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Abstract
With the advent and proliferation of advanced Large Language Models (LLMs) such as BLOOM, GPT series,
and ChatGPT, there is a growing concern regarding the potential misuse of this technology. Consequently,
it has become imperative to develop machine learning techniques that can discern whether a given text
has been generated by an LLM or authored by a human. In this paper, we present our approach in the
AuTexTification shared task, where we fine-tuned BERT-based models and GPT-2 Small. Remarkably,
GPT-2 Small achieved the highest F1-macro score in the validation set, prompting us to evaluate its
performance on the testing set. We achieved an F1-macro score of 0.74134, securing the third position
in the benchmark. Furthermore, we extended our fine-tuning efforts to the model attribution subtask,
yielding a F1-macro score of 0.52282.
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1. Introduction

In recent years, numerous companies and research centers have introduced a variety of Large
Language Models (LLMs) to the field, including the Generative Pre-trained Transformer (GPT)
[1], GPT-2 [2], ChatGPT, GPT-3 [3], Pathways Language Model (PaLM) [4], GPT-4 [5], BLOOM
[6], and others. While the development of LLMs has achieved remarkable success, it has
also raised ethical and public concerns regarding their potential misuse in generating and
disseminating fake news or inaccurate information [7, 3, 8], spam [9], propaganda [10], and
even facilitating academic cheating [11].

In light of these concerns, it becomes crucial to develop effective technologies for the detection
and classification of text generated by LLMs, to mitigate the consequences associated with the
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aforementioned issues. However, the task of classifying generated text from LLMs, such as GPT-
3, has proven to be no better than random when performed by trained human evaluators [12].
This highlights the need to leverage LLMs themselves to aid in the classification of generated
text.

In this paper, we evaluate multiple LLMs performance in differentiating machine-generated
text from human-written text, as well as in the area of model attribution for LLMs. To accomplish
this, we utilize the benchmark proposed by Sarvazyan et al. [13], named AuTexTification
(Automated Text Identification), which was presented in the context of the IberLEF 2023 [14].
The benchmark includes two subtasks: the first involves identifying whether a given text is
human or machine-generated, while the second requires performing model attribution.

This paper is structured as follows: Section 2 provides an overview of the related works in
the field. Section 3 introduces the methods and models implemented in our study. Section 4
presents the empirical results obtained from our experiments. In Section 5, we discuss and
analyze the results in detail. Finally, Section 6 offers a conclusion summarizing our observations
and suggestions for potential future research directions.

2. Related Works

High-quality text generation has emerged as a recent development, leading to a relatively limited
number of classifiers specifically designed for this task in recent language models. However, it
is important to note that text generation itself is not a novel task, as evidenced by earlier studies
such as [15, 16]. Despite the historical context, recent Large Language Models (LLMs) present
unique challenges in terms of classification, as highlighted by studies like [12]. These studies
have demonstrated the difficulties in accurately classifying text generated by contemporary
LLMs. In this literature review, we discuss the related works implemented on recent LLMs:
GPT-2, GPT-3, ChatGPT, and other contemporary models. Most papers focus on identifying the
machine-generated text, while model attribution has barely been studied [17].

2.1. GPT-2

Different Machine/Deep Learning methods have been proposed for identifying machine-
generated texts [18]. When it comes to text generated by GPT-2, Solaiman et al. [19] utilized
classical machine learning classifiers such as logistic regression. Additionally, Gehrmann et al.
[20] introduced Giant Language model Test Room (GLTR), a set of baseline statistical methods for
analyzing statistical differences between human and machine-generated text. Their observations
revealed that humans tend to use rare words more frequently compared to GPT-2-generated
text.

LLMs have also been employed to detect text generated by other language models. In the
case of GPT-2, Solaiman et al. [19] utilized zero-shot classification with GPT-2 o GLOVER [7],
but did not achieve better comparative results than classical approaches. Fine-tuned LLMs
have demonstrated better performance in this task. For GPT-2, Ippolito et al. [21] proposed the
usage of human evaluators and the BERT model [22]. In contrast, Zellers et al. [7] found that
their model, GLOVER, was more appropriate for this task compared to BERT and detectors like
fastText [23]. Other authors, such as Uchendu et al. [8], also utilized GLOVER.



Another commonly used LLM for detecting generated content is RoBERTa [24]. Solaiman et
al. [19] achieved approximately 95% accuracy in detecting web pages generated by GPT-2 XL
using RoBERTa. In this study, they also employed GPT-2 models to identify content generated
by other GPT-2 models of varying sizes. The findings indicated that a larger GPT-2 model
can identify content generated by a smaller model, but the reverse relationship does not hold.
Overall, the study concluded that a RoBERTa model of the same capacity as GPT-2 is better
suited for the task at hand. In the case of machine-generated tweets, Fagni et al. [25] found that
RoBERTa outperformed classical classifiers, Convolutional Neural Networks (CNNs), Recurrent
Networks, and other LLMs such as BERT, DistilBERT [26], and XLNet [27]. Similar results were
achieved by Tourille et al. [28] and Kumarage et al. [29] in the same context. RoBERTa is also
utilized in the task of detecting technically generated text [30].

For languages other than English, there are few works. For instance, Harrag et al. [31] utilized
AraBERT [32] for classifying Arabic GPT-2 machine-generated texts versus human-written
texts.

2.2. GPT-3

In the case of GPT-3, researchers have explored classical approaches, including feature-based
identification methods [33]. One notable method proposed for identifying text generated by
GPT-3 is DetectGPT [34], which utilizes a statistical criterion. In certain tasks, this criterion has
shown superior performance compared to large models like RoBERTa.

Uchendu et al. [8] introduced TuringBench, a benchmark that encompasses various LLMs
such as GROVER, GPT-2, GLTR, BERT, and RoBERTa, for the purpose of classifying human-
written versus machine-generated text. Regarding GPT-3, the GPT-2 classifier achieved an
F1-score of only 0.5293, while the best-performing model (BERT) attained a higher F1-score of
0.7944.

2.3. Beyond GPT-3: ChatGPT and GPT-4

Other recent LLMs, including GPT-3.5-turbo and ChatGPT, have also been subject to study.
Various classifiers have been proposed, ranging from Random Forest with stylometric features
[35], XGBoost with feature extraction [36], RoBERTa [37, 38, 39, 40], DistilBERT [41], to OPT-
125M [39].

Combining different LLMs has also been explored. Wang et al. [42] employed RoBERTa,
GLTR, and selected features to identify mixed content generated by ChatGPT, GPT-3, GLOOM,
and others. Li et al. [43] used GLTP, fastText, LongFormer [44], and DetectGPT to detect text
produced by LLMs such as GPT-3.5, OPT [45], and LLaMA [46].

However, despite the efforts made to detect content generated by modern LLMs like ChatGPT,
Pegoraro et al. [47] conducted an analysis revealing that none of the modern proposals are
capable of accurately identifying text generated by ChatGPT. In the case of benchmarks like
MGTBench [48], the ChatGPT detector proposed by Guo et al. [37] demonstrated superior
performance compared to other methods evaluated, although it can still be evaded with minor
perturbations.



Few models have considered GPT-4 identification. Works by Zaitsu and Jin [35] and Zhang et
al. [40] have included GPT-4 in their investigations.

3. Methodology

In our study, we compared the following LLMs for the classification of machine-generated
versus human-generated texts:

1. BERT [22]
2. RoBERTa [24]
3. XLM-RoBERTa [49]
4. DeBERTA [50]
5. GPT-2 [2]

The selection of BERT-based models was based on their performance in similar tasks, as
mentioned in the literature review of the previous section. As for GPT-2, we chose this model
because it is one of the largest openly available models.

We employed the default hyperparameters provided by HuggingFace for each model. The
evaluation metrics we reported include F1-macro, F1-micro, F1-weighted, and accuracy. In this
task, the F1-macro metric is considered the most important [13]. All models were fine-tuned
using the training set partition of the provided dataset and the HuggingFace framework. For
the GPT-2 models, a dense layer was added to the model’s output for classification purposes.
Hyperparameter optimization was not implemented, and default hyperparameters provided by
HuggingFace were utilized instead.

3.1. Dataset

The AuTexTification dataset [51] comprises a collection of machine-generated texts produced
by the following models:

A : BLOOM-1b7
B : BLOOM-3b
C : BLOOM-7b1
D : GPT-3 Babbage
E : GPT-3 Curie
F : GPT-3 DaVinci-003

For the first subtask, the training set consists of 33,845 text samples labeled as either machine-
generated or human. The testing set for the second subtask comprises 22,416 machine-generated
text samples, each labeled with one of the letters A-F corresponding to the model that generated
the text. The dataset exhibits low-class imbalance, with an entropy ratio (𝐻/ log 𝑘) of approxi-
mately 0.99996 for subtask 1 and 0.99975 for subtask 2, where 𝑘 represents the number of classes
and 𝐻 denotes the Shannon entropy. The texts in both subtasks are short, with a maximum of
98 words for subtask 1 and 97 words for subtask 2. The fixed testing set for subtask 1 consists of
21,832 samples, while the testing set for subtask 2 comprises 5,605 samples. It is worth noting
that the AuTexTification dataset provides separate datasets for English and Spanish languages,
and in this study, we focused solely on the English subtasks.



Table 1
Main results on validation set.

Model Epochs F1-macro F1-micro F1-weighted Accuracy

BERT-base-cased 6 0.90462 0.90471 0.90451 0.90471
BERT-base-uncased 3 0.88145 0.88181 0.88120 0.88181

RoBERTa-base 3 0.91277 0.91284 0.91268 0.91284
XLM-RoBERTa-base 3 0.89376 0.89408 0.89355 0.89408

DeBERTa-base 3 0.90903 0.90914 0.90890 0.90914
GPT-2 Small 1 0.91668 0.91668 0.91668 0.91668

4. Results

In [13], the quantitative results reported for this submision (CIC-IPN-CsCog group) in the
AuTexTification benchmark are based on the F1-macro score. Confidence intervals for these
scores are also provided in the paper. However, other metrics, such as accuracy, F1-micro, and
others, were not reported in the paper, and therefore, we included them in our analysis.

4.1. Subtask 1: Human or Generated

The first subtask of the AuTexTification dataset involves distinguishing between texts generated
by LLMs and those written by humans. To evaluate the performance of the models, we randomly
split 20% of the original training set as a validation set. We chose to train most models for 3
epochs, except for BERT-base-cased where we used 6 epochs to explore different results. Due to
the computational cost associated with the GPT-2 model, we trained it for a single epoch. All
models achieved similar metrics, with F1-scores and accuracy around 90%. However, GPT-2
outperformed the other models in various metrics, including F1-macro, F1-micro, F1-weighted,
and accuracy. The detailed numerical results on the validation set are presented in Table 1.
Furthermore, the confusion matrix of the best-performing model, GPT-2, is visualized in Figure
1a.

Subsequently, we proceeded to evaluate the performance of the GPT-2 model on the provided
training set from the AuTexTification dataset [51]. The main results of both subtasks are
summarized in Table 2. Additionally, Figure 1b presents the confusion matrix of the GPT-2
model specifically for subtask 1 in the testing set.

In subtask 1, the GPT-2 model achieved an F1-macro score of 0.74134, with a confidence
interval of (73.53, 74.72). It is worth noting that our proposed model secured the third position
in the original AuTexTification benchmark as described in [13]. Upon examining the results,
we observe that the fine-tuned GPT-2 model exhibits a relatively high recall but a low precision
in the testing set, leading to a considerable number of false negatives.

4.2. Subtask 2: Model attribution

In the second subtask of the AuTexTification benchmark, we utilized the GPT-2 model for
classifying text generated by specific models, known as model attribution. It is important to
note that for this subtask, we fine-tuned the GPT-2 model independently without transferring



(a) Validation test. (b) Testing set.

Figure 1: Confusion matrices of the GPT-2 model applied on the validation (a) and testing set (b) of
the subtask 1. The rows refer to the ground truth while the columns represents the predicted values. P
stands for the positive class (human) whereas N stands for the negative class (generated).

Table 2
Main results on the testing set in both subtasks.

Subtask F1-macro F1-micro F1-weighted Accuracy

1 0.74134 0.74286 0.75559 0.74286
2 0.51988 0.51632 0.52110 0.51632

Table 3
Main results on the validation set of the subtask 2.

Model Epochs F1-macro F1-micro F1-weighted Accuracy

GPT-2 1 0.52285 0.52230 0.52669 0.52230

any knowledge from the first subtask, according to the benchmark rules. The main results
obtained on the validation set are provided in Table 3. Additionally, Figure 2a illustrates the
confusion matrix generated by the GPT-2 model for the second subtask in the validation set.

In contrast to the first subtask, the results obtained in the testing set for the second subtask
were quite similar. Table 2 presents the numerical results in the testing set, while Figure 2b
depicts the confusion matrix for the same partition.

The GPT-2 model demonstrated the ability to accurately differentiate between models A
(BLOOM-1b7), B-C (BLOOM-3b - BLOOM-7b1), D-E (GPT-3 Babbage - GPT-3 Curie), and F
(GPT-3 DaVinci-003). However, most of the errors occurred in confusions between models B-C
and D-E. Overall, the distinction between BLOOM and GPT-3 models was achieved correctly. It
is worth noting that as reported in [13], this particular implementation of GPT-2 did not rank
among the top models for this specific subtask, securing the 26th position. Nevertheless, it is
possible to trace a hierarchical clustering of the models (figure 3).



(a) Validation test. q (b) Testing set.

Figure 2: Confusion matrices of the GPT-2 model applied on the validation (a) and testing set (b) of the
subtask 2. The rows refer to the ground truth while the columns represents the predicted values. Letters
A-F stands for the labels of the models.

Figure 3: Hierarchical clustering of the models using the rule 𝐷𝑖𝑗 = 2/(𝑀𝑖𝑗 +𝑀𝑗𝑖 + 𝜀) where𝑀 is
the confusion matrix.

5. Discussion

The results obtained in this article suggest that the GPT-2 model is suitable for identifying
machine-generated content produced by GPT-3 and BLOOM models. However, it may not be the
most effective approach for model attribution. Surprisingly, the smaller GPT-2 model was able
to classify content generated by larger models, challenging the findings of the previous study of
Solaiman et al. [19], where smaller GPT-2 models struggled to identify content generated by
larger GPT-2 models.

Another point of contention is the effectiveness of BERT-based classifiers compared to GPT
models, as discussed in [19]. In this study, GPT-2 outperformed BERT, RoBERTa, XLM-RoBERTa,
and DeBERTa in the task of identifying machine-generated content. However, it should be
noted that the comparison with RoBERTa was only made when the number of parameters in the
GPT-2 model was similar, and a direct comparison between the two models was not performed.

It is important to mention that the AuTexTification dataset used in this study consists of



samples with less than 100 words, which is different from other approaches such as Yan et al.
[11] where the classifier input is an essay. Therefore, this approach focuses more on short pieces
of text rather than complete texts.

6. Conclusions

In this paper, we propose the use of fine-tuned GPT-2 models for both identifying machine-
generated content by language models (LLMs) and the model attribution subtask. Given the
widespread use of modern LLMs, both subtasks are crucial for monitoring and regulating the
potential misuse of this technology.

To accomplish this, we compared the performance of BERT, RoBERTa, XLM-RoBERTa, De-
BERTa, and GPT-2 models in the first subtask. Interestingly, the fine-tuned GPT-2 small model
outperformed the other models, achieving a high F1-macro score of 0.91668 on the validation
set. In the testing set, this model achieved a F1-macro score of 0.74134.

Furthermore, we applied the GPT-2 model to the second subtask, which involves model
attribution. In this task, the GPT-2 model obtained a F1-macro score of 0.51988.

These results demonstrate the effectiveness of fine-tuned GPT-2 models for both identifying
machine-generated content and performing model attribution. The utilization of GPT-2 small
model showed promising performance, highlighting its potential for controlling and regulating
the use of modern LLMs.

6.1. Further reseach

While this study focused on using the GPT-2 small model, there are other LLMs that can be
considered for the same task, such as GPT-2 large, GPT-3, ChatGPT, and GPT-4. Future research
can explore the performance of these models in identifying machine-generated content and
model attribution. In addition, it must be explained the gap between the validation set F1-score
and testing set F1-score in the subtask 1.

Furthermore, this study does not provide an explicit explanation for why GPT-2 small out-
performed the BERT-based models. Exploring the explainability of these results would be an
interesting avenue for further research. Understanding the factors that contribute to the internal
decisions of the tested models can provide insights into how humans can be better prepared to
distinguish between bot-generated and human-generated content.
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