109 (2021) 247–278.

[10] M. T. Ribeiro, S. Singh, C. Guestrin, "why should
I trust you?": Explaining the predictions of any
classifier, in: KDD, 2016, pp. 1135–1144.

[11] S. M. Lundberg, S. Lee, A unified approach to in-
terpreting model predictions, in: NeurIPS, 2017, pp.
4765–4774.

[12] M. T. Ribeiro, S. Singh, C. Guestrin, Anchors: High-
precision model-agnostic explanations, in: AAAI,
2018, pp. 1527–1535.

[13] A. Ignatiev, Towards trustable explainable AI, in:
IJCAI, 2020, pp. 5154–5158.

[14] O. Camburu, E. Giunchiglia, J. Foerster,
T. Lukasiewicz, P. Blunsom, Can I trust the
explainer? verifying post-hoc explanatory
methods, CoRR abs/1910.02065 (2019).

[15] D. Slack, S. Hilgard, E. Jia, S. Singh, H. Lakkaraju,
Fooling LIME and SHAP: adversarial attacks on
post hoc explanation methods, in: AIES, 2020, pp.
180–186.

[16] H. Lakkaraju, O. Bastani, "how do I fool you?":
Manipulating user trust via misleading black box
explanations, in: AIES, 2020, pp. 79–85.

[17] B. Dimanov, U. Bhatt, M. Jamnik, A. Weller, You
shouldn’t trust me: Learning models which conceal
unfairness from multiple explanation methods, in:
ECAI, 2020, pp. 2473–2480.

[18] A. Shih, A. Choi, A. Darwiche, A symbolic ap-
proach to explaining bayesian network classifiers,
in: IJCAI, 2018, pp. 5103–5111.

[19] A. Ignatiev, N. Narodytska, J. Marques-Silva,
Abduction-based explanations for machine learn-
ing models, in: AAAI, 2019, pp. 1511–1519.

[20] A. Ignatiev, N. Narodytska, J. Marques-Silva, On
relating explanations and adversarial examples, in:
NeurIPS, 2019, pp. 15857–15867.

[21] N. Narodytska, A. A. Shrotri, K. S. Meel, A. Ignatiev,
J. Marques-Silva, Assessing heuristic machine learn-
ing explanations with model counting, in: SAT,
2019, pp. 267–278.

[22] Y. Izza, A. Ignatiev, J. Marques-Silva, On ex-
plaining decision trees, CoRR abs/2010.11034

85

http://tiny.cc/ahcnuz
http://tiny.cc/6c76tz

(2020). URL: https://arxiv.org/abs/2010.11034.
arXiv:2010.11034.

[23] A. Ignatiev, N. Narodytska, N. Asher, J. Marques-
Silva, From contrastive to abductive explanations
and back again, in: AIxIA, 2020, pp. 335–355.

[24] A. Darwiche, A. Hirth, On the reasons behind deci-
sions, in: ECAI, 2020, pp. 712–720.

[25] G. Audemard, F. Koriche, P. Marquis, On tractable
XAI queries based on compiled representations, in:
KR, 2020, pp. 838–849.

[26] Y. Izza, J. Marques-Silva, On explaining random
forests with SAT, in: IJCAI, 2021, pp. 2584–2591.

[27] X. Huang, Y. Izza, A. Ignatiev, J. Marques-Silva, On
efficiently explaining graph-based classifiers, in:
KR, 2021, pp. 356–367.

[28] M. C. Cooper, J. Marques-Silva, On the tractabil-
ity of explaining decisions of classifiers, in: L. D.
Michel (Ed.), CP, 2021, pp. 21:1–21:18.

[29] A. Ignatiev, J. Marques-Silva, N. Narodytska, P. J.
Stuckey, Reasoning-based learning of interpretable
ML models, in: IJCAI, 2021, pp. 4458–4465.

[30] J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ig-
natiev, N. Narodytska, Explanations for monotonic
classifiers, in: ICML, 2021, pp. 7469–7479.

[31] A. Ignatiev, J. Marques-Silva, SAT-based rigorous
explanations for decision lists, in: SAT, 2021, pp.
251–269.

[32] E. L. Malfa, R. Michelmore, A. M. Zbrzezny, N. Pao-
letti, M. Kwiatkowska, On guaranteed optimal ro-
bust explanations for NLP models, in: IJCAI, 2021,
pp. 2658–2665.

[33] R. Boumazouza, F. C. Alili, B. Mazure, K. Tabia,
ASTERYX: A model-agnostic sat-based approach
for symbolic and score-based explanations, in:
CIKM, 2021, pp. 120–129.

[34] N. Gorji, S. Rubin, Sufficient reasons for classifier
decisions in the presence of domain constraints, in:
AAAI, 2022.

[35] X. Huang, Y. Izza, A. Ignatiev, M. C. Cooper,
N. Asher, J. Marques-Silva, Tractable explanations
for d-DNNF classifiers, in: AAAI, 2022.

[36] A. A. Shrotri, N. Narodytska, A. Ignatiev, K. Meel,
J. Marques-Silva, M. Vardi, Constraint-driven expla-
nations of black-box ML models, in: AAAI, 2022.

[37] A. Ignatiev, Y. Izza, P. Stuckey, J. Marques-Silva,
Using MaxSAT for efficient explanations of tree
ensembles, in: AAAI, 2022.

[38] J. Marques-Silva, A. Ignatiev, Delivering trustwor-
thy AI through formal XAI, in: AAAI, 2022.

[39] Y. Izza, A. Ignatiev, J. Marques-Silva, On tackling
explanation redundancy in decision trees, J. Artif.
Intell. Res. 75 (2022) 261–321.

[40] J. Yu, A. Ignatiev, P. J. Stuckey, N. Narodytska,
J. Marques-Silva, Eliminating the impossible, what-
ever remains must be true, CoRR (2022).

[41] E. Wang, P. Khosravi, G. V. den Broeck, Probabilistic
Sufficient Explanations, in: IJCAI, 2021, pp. 3082–
3088.

[42] S. Wäldchen, J. MacDonald, S. Hauch, G. Kutyniok,
The computational complexity of understanding
binary classifier decisions, J. Artif. Intell. Res. 70
(2021) 351–387.

[43] J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ig-
natiev, N. Narodytska, Explaining naive bayes and
other linear classifiers with polynomial time and
delay, in: NeurIPS, 2020.

[44] G. A. Miller, The magical number seven, plus or
minus two: Some limits on our capacity for process-
ing information., Psychological review 63 (1956)
81–97.

[45] T. Miller, Explanation in artificial intelligence: In-
sights from the social sciences, Artif. Intell. 267
(2019) 1–38.

[46] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classifi-
cation, John Wiley & Sons, 1973.

[47] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian
network classifiers, Mach. Learn. 29 (1997) 131–
163. URL: https://doi.org/10.1023/A:1007465528199.
doi:10.1023/A:1007465528199.

[48] D. Barber, Bayesian reasoning and machine learn-
ing, Cambridge University Press, 2012.

[49] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack prob-
lems, Springer, 2004.

[50] M. E. Dyer, Approximate counting by dynamic
programming, in: STOC, 2003, pp. 693–699.

[51] P. Gopalan, A. R. Klivans, R. Meka, D. Stefankovic,
S. S. Vempala, E. Vigoda, An FPTAS for #knapsack
and related counting problems, in: FOCS, 2011, pp.
817–826.

[52] P. Gawrychowski, L. Markin, O. Weimann, A faster
FPTAS for #knapsack, in: ICALP, 2018, pp. 64:1–
64:13.

[53] R. Rizzi, A. I. Tomescu, Faster fptases for count-
ing and random generation of knapsack solu-
tions, Inf. Comput. 267 (2019) 135–144. URL: https:
//doi.org/10.1016/j.ic.2019.04.001. doi:10.1016/j.
ic.2019.04.001.

[54] J. D. Park, Using weighted MAX-SAT engines to
solve MPE, in: AAAI, 2002, pp. 682–687.

[55] L. G. Valiant, A theory of the learnable, Commun.
ACM 27 (1984) 1134–1142.

[56] B. Juba, Learning abductive reasoning using ran-
dom examples, in: AAAI, 2016, pp. 999–1007.

[57] J. S. Mill, A System of Logic, Ratiocinative and In-
ductive, volume 1, John W. Parker, 1843.

86

https://arxiv.org/abs/2010.11034
http://arxiv.org/abs/2010.11034
https://doi.org/10.24963/ijcai.2021/424
https://doi.org/10.24963/ijcai.2021/424
https://doi.org/10.1023/A:1007465528199
http://dx.doi.org/10.1023/A:1007465528199
https://doi.org/10.1016/j.ic.2019.04.001
https://doi.org/10.1016/j.ic.2019.04.001
http://dx.doi.org/10.1016/j.ic.2019.04.001
http://dx.doi.org/10.1016/j.ic.2019.04.001

	1 Introduction
	2 Preliminaries
	2.1 Classification problems
	2.2 Formal explanations
	2.3 δ-relevant sets
	2.4 Naive Bayes Classifiers (NBCs)

	3 Explaining NBCs in Polynomial Time
	3.1 Extended Linear Classifiers
	3.2 Explaining XLCs

	4 δ-Relevant Sets for NBCs
	4.1 Weak, Locally-Minimal & Smallest Probabilistic AXp's
	4.2 Counting Models of XLCs
	4.3 Computing LmPAXp's

	5 Experimental Results
	5.1 Experimental setup
	5.2 Results

	6 Conclusion

