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Abstract
Automatic identification of snake species from non-standard photos is an important task to improve
medical treatment of snakebites. To address this problem, the SnakeCLEF 2023 competition provides a
large data set of photos and metadata information for 1,784 snake species. This paper describes the FHDO
Biomedical Computer Science Group’s (BCSG) participation in this competition. Through a series of
experiments investigating the effects of pre-trained feature extractors, image sizes, metadata integrations,
class balance learning and multiple instance pooling methods, a proposed model architecture for joint
feature learning of image data and embedded metadata is presented to improve classification of snake
species. With this proposal, the best model achieved a macro 𝐹1-Score of 81.90 % and challenge-specific
metrics of 90.09 % Track 1 and 1, 149 Track 2 on the challenge public test data set.
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1. Introduction

This paper presents the participation of the University of Applied Sciences and Arts Dortmund
(FHDO) Biomedical Computer Science Group (BCSG) at the Conference of Labs of the Evaluation
Forum (CLEF) 20231 SnakeCLEF [1] challenge2 for snake species identification. The code to
reproduce the participation is available online on the HuggingFace platform3.

The SnakeCLEF 2023 Challenge is one of five data-driven challenges of the LifeCLEF 2023 [2,
3, 4] research platform focusing on automated species identification. Specifically, this year’s chal-
lenge aims to provide data-driven analysis to improve snake species identification, with a focus
on accurate identification of venomous and non-venomous snakes based on non-standardised
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photographs. As the annual mortality from snakebites is between 81,000 and 138,000 people [5],
identifying snake species could help to administer the correct antivenom [6] and thus reduce
the number of victims.

Compared to the FHDO-BCSG team’s participation in SnakeCLEF 2022 [7] and before[8, 9],
the previously proposed workflow for snake species identification based on object detection is
abandoned and a new approach is introduced, which focuses more on multimodality to combine
the provided image data with the also provided metadata for snake species identification.

The paper is structured as follows: In Section 2 the related work in this research area is
described. Section 3 summarises the SnakeCLEF 2023 data set and Section 4 describes the new
proposed method for snake species identification. Section 5 shows ablations studies as well
as the results obtained using the proposed method. Finally, the results are summarised and
concluded in Section 6 and Section 7 gives an outlook on future work.

2. Related Work

Automatic snake species classification has a long history, starting with classical ML models.
For example, an approach based on manually extracted taxonomic features was implemented
in [10] to distinguish between six species. However, manual feature extraction is a tedious
task, so field-based approaches have been developed that collect unstructured photographs and
extract textural [11] or deep learning features from snake images.

Recently, most of the published studies [12, 13, 14, 15, 16, 17] focus on deep learning-based
approaches. Some of these studies were designed as object detection tasks.

For example, different deep learning-based object detection methods were compared to each
other in [12]. The data set which was extracted from ImageNet-1k [18] and augmented by a
Google Image search included 1,027 images of eleven Australian species. The least frequent
class contained 60 images. The best mean Average Precision (mAP) was achieved for a Faster
Region-Based Convolutional Neural Network (Faster RCNN) [19] with a ResNet [20] backbone.

A similar approach [13] used Faster RCNN with different detection layers. The data set col-
lected from three data sources contained 250 images of nine species occurring on the Galápagos
Islands, Ecuador. To collect the data set, two internet searches were performed on the Google
and Flickr platforms, and an image data set provided by the Ecuadorian Institution of Tropical
Herping4 were accessed. Similar to the previously described method, the ResNet backbone
achieved the best accuracy of 75 %.

Other studies have performed classification tasks. For example, the performances of three
deep learning networks, namely VGG16 [21], DenseNet161 [22], and MobileNetV2 [23] are
compared in [14]. The data set contained 3,050 images of 28 species. An accuracy of 72 % was
achieved for the test data set and the DenseNet161 architecture.

A deep Siamese network [24] for one-shot learning was developed in [25]. The network was
trained on 200 images from the World Health Organization (WHO) venomous snake database5.
This data set contained three to 16 images per class.

4Tropical Herping: https://www.tropicalherping.com/, [Last accessed: 2023-06-01].
5WHO Snakebite Data Information Portal: https://snbdatainfo.who.int/?page=Information#tab=tab_3, [Last

accessed: 2023-06-01]
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Although the previously described methods each examined less than 30 distinguishable
species, more than 600 of the world’s 3,700 snake species are medically relevant [26].

The SnakeCLEF challenge [27, 26] overcomes this disadvantage by providing a more diverse
data set with images of more than 1,000 species. It addresses the problems of high intra-class
variance and low inter-class variance as well as the long-tail distribution of snake images.
Since snake species strongly vary across countries, the data set also includes location metadata.
Several deep learning approaches have been successfully submitted in previous rounds of this
challenge.

In SnakeCLEF 2020 [28], the winning approach [29] used a ResNet architecture pre-trained on
ImageNet-21k [30] and achieved a macro-averaging 𝐹1-Score of 62.54 %. The FHDO-BCSG [8]
combined object detection and image classification using a Mask-RCNN [31] instance detection
framework and an EfficientNet-B4 [32] classification model. This method reached a macro-
averaging 𝐹1-Score of 40.35 %. In post competition experiments, the score was optimized to
59.40 %.

The winning approach [33] of SnakeCLEF 2021 combined object detection with an EfficientDet-
D1 [34] model, and an EfficientNet-B0 classifier as well as likelihood weighting to fuse image
and location information. The best model reached a macro-averaging 𝐹1-Score of 90.30 %.

Experiments with several Convolutional Neural Network (CNN) architectures were presented
in [35]. The best 𝐹1-Score of 83.00 % was obtained for an ensemble model combining two
ResNeSt [36] models with a ResNet [20], and a ResNeXt [37] model. The ensemble was generated
by a majority voting of the top 1 predictions of the individual models.

The FHDO-BCSG [9] expanded the SnakeCLEF 2020 workflow by combining object detection
with EfficientNets and Vision Transformers (ViTs) [38]. The best model was an ensemble
averaging the model predictions of an EfficientNet-B4 model and ViTs. This submission obtained
a macro-averaging 𝐹1-Score of 78.75 %.

After the challenge, the organizers published an approach [17] that was trained on a subset of
the challenge data set and evaluated on the official test set. In the work, ViTs were trained using
a two-step approach. First, the model is trained with cross entropy loss on the training data set.
Second, the resulting model was fine-tuned with focal loss [39] to improve performance for
rare species. The model achieved a macro-averaging 𝐹1-Score of 92.20 %.

In the SnakeCLEF 2022 [27] challenge, most teams focused on the combination of image and
metadata as well as strategies that solve the problem of long-tail distributions. The approach [40]
that produced the best results was an ensemble of different model architectures, namely Con-
vNeXt [41], VOLO [42], CoLKANet [40], SwinTransformer [43], and ViT. The CoLKANet is a
newly developed architecture that combines large kernel attention layers and self attention
layers. The model performance was improved by different strategies to enhance the robustness,
e.g. the use of TrivialAugment [44], Test-time Augmentation (TTA) [45, 46], pseudo labelling for
rare classes, or Exponential Moving Average (EMA). The ensemble achieved an macro averaging
𝐹1-Score of 85.40 % on the private test set.

The second place team [47] trained models based on the ViT architecture. An effective
logit adjustment loss (ELAL) [47] which combines the logit adjustment loss [48] with the
class-balanced loss [49] was developed to increase the relative margin between logits of rare
and common labels. This loss improved the classification, especially for the rare classes. The



final model was an ensemble of two ViT-L models and one ViT-H model and reached a macro
𝐹1-Score of 84.57 % for the private test set.

The third place of the challenge and a macro 𝐹1-Score of 82.65 % for the private test set was
reached by [50]. The approach combines supervised and unsupervised training on the training,
validation, and test sets using the Simple Framework for Contrastive Learning (SimCLR) [51]
with the MetaFormer [52] architecture that combines image data and metadata, TTA, and logit
adjustments to reduce the impact of the long-tailed class distribution. The final model is an
ensemble combining seven MetaFormer models trained for different epochs and with different
hyperparameters.

During the participation in the previous SnakeCLEF challenge, the FHDO-BCSG [7] extended
their previous workflow by using object detection with YOLOv5 [53], feature concatenation,
and multiplication with prior probabilities. The final ensemble that combines seven models
with different architectures (EfficienNet, EfficientNet-v2 [54], and ConvNeXt) reached a macro-
𝐹1-Score of 70.80 % on the private test set.

In this work, the previously developed workflow [7, 8, 9] has been completely revised. The
new workflow which is presented in this paper, focuses more on training of multimodal models
that combine image data with tabular metadata.

3. SnakeCLEF 2023 Data Set

The SnakeCLEF 2023 data set included 196,332 images of 111,215 observations and 1,784 species.
The training data set contains 168,144 (85.64 %) images of 95,588 (85.95 %) observations and
consists of two data sources. The first one originates from the iNaturalist platform6 and includes
154,301 (91.77 % of training data set) images of 85,843 (89.81 % of training data set) observations
and 1,784 (100.00 %) species. To add images of rare species, additionally, data from Herpmapper
is added to the training data set. This data source includes 13,843 (8.23 % of training data
set) images of 9,745 (10,19 % of training data set) observations and 889 (49,83 %) species. The
validation data set includes 14,117 (7.19 %) images of 7,816 (7.03 %) observations and 1,599
(89.63 %) species. The remaining 14,071 (7.17 %) images of 7,811 (7.02 %) observations were used
as a test set.

The distribution of images per snake species is highly imbalanced. The most frequent species
was the Natrix natrix containing 2,079 images in the training and validation sets. For six species
only three images were collected.

In addition to the photographs, metadata that provides information about the country (code),
and if the species is endemic (endemic) is available. The data was collected in 214 countries
with Mexico (“MX”) being the most frequent country (21,002 images; 10.70 %). For 9,730 images
(4.96 %) no information about the code was available. 29,198 (14.87 %) of the images show
endemic snakes. An additional table is available that contains information if the species is
venomous or not. 285 (15.97 %) species in the data set are venomous.

6iNaturalist: https://www.inaturalist.org/, [Last accessed: 2023-06-01].

https://www.inaturalist.org/


4. Proposed Method

The participation of FHDO-BCSG team in SnakeCLEF 2022 [7] and before[8, 9] focused heavily
on an object detection based snake species identification workflow where the image data was
first cropped to a specific region of interest where the snake is pictured and subsequently
classified. The proposed method for this year’s participation abandons this workflow and
focuses more on a multimodal model that combines the provided image data with the also
provided metadata for snake species identification.

4.1. ConvNeXt

For feature extraction from image data, the proposed method relies on highly optimised and
pre-trained CNNs. Specifically, it uses a ConvNeXt V2 [55] base model with 89M. parameters.
The ConvNeXt architecture [41] is a state-of-the-art approach to modernising the most standard
CNN architecture (ResNet50) towards the design choices of the popular Vision Transformers
models. Therefore, the authors of ConvNeXt conducted several experiments to discover the
key components that lead to the performance differences. A key component was changing the
multi-stage macro design of the architecture to reduce the stage computation ratio and changing
the stem to a simpler "patchify" layer similar to ViT [41]. Other changes included the use of
inverted bottleneck blocks with depth-wise convolution, a larger kernel size, and an increased
network width to the same number of channels as the Swin-Transformer [41]. ConvNeXt also
adopted some features of the micro-scale architecture of transformers, such as replacing the
Rectified Linear Units (ReLU) activation function with its smoother Gaussian Error Linear Unit
(GELU) [56] variant, using fewer normalization layers, and replacing BatchNorm layers with
simple Layer-Normalization [41]. Other performance differences resulted from similar training
techniques as for ViT, e.g., the use of the AdamW [57] optimizer, extended training epochs,
heavy data augmentation including CutMix [58], RandAugment [59], Random erasing [60], and
label smoothing [41]. Further improvements to the ConvNeXt architecture have been made
by [55] by adding Global Response Normalisation (GRN) layers to improve inter-channel feature
competition, as well as using self-supervised learning techniques such as masked autoencoders.
This co-design of architectural improvements and self-supervised learning techniques results
in the so-called ConvNeXt V2 model family, which further improves the performance of pure
ConvNets. There are different ConvNeXt V2 variants T/S/B/L, which differ only in the number
of channels and the number of blocks in each stage.

4.2. Leveraging Metadata Information

As mentioned in Section 3, the data set contains additional metadata including region and
endemic information for most of the images. The idea is to use the metadata information as
additional features to leverage model performance in snake species identification. This requires
a multimodal model architecture that can handle both image data and structural metadata.
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Figure 1: Schematic representation of the proposed method, which incorporates regional metadata by
multiplying it with regional prior probabilities.

4.2.1. Multiplication with Regional Prior Probabilities

A successful approach in recent years of the snake challenge has been to multiply the snake
species prediction probabilities of the image classification model by the regional prior probabili-
ties of the snake species, as visualised in Figure 1. This requires estimating the prior probabilities
from the relative frequency distribution of observations per snake species and region of the
training data set. Two strategies can be used to combine the region and image information.
First, the raw regional prior probabilities can be multiplied by the snake species prediction
probabilities of the image classification model. The second strategy is to multiply by a binarised
version of the prior probabilities so that it acts as a filter mask, filtering out those snake species
predictions of the model that do not occur in that region with respect to a given region code
in the training data set. For images with missing regional information, as well as for regions
not available in the training data set, the prior probability of the ”unknown” class can be used.
Unfortunately, this approach only applies to the regional metadata.

4.2.2. Joint Feature Learning with Embedded Metadata

A more advanced method of utilising metadata is to use them as additional features alongside
the image data and let the model learn how to incorporate them into the identification of snake
species, as visualised in Figure 2. This raises the problem of how to represent the discrete,
nominal metadata in such a way that the model can utilise them as features, since neural
network models usually assume numerical, continuous values as input.

Embedding layers , commonly used in natural language processing (NLP) tasks for word
embedding, is the proposed solution to embed the metadata as a learnable numerical vector
representation. Embedding layers (in particular, the nn.Embedding7 provided by the PyTorch
framework) generally serve as lookup tables to learn a mapping from arbitrary discrete input

7https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html, [Last accessed: 2023-06-01]

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
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Figure 2: Schematic representation of the proposed method for joint feature learning of image data
and embedded metadata.

tokens (e.g., words or country codes) to continuous embedding vector representations in a high-
dimensional space. To do this, they internally map index values provided by a fixed vocabulary
of input tokens to a weight matrix of learnable parameters. During training, the parameters
of this weight matrix are updated using backpropagation to minimise the loss function and
optimise model performance. With this approach, the representation of the embedding vector
of a given input token is ideally optimised to best represent the meaning or context of the input
token with respect to the specific training task of the model.

In order to embed the provided metadata of the SnakeCLEF 2023 data set, a fixed vocabulary
of input tokens must be defined that maps the unique and alphabetically sorted country codes
to integer index values, i.e. {"DE": 0, "US": 1 . . . "unknown": 212}. Similarly, a vocabulary of
input tokens for the endemic metadata {false: 0, true: 1} must be defined. During training, these
predefined tokens are used as input to the embedding layers, which learn a numerical vector
representation (embedding) of dimensions 64 for each code and endemic token (manually and
heuristically defined so that the combined metadata dimensions are about 1/10 of the image
feature dimensions).

Metadata Model is used to concatenate the individual embedding representations of code
and endemic metadata and to learn a joint representation of both metadata resources. It is a
small neural network consisting of two linear layers, both with 128 dimensions, with GELU
activation [56] and layer normalisation [61], connected by a drop-out layer.

Intermediate Fusion approach [62], is used to concatenate the features of the metadata
model with the features of the image feature extractor model. Subsequently, the joint feature
representation is passed to a single linear layer of dimension 1784 with softmax activation,
which serves as the classifier to predict the snake species. To prevent overfitting, the classifier
model is preceded by a drop-out layer.
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Figure 3: Schematic representation of the proposed method with joint feature learning of embedded
metadata as well as attention-based bag-level MIL pooled image data of all TTA-, observation instances.

4.3. Multi-Instance Learning (MIL) Methods

As described in Section 3, some of the snake observations in the data set may contain more
than one image, which makes it necessary to combine the model predictions into one common
prediction per observation. This problem is called Multi-Instance Learning (MIL) and there
are two different ways to aggregate the results for the instances of the model (MIL pooling):
the instance-level approach and the bag-level approach [63]. The main difference between the
instance-level approach and the bag-level approach is the operational space of MIL-pooling.

4.3.1. Instance-Level MIL Pooling

In the instance-level approach [63], the model architecture requires an instance-level classifier, i.e.
the prediction probabilities of the snake species are provided for each instance. The subsequent
MIL pooling combines all prediction probabilities of the snake species for each instance into a
global prediction.

The proposed method implements mean MIL pooling, which simply averages the prediction
probabilities of the classifier output for the snake species across all instances. Another method is
weighted average MIL pooling, where the contribution of each instance is weighted differently
when averaging the prediction probabilities for the snake species. The normalised values of the
highest prediction probability of the model for a snake type are used as the weighting of the
instances.

4.3.2. Bag-Level MIL Pooling

The bag-level approach [63] works with the feature space (embeddings) and MIL pooling is
used to aggregate the embeddings of all instances to obtain a global embedding representation
(bag embedding). This bag-level embedding is subsequently classified by a bag-level classifier,
and a joint prediction of the snake species is obtained including all instances.



The proposed method implements the bag-level approach with an attention model for MIL
pooling, as visualised in Figure 3. Attention MIL pooling [63] is more flexible than, e.g., mean
MIL pooling and can adapt the pooling to the task and the provided data and provides better
interpretability. Essentially, attention MIL pooling applies a weighted average MIL pooling to
the feature space of all instances, with the weights being determined by a small learnable neural
network.

4.4. Test Time Augmentation

The proposed method uses Test Time Augmentation (TTA) [45, 46] to make model predictions
more robust, where multiple augmented versions of an image are presented to the model during
inference. The TTA augmentation pipeline consists of resizing the image to 1.25 times the input
size of the image feature extraction model and then using the FiveCrops augmentation method
to obtain five different cropped representations of the same image, i.e. crops from the four
corners and a central crop. As with multi-instance learning, the model predictions for each crop
must then be aggregated into a common prediction.

4.5. Class Imbalance Learning Methods

As mentioned in Section 3, the distribution of images per snake species in the data set is highly
imbalanced. Several approaches have been developed in the past to improve deep learning
on imbalanced data sets, i.e using specialised loss functions with class imbalance weighting
techniques that are used in the proposed method.

4.6. Focal Loss

Focal Loss [39] is such a specialised loss function that applies a dynamic scaling term (1− 𝑝𝑡)
𝛾

to the standard cross-entropy loss function. The scaling factor decays to zero as the confidence
of the correctly predicted class 𝑝𝑡 > 0.5 increases, which automatically down-weights the
contribution of easily classifiable examples during training. Vice-versa, the scaling factor
increases as the confidence of the correctly predicted class 𝑝𝑡 < 0.5 decreases, shifting the focus
more towards the hard to classify samples during training. With the hyperparameter 𝛾 > 0 the
strength of the scaling term can be set exponentially.

In addition, the focal loss can also be combined with a class weighting factor that differently
weights the contribution of classes to the loss, allowing to handle the class imbalance problem.
Different loss weighting techniques are tried to handle class imbalance, such as inverse class
frequency and the so-called effective number of samples technique [49]. The effective number
of samples is defined as the volume of samples and can be calculated by a simple formula
(1− 𝛽𝑛)/(1− 𝛽) (its inverse defines the loss weighting term), with 𝑛 the number of samples
per snake species and 𝛽 ∈ [0, 1) being a hyperparameter.

4.7. ArcFace Loss

ArcFace loss or Additive Angular Margin Loss [64] focuses on learning more discriminative
features to enforce higher similarity for intra-class samples and greater diversity for inter-class



Table 1
Base configuration of hyperparameters for all experiments.

Hyperparameter Base Config

batch size 128

optimizer
AdamW

𝛽1 = 0.9, 𝛽2 = 0.999

CNN feature extractor

lr 1e-5
layer-wise lr decay 0.85
stochastic depth 0.2
weight decay 1e-8

classifier/ embedding layer/ attention module

lr 1e-4
weight decay 0.05
warmup epochs8 5

samples, i.e. to generate margin as Support Vector Machines do. It addresses the problem
of softmax-based loss functions, such as focal loss, which do not explicitly optimise feature
embeddings, resulting in a performance gap for large intra-class variation. ArcFace loss achieves
this by learning a projection of features that distributes them on a circular shape, the hypersphere,
so that the prediction depends only on the angle between them. Adding a margin to the angle as
a penalty increases the distance between classes with similar feature embeddings. The authors
introduced the ArcFace loss for deep face recognition and found that it could maximise the
decision boundaries between similar looking faces, making it easier to distinguish them.

5. Experiments and Results

In order to test the influence of the different proposed methods and come up with a final solution,
several ablation studies were conducted, which are described below.

5.1. General Experiment Conditions

All experiments are implemented in Python 3.8.13 using several Python packages, but mainly
the Python library timm 0.9.2 [65] for pre-trained image classification models and PyTorch
1.13 [66] for training and inference. All experiments use similar base hyperparameters as
summarised in Table 1, while experiment-specific hyperparameters will be mentioned in the
following subsections. In order to achieve high batch sizes, mixed precision [67] and gradient
accumulation are used.

The full-sized version of the SnakeCLEF 2023 data set (training + additional) is used for
training. Since some images are missing from the full-sized version of the training data set, a

8Training epochs with parameter-frozen feature extractors.



total of 332 images of the smaller "medium" version is added to the training data set. However,
a total of 85 images are still missing.

All models are trained with the same image augmentation pipeline, which consists of first
resizing the image to 1.25 times (at smallest image size, keeping the aspect ratio the same)
the target model input sizes, then randomly flipping the image vertically and horizontally
with probability 0.5. Subsequently, a random squared crop of the target model input sizes is
performed, followed by RandAugment [59] with 𝑛 = 2 and 𝑚 = 7, and normalising the images
with ImageNet means (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225).

5.2. General Validation Conditions

Validation is performed on the full-sized version of the SnakeCLEF 2023 validation data set
using an EMA model (exponential moving average of model parameters) that is updated at each
training step with a decay rate of 0.9998.

Also for validation, TTA is used, i.e. each image is first scaled to 1.25 times (at smallest image
size, keeping the aspect ratio the same) the target model input sizes, followed by five square
crops of the target model input sizes (4 corner crops, 1 centre crop). Unless otherwise stated,
the class predictions of the model for each TTA instance are pooled by mean MIL pooling to
obtain a combined snake species prediction of the model. The same applies to combining class
predictions of the model for multiple images of the same snake observation. This also means
that all metrics for the validation results are gathered on the mean MIL pooled data.

Multiple metrics are taken into account for evaluating the experiment results. First the
macro-𝐹1-Score as well as two custom metrics provided by the challenge organizers, namely
"Challenge Track 2" Equation 2 and "Challenge Track 1" Equation 3.

𝐿(𝑦, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if 𝑦 = 𝑦

1 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 0 and 𝑝(𝑦) = 0

2 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 0 and 𝑝(𝑦) = 1

2 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 1 and 𝑝(𝑦) = 1

5 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 1 and 𝑝(𝑦) = 0

(1)

L =
∑︁
𝑖

𝐿 (𝑦𝑖, 𝑦𝑖) (2)

𝑀 =
(𝑤1𝐹1 + 𝑤2 (100− 𝑃1) + 𝑤3 (100− 𝑃2) + 𝑤4 (100− 𝑃3) + 𝑤5 (100− 𝑃4))∑︀5

𝑖 𝑤𝑖

(3)

The motivation of "Challenge Track 2" is to penalise misclassifications of venomous species
with harmless ones, but not vice versa, as based on this prediction a possible anti-venom
might not be injected to the victim. Therefore, different weights for misclassifications are
defined in Equation 1, where 𝑝(𝑠) = 1 if species 𝑠 is venomous, otherwise 𝑝(𝑠) = 0, as well
as 𝑦 for ground truth species and 𝑦 for predicted species. The metric "Challenge Track 1" is
a weighted average of the overall macro 𝐹1-Score and the weighted accuracies of different
types of snake species confusion, where 𝑤1 = 1, 𝑤2 = 1, 𝑤3 = 2, 𝑤4 = 5, 𝑤5 = 2 are the



Table 2
Validation results of the first experiment comparing different pre-trained image feature extraction CNNs
(ImageNet21k vs. iNaturalist21), which were subsequently fine-tuned with the challenge data set.

Pre-Train
Model

Validation Metrics

Macro 𝐹1-Score Challenge Track 1 Challenge Track 2

ImageNet21k 59.00 % 87.87 % 2786
iNaturalist21 61.39 % 88.46 % 2612

weights of individual misclassifications as in Equation 1. 𝐹1 is the macro 𝐹1-Score, 𝑃1 is the
percentage of harmless species misclassified as another harmless species, 𝑃2 is the percentage of
harmless species misclassified as another venomous species, 𝑃3 is the percentage of venomous
species misclassified as another harmless species, and 𝑃4 is the percentage of venomous species
misclassified as another venomous species.

5.3. Experiment: iNaturalist21 Pre-Training

First, the influence of different pre-trained CNN feature extractor models fine-tuned with the
SnakeCLEF 2023 data set is observed. For this purpose, a ConvNeXt V2 base model pre-trained
with ImageNet21k ("convnextv2_base.fcmae_ft_in22k_in1k_384") from the Python library timm
0.9.2 [65] is compared with a pre-trained iNaturalist21 [68] ConvNeXt V2 base model (provided
by ourselves). The pre-training was performed on the iNaturalist21 data set for 10 epochs with
an image size of 384× 384 px and normal cross entropy as loss function. Fine-tuning for both
models was then performed for 30 epochs with an image size of 384× 384 px and normal cross
entropy as the loss function. In order to ensure fairness to other challenge participants, the
model weights were published during the course of the challenge9.

The obtained validation results for this experiment are summarised in Table 2. The validation
results show that pre-training on the iNaturalist21 data set leads to an improved downstream
snake species classification of about 2.4 % points macro 𝐹1-Score when fine-tuned with the
challenge data set.

5.4. Experiment: Influence of Image Size

The second experiment focuses on the influence of different image sizes on the snake species
classification result. Specifically, the pre-trained iNaturalist21 model fine-tuned in the previous
experiment was further tuned for 10 more epochs using image sizes of 464× 464 px, 544× 544
px, and 624× 624 px.

The validation results obtained for this experiment are summarised in Table 3. The validation
results show that increased image sizes generally improve the snake species classification result.
The biggest gain is seen between image sizes of 384 px and 464 px, of about 1.8 % points macro
𝐹1-Score. However, this comes at the cost of increased training time per epoch.

9https://huggingface.co/BBracke/convnextv2_base.inat21_384, [Last accessed: 2023-06-01]

https://huggingface.co/BBracke/convnextv2_base.inat21_384


Table 3
Validation results of the second experiment comparing different fine-tuning image sizes.

Model Input
Image Size

Training Time
per Epoch

10 Validation Metrics

Macro 𝐹1-Score Challenge Track 1 Challenge Track 2

model of experiment 1 fine-tuned + 10 epochs

384× 384 px 3700 sec. 61.39 % 88.46 % 2612
464× 464 px 5300 sec. 63.18 % 89.47 % 2380
544× 544 px 7400 sec. 63.51 % 89.70 % 2330
624× 624 px 9700 sec. 64.20 % 89.75 % 2307

new model trained for 40 epochs

544× 544 px 7400 sec. 65.95 % 90.17 % 2197

Based on these results, it was investigated whether it would be useful to fine-tune a new
model from "the beginning", using the good performing image size of 544 px (taking into account
the training time and the improvement in classification results). Therefore, the pre-trained
iNaturalist21 model was fine-tuned for 40 epochs (for reasons of comparability, as the effective
fine-tuning epochs of the previous results were 30 epochs of the first experiment + 10 epochs of
the second experiment) with the selected image size of 544 px and normal cross entropy as the
loss function.

The validation results obtained (Table 3) show that this approach could further improve the
snake species classification result by about 2.4 % points macro 𝐹1-Score.

5.5. Experiment: Leveraging Classification Results with Metadata

The third experiment focuses on the use of the provided metadata, such as endemic and
regional code information, in addition to the image data to improve snake species classification.
Specifically, the influences of the approaches described in the previous Section 4.2 are compared,
such as multiplying model class prediction distributions with regional prior probabilities as
well as joint feature learning using embedded endemic and regional code metadata.

As the first approach does not require any re-training, the obtained model from the second
experiment is used, but its class prediction outputs are weighted with the previously defined
regional prior probabilities of snake species. This approach leverages the snake species clas-
sification by about 9.3 % points macro 𝐹1-Score compared to the same model of the second
experiment (Table 4) without regional prior probability weighting.

As the model architecture of the second approach differs with embedding layers, metadata
model and classifier of the joint feature modalities, a new model needs to be trained for 40
epochs using the selected image size of 544 px from second experiment and normal cross entropy
as loss function. This approach also leverages the snake species classification by about 10 %
points macro 𝐹1-Score (Table 4) and even marginally outperforms the first mentioned approach
of metadata incorporation. Thus, this approach is continued in the following experiments.

10for batch size 128 on NVIDIA RTX 6000 Ada GPU



Table 4
Validation results of the third experiment comparing different proposed approaches to incorporate
metadata into the model architecture.

Metadata
Approach

Validation Metrics

Macro 𝐹1-Score Challenge Track 1 Challenge Track 2

No Metadata
incorp.

65.95 % 90.17 % 2197

Multiply with regional
prior dist.

75.27 % 93.25 % 1511

Joint Feature Learning
with Embedded Metadata

76.04 % 93.54 % 1427

5.6. Experiment: Class Imbalance Learning

The fourth experiment focuses on the strong class imbalance present in the challenge data set
and investigates whether the use of specialised loss functions with class balance weighting
terms, mentioned in Section 4.5, can improve snake species classification. Specifically, the
influences of using focal loss with weak focal value 𝛾 = 0.5 and strong focal value 𝛾 = 2.0
in combination with different class balance weighting terms obtained from the inverse class
frequency or "effective number of samples" formula are investigated. A parameter checkpoint
from epoch 15 of the joint feature learning model from the previous experiment (trained with
normal cross-entropy) is used as weight initialisation. The model is then fine-tuned further for
25 epochs under the influence of the mentioned focal loss function and class balance weighting
terms.

The validation results obtained (Table 5) show that using focal loss with different class balance
weighting terms has only a marginal effect on snake species classification results. In general,
a weak focal value 𝛾 = 0.5 slightly outperforms a strong focal value 𝛾 = 2.0, and using the
"effective number of samples" formula as class balance term slightly outperforms the inverse
class frequency class balance term. However, the best combination of focal loss with 𝛾 = 0.5
and "effective number of samples" as the class balance term only improves the snake species
classification results by about 1.1 % points macro 𝐹1-Score compared to normal cross entropy.

In another experiment, the best combination of focal loss and class weighting term is then
combined with the ArcFace loss, which should force the model to learn a better feature rep-
resentation of the intermediate feature embedding before the classifier. As before, the new
model is fine-tuned for 25 epochs under the combined influence of the aforementioned loss
functions, using the parameter checkpoint of epoch 15 of the joint feature learning model from
the previous experiment as weight initialisation.

Validation results (Table 5) show that this approach further improves the snake species
classification result by a substantial amount of about 3.1 % points macro 𝐹1-Score compared to
normal cross entropy, making it the best performing model of all experiments, which will be
continued in the following experiments.



Table 5
Validation results of the fourth experiment comparing different loss functions and class balance terms
to handle the strong class imbalance of the challenge data set.

Loss
Function

Class
Weighting

Validation Metrics

Macro 𝐹1-Score Challenge Track 1 Challenge Track 2

CE - 76.04 % 93.54 % 1427
Focal Loss
𝛾 = 0.5

inverse
class freq.

76.58 % 93.27 % 1482

Focal Loss
𝛾 = 2.0

inverse
class freq.

75.93 % 93.16 % 1518

Focal Loss
𝛾 = 0.5

effectiv
num. samples

77.15 % 93.58 % 1425

Focal Loss
𝛾 = 2.0

effectiv
num. samples

76.64 % 93.34 % 1466

ArcFace Loss +
Focal Loss
𝛾 = 0.5

effectiv
num. samples

79.10 % 93.85 % 1373

5.7. Experiment: Influence of MIL-Pooling Operators

The fifth experiment focuses on the influence of different MIL pooling methods, either for pooling
the model predictions for different TTA instances of the same image, or for multiple image
instances of the same snake observation in the data set. As mentioned earlier in this section, in
the previous experiments simple mean MIL pooling was used for aggregating TTA instances
and image instances of snake observations. This experiment investigates the influence of using
different MIL-Pooling methods described in Section 4.3 on the snake species classification results.
For the investigated classical MIL pooling methods, no re-training of the model is required, so
the best model from the previous experiment is used.

The validation results (Table 6) show that applying different combinations of classical MIL
pooling operators has only a marginal impact on the snake species classification results, as
indicated by the macro 𝐹1-Score. However, these results show that the combination of using
the weighted average MIL pooling operator for pooling TTA instances and using a simple mean
MIL pooling operator for different snake instances of the same observation gives the best results
when it comes to more costly errors, as indicated by the "Challenge Track 2" metric.

Furthermore, two different approaches of attention-based MIL pooling are investigated. For
both approaches, the best performing model from the previous experiment is further fine-tuned
for 10 epochs with an attention module integrated into the model architecture as described
in Section 4.3.2. In the first approach, attention is used to pool TTA instances in combination
with a classical mean MIL pooling for instances containing the same snake observations. The
difference with the second approach is that attention is used to pool both TTA instances and
instances of the same snake observations in one step. Due to the VRAM limitations of the GPU,
this requires limiting the total number instances, i.e. a maximum of 100 instances are used.

The validation results (Table 6) show that both attention-based MIL pooling approaches can



Table 6
Validation results of the fifth experiment comparing different MIL pooling techniques to pool TTA
instances as well as instances of the same snake observation. "mean" refers to mean and "w. avg." refers
to the weighted average MIL pooling on the instance-level as described in Section 4.3.1. "attention"
refers to bag-level MIL pooling described in Section 4.3.2.

TTA Instance
MIL-Pooling

Snake Instance
MIL-Pooling

Validation Metrics

Macro 𝐹1-Score Challenge Track 1 Challenge Track 2

classic MIL pooling methods

mean mean 79.10 % 93.85 % 1373
mean w. avg. 79.17 % 93.85 % 1374
w. avg. mean 79.53 % 94.07 % 1325
w. avg. w. avg. 79.57 % 94.05 % 1330

attention-based MIL pooling methods

attention mean 80.01 % 94.12 % 1305
attention 79.78 % 94.16 % 1297

Figure 4: Prediction examples of a model with attention-based pooling of TTA instances. "instance
pred." refers to the model prediction for each individual image instance. "Global model prediction" refers
to the overall model prediction obtained after pooling of TTA instances. "attention weight" refers to the
weight that the attention module assigns to the specific instances for TTA instance pooling.
For the example on the top row, attention pooling helped to guide the classifier to more relevant
instances where the actual snake is well represented, making the global prediction correct and prevents
misclassification. For the example on the bottom row, attention pooling is similar to mean MIL pooling
where all TTA instances represent the snake well.



Figure 5: Prediction examples of a model with attention-based pooling of TTA instances + multiple
instances of the same snake observation. "Instance prediction" refers to the model prediction for each
individual image instance. "Global model prediction" refers to the overall model prediction obtained
after pooling of TTA instances and instances of the same snake observation. "Attention weight" refers
to the weight that the integrated attention module of the model assigns to the specific instances for
instance pooling. This value allows to interpret the influence of the individual instances on the overall
global prediction of the model.
In this example, the attention module helped to guide the classifier to the more relevant image instances
where the actual snake is well represented and reduces the influence of the "junk" instances such as the
road images.

reduce the more costly errors, as indicated by the "Challenge Track 2" metric, making these
two approach the best performing models so far. Figure 4 shows two examples of the influence
of attention-based pooling of TTA instances of the model. For the example in the top row,
attention pooling helped to guide the classifier to the more relevant instances where the actual
snake is well represented, making the combined prediction from all TTA instances correct and
thus preventing misclassification. For the example in the bottom row, attention-based pooling
is similar to mean MIL pooling where all TTA instances represent the snake well. Figure 5
shows the influence of attention-based pooling of TTA instances + instances of the same snake
observation. In this example, the attention module also helped to guide the classifier to the more
relevant image instances where the actual snake is well represented and reduces the influence
of the "junk" instances such as the road images.



Table 7
Results of the final selected models on the challenge public test data set compared to the submitted
models that were further fine-tuned using the training + validation data sets. TTA, MIL pooling methods
of the models are given in brackets. "mean" refers to mean MIL pooling and "w. avg." refers to the
weighted average MIL pooling of the class probability distribution output by the model as described in
Section 4.3.1. "attention" refers to the feature embedding level MIL pooling described in Section 4.3.2.

Final Model
(TTA + MIL pooling)

Fine-Tuned w/
Validation Data

Test Metrics11

Macro 𝐹1-Score Challenge Track 1 Challenge Track 2

Model 1.
(w.avg + mean)

no 81.49 % 94.92 % 1187

Model 2.
(attention + mean)

no 81.37 % 94.90 % 1194

Model 3.
(attention)

no 80.55 % 94.80 % 1185

Model 1.
(w.avg + mean)

yes 81.90 % 95.09 % 1149

Model 2.
(attention + mean)

yes 81.39 % 94.95 % 1187

Model 3.
(attention)

yes 80.97 % 94.96 % 1172

5.8. Final Models + Results on Testdata

As a result of these experiments, a total of three final models were submitted. All models share
the same joint feature extractor with embedded metadata trained using the best performing
class imbalance learning method of the fourth experiment (Focal loss 𝛾 = 0.5 with "effective
num. of samples" class weighting term + ArcFace loss). For submission, this model was further
fine-tuned for 20 epochs using the combined training and validation data sets of the challenge.
The final models differ only in the way the TTA instances and instances of the same snake
observations are pooled, as mentioned in the previous experiment. For the submission models
that contain attention-based pooling, the attention modules as well as the classifiers of the
models were also retrained for 10 epochs using the combined training and validation data sets
of the challenge.

The following Table 7 shows the results of the final models on the public challenge test data
set compared to the submitted models further fine-tuned on the challenge training + validation
data sets. In general, the test results show that further fine-tuning with the training + validation
data sets could only improve the snake species classification results very marginally.

5.9. Error Analysis in Detail

This section presents a comprehensive error analysis of a model based on the method proposed
in section 4.2.2. It should be noted that the model used for this analysis is none of the submitted
models, but is very similar to the Model 1. mentioned previously (w. avg. TTA MIL pooling

11on public challenge test data set



0 250 500 750 1000 1250 1500 1750
Number of training images

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Figure 6: Distribution of 𝐹1-Score per snake species class in relation to the number of training images
per snake species.

+ mean MIL pooling of image instances with the same observation ID). However, due to the
similarity of the models, this analysis should still be useful to evaluate and identify shortcomings
and limitations of the proposed method.

In general the used model achieved an accuracy score of approximately 83 % by correctly
predicting 11,807 images from the validation data set. However, it misclassified 2,305 images,
indicating a considerable error rate. Furthermore, the analysis focused on rare snake species
classes in the validation data set, defined as classes with fewer than 10 samples, totaling 1,115
classes. Figure 6 represents the relationship between the number of training images and the
corresponding 𝐹1-Score per species class and it indicates that a considerable number of classes
have a relatively small number of training images. The figure suggests that increasing the
number of training images for each species has a positive impact on the 𝐹1-Score. When the
number of training images is higher, the model’s performance, as measured by the 𝐹1-Score,
tends to improve. The fact that most of the plot is in the upper part of the graph and falls within
the range of 0.6 to 1 indicates that the model achieves relatively high accuracy and precision
in identifying and classifying the species under consideration. Species exhibiting an 𝐹1-Score
below 0.5 are categorized as rare classes. However, there are certain extremely rare classes that
have achieved a remarkable 𝐹1-Score of 1.0. This pattern suggests that sufficient training data
is crucial for achieving accurate and reliable results. The results revealed that approximately
21 % of the errors were attributed to these rare classes. However, the rare classes also exhibited
good performance, accounting for 42 % of the overall correct predictions. This finding suggests
that although rare classes may contribute to errors, their presence does not necessarily indicate
poor model performance.

To gain deeper insights into the incorrect predictions, a manual examination was conducted
on 500 randomly chosen misclassified images. One common reason was attributed to low



Figure 7: Difficult snake image examples from the validation dataset that were misclassified by the
model assuming the reasons given.

quality images (137 images, about 27 % of the whole dataset), which exhibited issues such as low
resolution, compression artifacts, or blurred areas that could have adversely affected the accuracy
of the model’s predictions (Figure 7a). Another prevalent reason was the presence of a complex
background in some images (87 images, about 17 % of the whole dataset), where visually cluttered
backgrounds or multiple objects made it challenging for the model to accurately identify the
snake object of interest (mostly the trees, branches and leaves) (Figure 7b). Additionally, in
certain cases, the snake’s colors were almost the same as the background, resulting in the snake
blending in with the surroundings, making it difficult for the model to distinguish it accurately
(87 images, about 17 % of the whole dataset) (Figure 7c). Furthermore, poor lighting was
identified as a factor in some incorrect predictions (62 images, about 12 % of the whole dataset),
where images had uneven lighting, shadows, or overexposure, which could have impacted the
model’s ability to accurately detect the snake (Figure 7d). While these reasons accounted for a
sizable portion of the incorrect predictions, there were also cases where no specific reason could
be identified for the incorrect prediction (39 images, about 8 % of the whole dataset) (Figure
7e). Another notable observation from the analysis is that approximately 21 % of the incorrect
predictions (106 images) were attributed to the snake not being completely captured within
the image. In some cases, the head of the snake was not visible in the image, while in other
cases, the body was missing. This indicates that the partial presence or absence of the snake
within the image played a notable role in contributing to the incorrect predictions made by



the model (Figure 7f). The incomplete presence of the snake in the image can pose challenges
for the model in accurately detecting and classifying the snake object, as the model may rely
on the complete representation of the snake’s features, such as head shape, body pattern, and
other visual cues, to make accurate predictions. When crucial parts of the snake are missing
in the image, the model’s ability to correctly classify the snake can be compromised. In the
analysis of the dataset, it was also observed that some images had multiple reasons for incorrect
predictions. For example, some images exhibited both low quality and poor lighting issues
simultaneously (24 images, about 5 % of the whole dataset), while others had both complex
background and color similarity with the background concerns (14 images, about 3 % of the
whole dataset). This suggests that certain images may have had multiple factors contributing to
the incorrect predictions, making it more challenging for the model to accurately classify the
snake object.

6. Conclusion

This work presents a multimodal deep learning based model for snake species identification
using image data in combination with additional metadata, including regional and endemic
information. The presented model architecture allows joint feature learning of both modalities,
obtained from a ConvNeXt V2 base image feature extractor CNN and a custom model that
embeds the provided metadata, in an intermediate feature concatenation approach.

Subsequent ablation studies have investigated the influence of selected hyperparameters as
well as deep learning techniques to further improve the proposed method. The results of the
ablation studies showed, that pre-training on large fine-grained data sets, such as iNaturalist21,
as well as using large image sizes could improve the downstream fine-tuning of the image
feature extractor CNN. Furthermore, the results showed that the identification of snake species
can be leveraged when additional metadata is considered. The proposed joint feature model
proved to be a good approach that could even outperform other approaches considered in
previous SnakeCLEF challenges, like weighting model outputs with regional prior distributions
of snake species. The problem of the highly class imbalanced challenge data set was addressed
by using the focal loss function with class balance re-weighting terms. The obtained results
showed that this approach only marginally affected the snake species identification performance.
The considered ArcFace loss that directly optimise the joint modality feature embedding to
enforce higher similarity for intra-class samples and greater diversity for inter-class samples,
proved to be a much better approach to improve snake species identification performance.
Further refinements in terms of less costly snake species identification errors were achieved
by integrating learnable attention-based MIL pooling over classical non-trainable operators
into the model architecture to pool both TTA instances as well as instances of the same snake
observation. Increasing the size of the training data set by including the validation data set
only improved snake species identification very slightly, resulting in the best performing model
achieving a macro 𝐹1-Score of 81.9 % and challenge-specific metrics of 95.09 % Track 1 and 1149
Track 2.



7. Further Research

The proposed method offers several possibilities for further research. These generally include
experiments of different learning techniques with better optimised hyperparameters or adjust-
ments to the proposed model architecture (i.e. metadata model size or embedding layer sizes)
that were not explicitly considered in the conducted ablation studies.

A more specific approach for future work would be a two-stage snake species classification
process that first predicts whether the provided snakes in the image instances belong to a
venomous or non-venomous species, as this information is also provided by the challenge data
set. This ’venomous’ information could then also be embedded as additional metadata using
the proposed model architecture to predict the actual snake species. This approach may be able
to further reduce the challenge specific metrics as they explicitly account for the confusion
between venomous and non-venomous species.

Since the considered ArcFace loss performed well by enforcing higher embedding similarity
for intra-class samples and higher diversity for inter-class samples, it may be worthwhile for
future work to test deep learning methods that follow a similar direction. These would include
unsupervised pre-training methods using contrastive loss techniques such as in SimCLR [51],
or simpler approaches such as Bootstrap Your Own Latent (BYOL) [69].
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