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Abstract

In this work, we present a framework for the interpretable analysis of machine learning algorithms to
predict the Multiple Sclerosis worsening using the datasets provided by the iDPP@CLEF 2023 Challenge.
The proposed framework is modular and allows to investigate the link between the provided static and
dynamic features and the outcome to be predicted. Our findings show that better performance could be
achieved by using Random Survival Forests together with temporal information about the clinical scores
and a proposed feature related to the normalized frequency of patients’ relapses.
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1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS)
affecting millions worldwide. It causes a variety of neurological symptoms due to neurodegen-
eration, demyelination, and inflammation. MS has a complex and heterogeneous presentation,
making diagnosis challenging. However, advancements in computational diagnostic tools and
algorithms have significantly improved the accuracy and efficiency of MS diagnosis.

To assess and diagnose MS, many diagnostic tools are used. One of the most used is magnetic
resonance imaging (MRI), which allows to see CNS abnormalities that are symptomatic of
demyelination. Contrast agents based on gadolinium improve the detection of active lesions
and aid in differentiating MS from other disorders. In addition, MRI can measure the temporal
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and spatial evolution of lesions, which is helpful for evaluating treatments and for monitoring
diseases [1, 2]. Another crucial diagnostic tool for MS is the examination of cerebrospinal fluid
(CSF). CSF is obtained via lumbar puncture and examined for the presence of oligoclonal bands
and elevated levels of immunoglobulin G (IgG) and myelin basic protein. These CSF anomalies
offer further evidence that inflammatory processes are present in the CNS. Electrophysiological
techniques that measure the speed of nerve signal conduction in particular pathways include
visual evoked potentials (VEP), brainstem auditory evoked potentials (BAEP), and somatosensory
evoked potentials (SSEP) [3]. These tests may reveal demyelination and neuronal degeneration,
supporting the diagnosis of MS.

In MS diagnosis and treatment, computational methods have become increasingly important.
To improve the precision and effectiveness of diagnosis, prognosis, and treatment decision-
making, clinical and imaging data are processed using machine learning (ML) and artificial
intelligence (AI) approaches. These algorithms can precisely identify and measure MS lesions,
aiding in the evaluation of disease burden and progression [4]. Moreover, ML and Al methods
are becoming increasingly important for the prediction of disease course and treatment response
[5]. By analyzing clinical and imaging data from a large number of patients, ML models can
identify patterns and biomarkers that are associated with disease progression or treatment
outcomes. This information can guide personalized treatment strategies and improve patient
care.

Time-to-event machine learning models, also known as survival analysis models, are used to
predict the time until an event of interest occurs, such as disease progression or death [6]. These
models have been proven particularly valuable in the field of healthcare, including predicting
disease progression in conditions like MS. In addition, they have shown greater performance
than traditional parametric approaches for disease progression prediction tasks [7]. Parametric
models assume specific distributions for the survival times, such as the Weibull or exponential
distribution, which may not always accurately capture the complexities of real-world data. In
contrast, machine learning models are capable of handling high-dimensional data, nonlinear
relationships, and interactions between predictors. Censoring and time-varying predictors
are common challenges in survival analysis. Machine learning survival models can handle
censoring, i.e., the event of interest has not yet occurred at the end of the study. They can
also incorporate time-varying predictors, allowing for dynamic predictions and accounting for
changes in the predictors over time.

In this work, we exploit the MS dataset developed in the iDPP@CLEF 2023 challenge including
demographic and clinical characteristics of about 1800 patients to explore the potential of
different time-to-event ML approaches for MS disease progression prediction. The ultimate
goal is to provide an interpretable framework that maximises the performance of the different
prediction tasks of the challenge and at the same time highlights different aspects related to the
interpretability of the results such as possible bias and the impact of clinical predictors on the
achieved performance.

The paper is organized as follows: Section 2 introduces related works; Section 3 describes
our approach; Section 4 explains our experimental setup; Section 5 discusses our main findings;
finally, Section 6 draws some conclusions and outlooks for future work.



2. Related Work

Several studies have explored the application of machine learning techniques for predicting
the worsening of multiple sclerosis (MS) and identifying patients at a higher risk of disease
progression.

Zhao et al. [8] used different ML algorithms to predict an increase in EDSS > 1.5 (worsen-
ing) or not (non-worsening) at up to 5 years after the baseline visit. They utilized a comprehen-
sive set of clinical and imaging features, including demographic information, clinical scores, and
magnetic resonance imaging (MRI) data. Their models achieved high accuracy in identifying
patients who experienced worsening, demonstrating the potential of machine learning in risk
stratification for MS progression.

Fiorini et al. [9] exploited different classifiers to analyze clinical data for the detection of MS
courses and distinguish between progressive and benign patterns.

Montolio et al. [10] developed different ML models based on Retinal nerve fiber layer (RNFL)
thickness and clinical data FOR MS diagnosis and MS disability course prediction founding new
powerful biomarkers.

Although several models have been proposed that can discriminate between different levels
of disease progression, time-to-event ML models have not yet been extensively explored to
predict the course of disease in a continuous manner.

3. Methodology

In this work, we implemented a workflow for the following tasks of the challenge:

o Task 1a: predicting risk of disease worsening by using survival analysis, where worsening
is defined based on EDSS Expanded Disability Status Scale (EDSS) with the threshold
EDSS > 3 at least twice within one-year interval;

« Task 1b: predicting risk of disease worsening, where worsening depends on the first
recorded value accordingly to current clinical protocols;

« Task 2a: predicting the probability of worsening (MS): by explicitly assigning a cumulative
probability of worsening at different time windows (e.g., between years 0 and 2, 0 and 4,
0 and 6, 0 and 8, 0 and 10) for subjects assigned to Task 1a;

« predicting a cumulative probability of worsening at different time windows (0-2; 0-4; 0-6;
0-8; 0-10) for subjects assigned to Task 1b.

The proposed workflow is reported in Figure 1. Each step is detailed in the following sections.

3.1. Dataset

The Challenge organizers provided the following data for the four tasks:

« static features about each patient with information on age, sex, and others related to
the onset of the disease such as the presence of certain symptoms, age of onset and the
medical centre;

« information about the relative start date of relapses;
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Figure 1: Proposed workflow for tasks 1a, 1b, 2a, 2b.

« tests on evoked potentials;

« information on the areas on which MRIs have been performed and the observed lesions;

« information about the MS course;

« the relative date when EDSS scores were measured, together with the EDSS scores
evaluated by clinicians;

« the outcomes containing the patients’ worsening occurrence, together with the time of
occurrence.

More details on the datasets can be found in [11] and [12] Firstly, we compared the number of
subjects with static information and outcomes with respect to all the other dynamic information,
selecting for all tasks only the static features, relapses and MRI information (see Figure 2 for a
visual comparison). In the second step, features on lesions extracted by using MRI images were
also excluded due to the high number of missing data (NaN values).

In order to obtain the clinical history of the patient in terms of the time course of the EDSS
scores, we used a landmarks-style approach [13], sampling the time instants of the variable
"delta_edss_time0" on the training set and obtaining 16 temporal points for each patient. In the
absence of data at a specific time instant, the £DS'S = 0 was entered.

Moreover, we transformed the information about the relapses for each patient ¢, into an
additional relative frequency feature as:
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Figure 2: Patient-related overlaps for each type of feature for all tasks.

n_relapses
(tend - tl) '
where n_relapses represents the number of relapses between the first recorded time (1) and
the last recorded time (t¢,q).
Missing values for aach variable were imputed using the median values. Moreover, the
variable "centre" was excluded.

(1)

variation_relapses; =

3.2. Validation scheme

We adopted a repeated k-fold cross-validation scheme, i.e., a resampling technique that combines
k-fold cross-validation with repetition, as it presents several advantages such as: a robust esti-
mate of model performance, better generalization, reduced bias and improved hyperparameter
tuning [14, 15].

Moreover, within each validation round, we addressed the class imbalance between censored
and not-censored events oversampling the minority class by means of the Synthetic Minority
Oversampling TEchnique (SMOTE) [16].

3.3. Time-to-Event Machine Learning

We exploited time-to-event machine learning models to evaluate the risk of worsening for each
patient as defined in the two tasks 1a and 2a. Each observation of the dataset is described by
a set of features X = (x1,...,x,), the time ¢ when the event occurred, or the censoring time
¢ > 0. By using an event indicator § € 0; 1, the observable time y of a right-censored sample is
then defined as:

. tifd=1
y:mm(t,c):{ 011f5:0 (2)



Time-to-event data are modelled by using survival analysis. The key concepts and techniques
in survival analysis include:

« Survival Function: it is denoted as S(t), representing the probability that an individual
survives beyond time ¢. It provides an estimate of the probability of event occurrence at
each time point:

S(t) = Pr(T = 1], (3)
« Hazard Function: it is denoted as h(t), and expresses the conditional probability that the
event will occur within [t,t+dt), given that it has not occurred before:

Prit<T <t+4+dt|T >t
h(t) = tim LTS +dir =4 (4)
dt—0 dt
and fg h(u) du is the cumulative hazard function;
« by subdividing the time axis into J parts, the risk score of a sample = could be assessed

as:

J

r(x) =Y H(tj,x). (5)
j=1

In this work, we adopted Random Survival Forests and Boosting Machines for time-to-event
analysis.

+ Random Survival Forests (RSF) are an extension of random forests specifically designed
for survival analysis. They combine the principles of survival analysis with the concept
of decision trees. Random Survival Forests provide a flexible and powerful approach for
modeling the relationship between predictors and survival times. They build a collection
of decision trees that partition the data into subsets based on predictor variables and
survival times. At each node of the decision tree, a splitting criterion is used to determine
the best predictor variable and threshold for splitting the data. Then the bagging is applied
for resampling the original data with replacement to create multiple bootstrap samples.
Each decision tree is built on a different bootstrap sample, and the final prediction is
obtained by averaging the predictions of all trees. Moreover, only a random subset of
predictor variables is considered at each split. This random feature selection adds an
additional element of randomness to the model, reducing overfitting and improving
generalization.

+ Boosting Machines, such as Gradient Boosting (GB) Machines create a sequence of weak
learners, which are combined to form a strong learner. Boosting starts with initializing
predictions for each sample. Initially, all samples have equal weights. Boosting builds a
series of weak models, usually decision trees, in an iterative manner. Each weak model
is fitted to the data, and the weights of the samples are updated based on the model’s
performance. In each iteration, the weights of misclassified or poorly predicted samples
are increased, while the weights of correctly predicted samples are decreased. This allows
subsequent weak models to focus more on the difficult samples. At the end stage, the
weak models are combined to form a strong learner. The final prediction is obtained by
taking a weighted average of the predictions from all weak models.



3.4. Permutation feature importance

We computed the permutation feature importance [17] to assess the importance of features for
both ML models. Permutation feature importance involves the following steps:

Train a Model: first, a machine learning model is trained using the dataset;

Calculate Baseline Performance: the model’s performance metric is computed through
cross-validation. This performance metric serves as the baseline or reference.

Permute the Feature: the values of the feature of interest are randomly shuffled while
keeping other features unchanged. This results in a dataset where the values of the feature
no longer reflect their original relationship with the target variable.

Evaluate Model Performance: the permuted dataset is passed through the trained model,
and the performance metric is calculated again. The new performance metric reflects the
model’s performance when the feature’s relationship with the target variable has been
disrupted.

Compute Feature Importance: the feature importance is computed by quantifying the
drop in model performance caused by permuting the feature. The larger the drop in
performance, the more important the feature is considered. Feature importance can be
expressed as a difference, ratio, or percentage change between the baseline performance
and the performance after permutation.

Here we adopted this technique to identify which features have the most impact on the model’s
performance and provide insights into the underlying relationships between the features and
the target variable.

3.5. Performance evaluation

The following metrics were adopted to assess the performance during the training phase:

the concordance index (C-index), i.e., a generalization of the area under the ROC curve
(AUC) that can take into account censored data. It estimates the probability that the order
of the predictions of a pair of comparable patients is consistent with the individual risk
scores [18]. It can be computed as:

Zi,j 1Tj<Ti : 17‘j>7’i . 5]
)
Ei,j 1Tj<Ti xJ

where r; is the risk score for patient 4, lpj<r, =1 if T; < T else 0; Lyjsr, =1 ifr; >r;
else 0.

C —index =

(6)

The cumulative dynamic AUC. The receiver operating characteristic (ROC) curve and the
area under the ROC curve (AUC) can be extended to survival data by defining sensitivity
(true positive rate) and specificity (true negative rate) as time-dependent measures [19].
Cumulative cases are all individuals that experienced an event prior to or at time ¢ (t; < t),
whereas dynamic controls are those with ¢; > ¢.The associated cumulative dynamic AUC
quantifies how well a model can distinguish subjects who fail by a given time (¢; < )
from subjects who fail after this time (t; > t).



Table 1
C-index of the ML models averaged across the repeated cross-validation rounds

‘ Model ‘ Static dataset A ‘ Complete dataset A ‘ Static dataset B ‘ Complete dataset B
RSF 0.49 0.65 0.5 0.53
RSF SMOTE 0.47 0.58 0.48 0.51
GB 0.53 0.55 0.55 0.53
GB SMOTE 0.53 0.53 0.56 0.46

4. Experimental Setup

We organized the setup of the experiments to address the following research questions:

« RQ1 What is the impact of the static features on the model performance for the two
datasets A and B?

« RQ2 What is the additional contribution of the dynamic features?

« RQ3 Is there a significant ranking of all the features for both definitions of MS worsening?

« RQ4 Does the imbalance of the types of events ("censored’ and non-censored) affect the
performance of the models?

Accordingly, 16 models were trained, i.e. two RSF models (without SMOTE and with SMOTE)
and two GB models (without SMOTE and with SMOTE) for each dataset for both the partial
dataset, including only static features and the total dataset, including also dynamic features. We
have run all the experiments on Google Colab [20]. The ML models have been implemented by
using the Python package scikit-survival-0.20.0 [21]. All submissions were completed with the
"SisInfLab-AIBio" team.

5. Results

5.1. Cross-validation results
RQ1: impact of the static features on the performance

As shown in Figure 3 and Table 1, RSF models perform worse than GB models for dataset A.
The same can be observed for dataset B (see Figure 4). It is worth noting, however, that the
best performance is close to chance level, highlighting that, on their own, static features fail to
predict the MS worsening and that the dynamic information should therefore be exploited.

RQ2: the additional contribution of the dynamic features

As shown in Figure 5 and Table 1, for dataset A, RSF models perform better than GB models.
Furthermore, these models perform better than all ML models trained using only static data.
This finding is not observed for dataset B: as it turns out from Figure 6 only the RSF model
performs slightly better than the GB models trained using the static dataset.
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Figure 4: Temporal AUC for all the ML models for the static variables of dataset B averaged across the
repeated cross-validation rounds.

RQ3: ranking of the features for both tasks

The RSF models obtained without using the SMOTE technique were found to be the best for both
datasets. We obtained the feature ranking for the two best models using the permutation feature
importance. It can be observed in Figure 7 that for dataset A, most of the temporal features of
the EDSS score appear as the most important together with the information on the onset of
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Figure 6: Temporal AUC for all the ML models for dataset B averaged across the repeated cross-
validation rounds.

the disease and the feature variation_relapses representing the relative frequency of relapses.
For dataset B, which has a different definition of worsening, it can be observed in Figure 8 that
only a few temporal points of the EDSS scores appear as significantly impacting performance,
while information on disease onset and the feature variation_relapses are confirmed relevant
features.
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Figure 7: Permutation feature importances for the best model RSF for dataset A.

RQ4 effect of class imbalance on the performance

As shown in Table 1 and Figures 5 and 6, no improvements in the performance of ML models
occur using SMOTE, showing that this technique is not suitable for balancing the classes of
censored and not-censored events.

6. Conclusions and Future Work

In this paper, we presented a framework for the interpretable analysis of ML algorithms to
predict the MS worsening using the datasets provided by the iDPP@CLEF 2023 Challenge. The
proposed framework is modular and allows to investigate the link between the provided static
and dynamic features and the outcome to be predicted. Our findings show that for a more
complex and condition-dependent definition of worsening (tasks 1b and 2b) significantly lower
results are obtained than those obtained with a simpler definition of worsening (tasks 1a and 2a).
In our work, only two ML methods with a landmark approach were considered, thus different
algorithms such as those based on deep neural networks that can automatically model time
series of different lengths will be exhaustively explored in future work. In addition, we excluded
information about the patients’ centre, which could instead play a key role in predicting the
course of the disease. Future developments will involve the use of site harmonization algorithms
prior to time-to-event analysis to remove potential bias related to this variable.
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