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Abstract
Distinguishing automated text from human-written text is increasingly challenging due to the amazing
potential of Natural Language Generationmodels. Existing automated text identificationmodels primarily
employ feature-based methods and neural network-based methods. However, the feature-based approach
is effective in capturing syntactic features yet relies heavily on linguistic knowledge, inducing poor
linguistic transferability. Concerning neural network-based methods, they excel in text representation
but struggle with capturing syntactic features. Thus, this study aims to enhance the neural network
model’s syntax representation capability, which is conducive to identifying automated texts. Based on
the IberLEF 2023 AuTexTification task, we propose a novel syntax-based contrastive learning (SCL)
method that explicitly incorporates syntactic features into the neural network model. In the evaluation
phase, our SCL method achieved third and fifth place in Subtask 2 for English and Spanish, respectively.
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1. Introduction

Automated text is increasingly difficult to distinguish from human-written text. Powerful
open-source models are being made freely available. The enormous potential of state-of-the-art
Natural Language Generation (NLG) systems is being eroded by multiple avenues of abuse. The
analysis of threat models suggests that identification is a crucial strategy to reduce the damage
caused by NLG model abuse [1].

Identifying automated text involves two tasks: identifying whether the text is generated
by the machine and identifying which model the generative text is generated by. Essentially,
the two tasks can be considered as a binary classification task and a multi-classification task.
Previous automated text identification models primarily employ feature-based methods and
neural network-based methods. Nevertheless, although the feature-based approach can capture
the syntactic features of texts, it heavily relies on linguistic knowledge to a certain extent,
resulting in poor linguistic transferability. Meanwhile, the neural network-based approach
exhibits strong text representation capabilities but is not very adept at capturing syntactic
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features. Thus, this paper focuses on enhancing the syntax representation capability of the
neural network model, equipped with outstanding capabilities to identify automated texts.

Based on the task IberLEF 2023 [2] AuTexTification: Automated Text Identification [3], we
present an innovative syntax-based contrastive learning (SCL) method, which enables the neural
network model to explicitly capture syntactic features. The proposed technique demonstrates
impressive performance in identifying whether the text is machine-generated (Subtask 1) and
identifying a specific generative model for the automated text (Subtask 2). In the evaluation
phase, our SCL method secured third and fifth place on subtask 2 for English and Spanish,
respectively.

2. Related Work

Existing automated text identification models mainly exploit feature-based methods and neural
network-based methods.

Feature-based methods for identifying machine-generated text have matured and continued
to show significant value against contemporary NLG models. While these methods have
advantages in providing diverse features that may complicate [4] or improve the efficiency of
adversarial attacks [5, 6], they also have weaknesses. Specifically, some feature architectures
and sampling methods may lack portability and require more samples to make general statistical
trends clear. Previous research has revealed that statistical methods are most effective when
applied to larger text sets.

Neural network-based identificationmethods, especially those that leverage features extracted
from the Transformer neural language model (NLM), demonstrate high efficiency in detecting
machine-generated text. It is consistent with the trend of natural language processing, where
the Transformer model has achieved state-of-the-art performance on various natural language
tasks.

NLM-based methods fall into two categories: zero-shot classification based on existing models
and fine-tuning based on pre-trained language models, which represent the vast majority of
NLM-based automated text identification. The baseline methods for identifying automated text
involve leveraging the generative models to perform text classification, for instance, GPT-2 or
Grover [7, 8, 9]. The generative models can be utilized without fine-tuning to identify their
output or output from similar generative models. Autoregressive generative models, such
as GPT-2, GPT-3 and Grover, are unidirectional with each token having an embedding that
depends on the past tokens’ embeddings, which generates the words of the input sentence one
by one and exploits them as input for the next word to obtain a feature vector of the sentence.
The feature vectors derived from the labeled datasets containing automated texts as well as
human-written texts can be exploited to train the linear layer of neurons, determining whether
the input sequence is generated by machines or humans.

The most advanced methods for identifying automated text using neural networks involve
fine-tuning large bidirectional language models. In terms of the original GPT-2 text evaluation
methods, RoBERTa [10], a BERT-based masked language model, is fine-tuned to distinguish
whether a given sentence has been generated by a machine or a human. More precisely,
appending a classification token [CLS] at the beginning of the input sequence generates an



embedding of the input sequence, and the embedding of the token [CLS] is utilized as a feature
vector of the entire sentence to perform classification. Kushnareva et al. [11] adopted attention
graph information from the Transformer model to perform topological data analysis as a feature
to identify automated text. Bakhtin et al. [12] found that the method based on a bidirectional
encoder can achieve the strongest performance.

3. Our Method

3.1. Text Representation

To capture the rich semantic information in the text, we leverage a non-autoregressive pre-
trained model renowned for its commendable performance in text semantic representation
to encode sentences. The non-autoregressive pre-trained model provides an extensive array
of linguistic, syntactic, and lexical knowledge for downstream tasks through unsupervised
training on a substantial corpus during the pre-training phase. The underlying structure of the
non-autoregressive pre-trained model involves a multi-layer bidirectional Transformer encoder.
Specifically, we opt for XLM-RoBERTa as our preferred text encoding backbone. Given an
input sentence S which is composed of a sequence of tokens {𝑤1, 𝑤2, 𝑤3, …, 𝑤𝑛}, the semantic
representation ℎ𝑖 corresponding to 𝑤𝑖 encoded by the XLM-RoBERTa pre-trained model is:

ℎ𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑤𝑖) (1)

where ℎ𝑖 ∈ 𝑅𝑚 and m denotes the dimension of semantic representation.

3.2. Syntax-based Contrastive Learning

The dependency syntactic tree consists of the syntactic features of a sentence. There are signifi-
cant differences in syntactic features between automated texts and human-written texts. More
precisely, automated texts generated based on linguistic rules tend to be syntactically more rea-
sonable, and its corresponding dependency syntactic tree is clearer than that of human-written
texts. Unlike traditional methods based on feature extraction, we do not extract syntactic
features directly, while exploiting dependency syntactic information to implicitly change the
semantic space distribution of the model. We propose syntax-based contrastive learning to
reduce the distance between each token and its related tokens in the semantic space by consid-
ering dependencies between tokens over the dependency syntactic tree, which ensures that
the distribution of samples in the semantic space tends to be consistent with the shape of the
dependency syntactic tree. The strategy makes the semantic space of automated text more
distinguishable from that of human-written text to overcome the difficulty of automated text
identification. We adopt the spacy tool [13] to extract the dependency syntactic information of
all sentences and generate the dependency syntactic tree. Note that the dependency syntactic
tree could be simplified to an undirected graph. For a token 𝑤𝑖, we treat the edge-connected
tokens as its associated tokens in an undirected graph, subsequently defined as positive samples
set 𝑃 of 𝑤𝑖 in syntax-based contrastive learning. The contrastive loss of 𝑤𝑖 is formulated as
follows:
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where 𝐼 is the subscript list of tokens in the sentence sequence. 𝑠𝑖𝑚(⋅) indicates the cosine
similarity function and τ denotes a scalar temperature parameter. The overall contrastive loss
for a sentence sequence is:

𝐿𝑠𝑏𝑐 =
1
𝑛

𝑛
∑
𝑖=1

𝐿𝑠𝑏𝑐𝑖 (3)

3.3. Text Identification

We proceed with text classification by leveraging the semantic representation associated with
the token “[CLS]” within the given sentence. The representation is utilized as the sentence’s
overall feature representation, which is subsequently fed into a linear classifier with a softmax
function. To address subtask 1, it is imperative to construct a classifier with a designated output
dimension of 2. For subtask 1, the predicted probabilities are:

𝑦1 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑊 𝑇
1 ⋅ ℎ[𝐶𝐿𝑆] + 𝑏1) (4)

where 𝑊1 and 𝑏1 are learnable parameters, and 𝑦1 is the predicted probability of subtask
1. The cross-entropy loss is employed to calculate the loss that penalizes the predicted class
probability based on how far it is from the actual expected value. The cross-entropy loss function
of subtask 1 𝐿1𝑐𝑒 is defined as:

𝐿1𝑐𝑒 = −
2
∑
𝑗=1

𝑒1𝑗 𝑙𝑜𝑔𝑦1𝑗 (5)

where 𝑒1 is the one-hot encoding of the sample’s actual expected value of subtask 1. Likewise,
we design a classifier with an output dimension of 6 in subtask 2. The predicted probabilities
and cross-entropy loss of the subtask 2 are formulated as follows:

𝑦2 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑊 𝑇
2 ⋅ ℎ[𝐶𝐿𝑆] + 𝑏2) (6)

𝐿2𝑐𝑒 = −
6
∑
𝑗=1

𝑒2𝑗 𝑙𝑜𝑔𝑦2𝑗 (7)

where 𝑊2 and 𝑏2 are learnable parameters, and 𝑦2 is the predicted probability of subtask 2.

3.4. Loss

Cross-entropy loss function and the optimized contrastive loss function are combined together
by a weighting coefficient 𝛼:

𝐿 = 𝛼 ⋅ 𝐿𝑐𝑒 + (1 − 𝛼) ⋅ 𝐿𝑠𝑏𝑐, (8)

where 𝐿𝑐𝑒 and 𝐿𝑠𝑏𝑐 represent the cross-entropy loss function and the contrastive loss function
respectively, and 𝐿𝑐𝑒 ∈ {𝐿1𝑐𝑒, 𝐿2𝑐𝑒}. Our training target is to minimize the loss 𝐿.



4. Eeperiments

4.1. Experimental Setup

All experiments are conducted based on the NVIDIAA30 24-GBGPU.We utilize pytorch [14] and
transformers [15] to build our models. The feed-forward layer is initialized using weights drawn
from a truncated normal distribution, characterized by a standard deviation of 2e-2, while the
bias is initialized to zero. A fixed initial learning rate of 2e-5 is consistently applied throughout
the experiments. The maximum sequence length is set to 128, indicating the prescribed limit
on the number of tokens in a sentence. To facilitate training, a warmup proportion of 1e-3
is employed, denoting the fraction of the total training time during which the learning rate
remains low and gradually increases. This technique has been observed to yield advantageous
outcomes in the training process. The training episodes are executed over the course of 10
epochs with a batch size of 8. For the syntax-based model, we select the small-scale English
model (en_core_web_sm-3.5.0) and the Spanish model (es_core_news_sm-3.5.0) respectively.

In our experiments, we employ a 5-fold cross validation to ensure a fair assessment of the
effectiveness of strategies, which entails dividing the datasets into five subsets to construct
an ensemble model with enhanced generalization capabilities. Specifically, four subsets are
designated for training, while the remaining subset is utilized for verification. The evaluation
result of strategy effectiveness is derived from averaging the results obtained from the five cross
models. The weighted coefficient 𝛼 has great influence on the performance of the model. We
searched for hyper-parameters in the range {𝛼|0.005 ≤ 𝛼 ≤ 0.1}. The optimal weights of English
subtask 1, Spanish subtask 1, English subtask 2 and Spanish subtask 2 are 0.1, 0.1, 0.01 and 0.005
respectively.

4.2. Experimental results

Table 1
Main results.

Subtask Language Model Five-fold Cross Validation Test

1

English
XLM-RoBERTa 91.30 55.21

SCL 92.48 57.84
Merge - 56.34

Spanish
XLM-RoBERTa 91.13 59.58

SCL 91.74 58.83
Merge - 59.07

2

English
XLM-RoBERTa 54.90 59.27

SCL 57.61 59.70
Merge - 59.86

Spanish
XLM-RoBERTa 58.44 60.39

SCL 58.90 60.61
Merge - 60.93

We conduct experiments in two subtasks of English and Spanish respectively, and the experi-
mental results are shown in Table 1. Overall, our proposed method SCL achieve a significant



improvement over the XLM-RoBERTa model.
In terms of 5-fold cross validation, our proposed method consistently outperforms XLM-

RoBERTa across four distinct tasks. Notably, in subtask 2 of English, the leverage of SCL yields
the most substantial enhancement, resulting in a remarkable improvement of 2.71 in accuracy
compared to the XLM-RoBERTa model.

In the comprehensive evaluation conducted on the test set, the SCLmethod achieves consistent
gains over the XLM-RoBERTa model across three tasks, except for subtask 1 of Spanish, which
suggests that our approach is effective. Specifically, in subtask 1 of English, the SCL method
achieves an accuracy of 57.84 and XLM-RoBERTa demonstrates an accuracy of 59.58 in subtask 1
of Spanish. Subsequently, we further explore the potential of probabilistic fusion by combining
the SCL models with the XLM-RoBERTa models. However, the merging strategy only proved
effective in subtask 2, resulting in an accuracy of 59.86 and 60.93 for English and Spanish,
respectively.

5. Conclusion

Our study aims to enhance the syntax representation capability of the neural network model,
which exhibits remarkable performance in identifying automated texts. In the IberLEF 2023
AuTexTification task, which focuses on Automated Text Identification, we introduce a novel
syntax-based contrastive learning method, which empowers the neural network model to
explicitly capture syntactic features, thus enhancing performance in identifying automated
texts. In the evaluation phase, our SCL method demonstrates outstanding performance by
securing the third and fifth place in Task 2 for English and Spanish, respectively..

In subsequent investigations, we will explore more advanced dependency syntactic models
and superior pre-trained models to optimize the performance of automated text identification
models, striving for enhanced outcomes and heightened efficiency.
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