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Abstract
The amount of data is swiftly increasing and processing of information in unstructured textual data
can be of great importance. The natural language processing task that tries to automate this process is
information extraction (IE), or rather its subtask, relation extraction. Relation extraction is tasked with
identification of relations between entities in each sentence, paragraph or larger unit of text in order to
automatically create machine-interpretable data collections of entities, relationships between entities,
and attributes describing entities. This paper was motivated by research question of whether SciBERT
outperforms BERT, state-of-the-art ”Bidirectional Encoder Representations from Transformers” model, on
the relation extraction task after fine-tuning to the corpora in the domain of science. An overview of
datasets suitable for the task of extracting sentence-level relations is elaborated. A new variant of dataset
for relation extraction in the domain of science, combo160, is created and used to fine-tune the BERT and
SciBERT models. The results show a noticeable increase of 2.63% (on average) in the performance of the
SciBERT model over the baseline BERT model, when faced with relations in the scientific domain. It can
be inferred from the results that thematically similar (here: scientific) pretrainig corpora can improve
the performance of the later fine-tuned models for relation extraction.
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1. Introduction

Natural language processing (NLP), as a research area of computer science and artificial
intelligence (AI), focuses on the design and analysis of computational algorithms and represen-
tations for processing natural human language [1]. NLP has numerous tasks and applications,
including machine translation, text summarization, information retrieval, sentiment analysis,
text classification, topic modeling, and information extraction.

Information extraction (IE) is the subfield of NLP that deals with the problem of extracting
information from unstructured texts, as defined in [2]:

”Information Extraction refers to the automatic extraction of structured information
such as entities, relationships between entities, and attributes describing entities from
unstructured sources.”
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IE is not a trivial problem, it is divided into a number of smaller tasks, which include named
entity recognition (NER), coreference resolution, and relation extraction (RE). Relation extrac-
tion (RE) is the subtask of information extraction that consists of identifying relations between
entities in each sentence, paragraph, or larger unit of text. It usually involves extracting the
relation between two or more (named) entities [3]. Named entities (NE) are traditionally
detected by first applying NER and then RE. The result can be defined as a word or phrase
representing a specific real-world object. To further clarify, RE model takes unstructured text
with/without marked entities as an input and outputs the triples that usually resemble:

(subject (named entity), relation (relation type), object (named entity))

Relation extraction can be modeled as the classification problem (Section 2 overviews different
approaches to relation extraction). Hence, in this work, the BERT model is used as a base
language model for the relation classification task due to its proven good results on the majority
of NLP tasks [4][5][6][7]. In addition, a performance comparison of two models SciBERT and
BERT, fine-tuned on the created dataset called combo160, is performed. Experiments provide
insights into the contributions of using different corpora during pretraining. Primarily, this
work is an extension of our previous work in [8], and poses a research question whether SciBERT
outperforms BERT model on the relation extraction task after fine-tuning to the corpora in the
domain of science.

In the next Section 2 the task of relation extraction and connection to the construction of
knowledge graphs is elaborated, followed up by the related work. Section 3 elaborates on
the used methods: evaluation metrics (Section 3.2), basics transformer architecture and the
architectures of BERT and SciBERT (Section 3.1), and relation extraction datasets (3.3). Section
4 presents the created dataset combo160 and the experimental setup. The final Sections of the
paper 5 and 6, cover the results, discussion and conclusion.

2. Relation Extraction

Relation extraction, compared to other NLP tasks is a relatively novel discipline. According to
Hun et al. [9] the evolution of RE is roughly divided into three phases:

• Pattern extractionmodels. The first models rely on sentence analysis tools that identify
syntactic elements in the text, whereupon pattern rules are automatically generated.
Pattern rules are error-prone and therefore require a high level of intervention by human
experts.

• Statistical relation extraction models. Along with the rest of NLP, RE has evolved to
statistical models that significantly reduce the need for human intervention and provide
better coverage of the task. Methods include feature-based, kernel-based, graphical, and
embedding-model inspired methods.

• Neural relation extraction models. With the increasing usability and popularity of
neural networks (NN), especially with the use of GPU [10], neural methods overtook
the field of RE. The first phase of use included various NN architectures that attempted to
capture the semantics of text, such as recursive neural networks, convolutional neural



networks (CNN), attention-based neural networks, and recurrent neural networks (RNN),
which dominated the field until the advent of the transformer architecture and approaches
relying on pretrained (large) language models.

In the Table 1 below several examples of extracted relations are shown. Note that the
underlined parts represent the entities detected by the NER model or jointly in the relation
extraction model as of recent trends.

Sentence Relation

Relation extraction (RE) is the subtask of
information extraction.

subtask_of

There is a house way down in New Orleans location_of
The town blossomed in the 18th and 19th centuries with
the development of roads to the seaside and waterways
along the Kupa River.

near_body_of_water

Though Kid A divided listeners, it was later named the
best album of the decade by multiple outlets.

”named the best al-
bum of the decade
by”

Now that the first person interface has become the
design of choice for the industry, Id will need to find
new innovations.

”has become”

Table 1
Examples of relations in sentences: First three rows depict RE with finite set of relations, while latter
two represent RE without previously defined schema.

Upon closer inspection, we can notice similarities in nomenclature between the first three exam-
ples, and between the bottom two examples. The Table 1 previews two different understandings
of the relation extraction task: the first approach (used in this work) considers finite set of
relations (i.e. closed relation extraction) and the second approach refers to the much harder
task of identifying relations without a strictly predefined template (i.e. open relation extraction
or unsupervised relation extraction) [11]. The former is erratically also specified as the relation
classification (RC). For further insight into the definition of relation extraction, the reader is
encouraged to examine the research of Bassignana and Plank[12], where the definition of the RE
task is revisited along with a comprehensive survey on RE datasets. Relation extraction, as done
by the majority of the research community, is usually tackled in two main setups: Pipeline
approach and Joint entity and relation approach.

2.1. Related Work on Neural Relation Extraction

In the pipeline approach, the NER and RE tasks are trained separately, therefore the RE model
expects already extracted entities in the input text, which may be of lower quality, propagating
the error. Although the pipeline approach suffers from error propagation, it is easy to implement
and yields good results, as shown in the work of Nguyen et al. [13], Ale et al. [14], and Zhou et
al. [15].

In joint entity and relation extraction, the model is trained to perform both tasks simultane-
ously while benefiting from the use of interrelated signals. This approach has attracted a lot of



attention in recent years and has provided new state-of-the-art results in various benchmarks.
Some examples are the work of P. L. Huguet Cabot and R. Navigli [16], which define the RE
task as seq2seq generation, and Tang et al. [17] which uses matrix-like interaction maps to
effectively represent relations and NE together.

In the work of Beltagy et al. [18], the SciBERT model is presented along with exploration of
various fine-tuning tasks. These include an approach similar to ours, a relation classification
task on the SciERC [19] dataset with gold entities1. The extraction of sentence-level relations is
also discussed in the work of Baek et al. [20], where RoBERTa [21] is trained on the TACRED
[22] dataset with the Minority Class Attention Module (MCAM) to tackle the low-frequency
relation problem. Most datasets for relation extraction, e.g., the datasets discussed in Section
3.3, rely on existing knowledge bases, e.g., Wikidata. RE and knowledge bases (e.g., knowledge
graphs (KG)) are two interconnected domains with a mutually beneficial relationship. In this
sense, it is possible to automatically construct graph-like structures to represent information
(knowledge) extracted from unstructured texts. Similarly, RE is often used to improve KGs,
as in the work of Pingle et al. [23], where RE is used to improve cybersecurity KG. Also,
some research, such as the work of Yu et al. [24], Li et al. [25], and Luan et al. [19] preview
the implementation of relation extraction for KG construction. In this work, we experiment
with encoder-based models (BERT and SciBERT) for the relation extraction as the relation
classification problem in the domain of science (i.e. scientific relation classification) to asses the
influence of pretraining/finetuning corpora.

3. Methodology

3.1. BERT and SciBERT

When considering language modeling for use on downstream tasks (i.e. fine-tuning the pre-
trained language model), it is important to find the right objective for language modeling. In
this light, Devlin et al. with ”BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding” [4] point out the shortcomings of left-to-right language modeling2, such as
work of Radford et al. [26]. Decoders trained as left-to-right language models are limiting the
context of a token only to tokens that precede it. Therefore for the task on hand, the encoder
is the preferred part of the transformer architecture. The next paragraph briefly introduces
transformer architecture and its connection with Generative Pretrained Transformer (GPT) and
BERT models.

As shown in Figure 1, depicting the original transformer encoder-decoder architecture, two
pertinent models were created based on this architecture, the encoder only BERT [4] and
the pure decoder GPT [26]. In this work, we used only the encoder part of the architecture,
extracting contextualized representations from sentences to classify the present relations.

The encoder of a transformer consists of an arbitrary number of encoder blocks. Each encoder
block starts with a self-attention layer, more specifically a multi-head self-attention that further

1Gold entities refer to relation extraction setup where the model has information about entities, as opposed to a
setup where the entities are also extracted by the model.

2Left-to-right language modeling objective is a task where an LM is trained to predict the next part of the sequence,
given the previous parts.



Figure 1: Transformer architecture: Architecture design used in the work of Vaswani et al. [27],
consisting of a encoder and a decoder part, from which two models, BERT and GPT stem respectively.
Adopted from work of Niklas Heidloff: https://heidloff.net/article/foundation-models-transformers-bert-
and-gpt/

facilitates the ability to encode multiple relationships and nuances for each part of the input,
i.e., token3. The output of the multi-head self-attention then proceeds through position-wise
feed-forward network (FFN) consisting of a linear layer, ReLU, and another linear layer. After
each of the steps (multi-head self-attention and position-wise FFN), the residual connection is
added along with the layer normalization.

Following the original work of Vaswani et al. [27], BERT retains the encoder architecture
with variations in the number of encoder blocks (L), hidden size (H), and self-attention heads
(A). In the work, two main variants of BERT are presented: BERT𝐵𝐴𝑆𝐸 (L=12, H=768, A=12)
and BERT𝐿𝐴𝑅𝐺𝐸 (L=24, H=1024, A=16), the prior of which is used in this work. To enable
BERT to handle a variety of downstream tasks, such as text classification, relation extraction,
sentiment analysis, and question answering, two special tokens are used in the input and output
representations:

• [CLS] token - First token of every sequence. The final hidden state corresponding to this
token is used as aggregate sequence representation for classification tasks,

• [SEP] token - Sentence separator, in case the input consists of two sentences, e.g. for
question answering task.

For further detail on the input and output representation of BERT models, the reader is advised
to read the work of Devlin et al. [4].

Authors split BERT pretraining into two separate tasks,masked languagemodeling (MLM)
and next sentence prediction (NSP). As argued by authors, it is possible to gain more useful

3Token can be considered as a useful semantic unit for processing, common tokens are subword, word, and sentence
tokens.

https://heidloff.net/article/foundation-models-transformers-bert-and-gpt/
https://heidloff.net/article/foundation-models-transformers-bert-and-gpt/


information, i.e. get better-contextualized representations when a single token is contextualized
by the rest of the sequence (sentence), as compared to left-to-right or right-to-left model4. It
is not desirable for a standard LM to attend to ”future” tokens (words) in the sentence, as the
training for predicting the next word in the sentence becomes trivial. In this light, Devlin et
al. propose a new objective, that hides (masks) only a single part of the sequence that needs
to be predicted, calling it MLM (masked language model)5. BERT model was pretrained on
BookCorpus [28] and English Wikipedia.

Following the same design as above, Beltagy et al. [18] train the BERT model on scientific
corpora to support further scientific-based use-cases. Of multiple pretrained models yielded
in this work, the SciBERT with new SciVocab6 WordPiece vocabulary uncased7 is used. All
models presented in work of Beltagy et al. are pretrained on random sample of 1.14M papers
from Semantic Scholar [30].

3.2. Relation Extraction Evaluation Metrics

Relation extraction and its associated named entity recognition task are relatively difficult to
evaluate, especially when two tasks are trained in a joint scenario (sometimes referred to as
end-to-end RE). Taillé et al. [31] discuss this problem further and address the common errors
that occur even in state-of-the-art models for joint RE and NER tasks. In this work, the NER task
is neglected, i.e., the model expects tagged inputs for further standard multiclass classification.
To this end seven metrics are presented: Micro and Macro versions of precision, recall and
F1-score, and the standard accuracy metric. These metrics are calculated from true positive
(TP) and true negative (TN) values (TP-the number of times a model correctly predicts positive
and TN-negative class), and false positive (FP) and false negative (FN) which count incorrectly
predicted positive and negative classes respectively. An in-depth review of TP, TN, FP, and FN
calculations on the multiclass classification is in Grandini et al. [32].

Accuracy, the metric that rewards models with the most correct predictions (TP and TN) is
computed as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 . This metric works desirably for balanced datasets, i.e.
datasets that have a similar distribution of instances in all classes.
Precision is defined as the ratio of TP over the sum of TP and FP. Calculation on binary

classification is straightforward: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 . Precision can also be used on multiclass

classification with two different approaches: for each class individually (observing binary
classification for each class) and with averaging across all classes (micro and macro averaging).
Of two, the latter is used both for precision and recall calculation, also extending to F1-score.
Specifically, there are two standard approaches used for averaging along classes:
Macro precision is calculated for a selected class-positive, where all other classes are

considered negative. After calculating precision for each class in this manner, per-class precision
is macro averaged as:

4”Models where every token can only attend to previous tokens in the self-attention layers of the Transformer” - [4]
5To mitigate the problems regarding special [MASK] token that does not appear during fine-tuning of the LM, extra
steps in the objective are added.

6Original BERT uses WordPiece-based [29] vocabulary consisting of 30,000 tokens.
7Uncased refers to the model trained on the lower-cased textual data.



𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝐴𝐶𝑅𝑂 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶2 + ... + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑁

𝑁

where N is the number of classes denoted by C1 to CN.
Micro precision is calculated for each class, by summing up all TP and FP values per class

resulting in Total True Positive and a Total False Positive sums respectively. Based on these
total sums, the micro precision is then calculated:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝐼𝐶𝑅𝑂 =
𝑇𝑃1 + 𝑇𝑃2 + ... + 𝑇𝑃𝑁

𝑇𝑃1 + 𝐹𝑃1 + 𝑇𝑃2 + 𝐹𝑃2 + ... + 𝑇𝑃𝑁 + 𝐹𝑃𝑁

=
𝑇𝑃𝑇𝑂𝑇𝐴𝐿

𝑇𝑃𝑇𝑂𝑇𝐴𝐿 + 𝐹𝑃𝑇𝑂𝑇𝐴𝐿
.

The recall is defined as the fraction of TP divided by the total number of sum of TP and FN:
𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Working with multiple classes the macro recall is defined as:

𝑟𝑒𝑐𝑎𝑙𝑙𝑀𝐴𝐶𝑅𝑂 =
𝑟𝑒𝑐𝑎𝑙𝑙𝐶1 + 𝑟𝑒𝑐𝑎𝑙𝑙𝐶2 + ... + 𝑟𝑒𝑐𝑎𝑙𝑙𝐶𝑁

𝑁

where N is the number of classes denoted by C1 to CN and micro recall is defined as:

𝑟𝑒𝑐𝑎𝑙𝑙𝑀𝐼𝐶𝑅𝑂 =
𝑇𝑃𝑇𝑂𝑇𝐴𝐿

𝑇𝑃𝑇𝑂𝑇𝐴𝐿 + 𝐹𝑁𝑇𝑂𝑇𝐴𝐿

F1-score combines precision and recall of the model as their harmonic mean:

𝐹1 =
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

.

Since the metrics on which the F1-score relies have different approaches, mainly micro and
macro averaging, the same classification is present for the F1-score. Thus, there exists a micro
and macro version of the F1-score. F1-score is mainly used to compare models’ performances
while considering both, recall and precision.

3.3. Datasets

In this Section, the datasets that were used to train the BERT and SciBERT models to classify
relations are discussed. First, each of the datasets is defined and an example is provided, then
the work of Shimorina et al. [33] is presented. Based on this short survey of available datasets
and their shortcomings, we construct the new dataset (combo160), containing the relations of
interest in the scientific domain.



3.3.1. FewRel Dataset

Few-Shot Relation Classification Dataset (FewRel) by Han et al. [34] consists of 100 distinct
relations, each accompanied by 700 instances. FewRel is created with the use of Wikipedia
articles and Wikidata as a text corpus and the knowledge base respectively. After the gathering
of the initial dataset through distant supervision, totaling in 122 relations and 122,000 instances,
the dataset underwent human annotation that resulted in 70,000 instances. A full list of
relations, including their names and descriptions is available on the link8 of the paper.

In Table 2 below the examples of the FewRel data are listed. ID here stands for the unique
property (relation) in Wikidata (e.g., P26 represents the ”spouse” relation between two entities),
it is followed by the tokenized sentence, after which the details of head and tail9 entities are
given, i.e., surface form (i.e. raw, textual representation of an entity), unique item ID, and
indexes referring to the tokenized list.

ID tokens h t

P26 [His, parents, are, Karl, von, Habsburg,
and, Francesca, von, Habsburg, .]

”francesca von
habsburg”,
Q1276954,
[[7, 8, 9]]

”karl von
habsburg”,
Q78515,
[[3, 4, 5]]

P25 [Emmy, Acht\u00e9, was, the, mother,
of, the, internationally, famous, opera,
singers, Aino, Ackt\u00e9, and, Irma, Ter-
vani, .]

”aino
ackt\u00e9”,
Q259161,
[[11, 12]]

”emmy
acht\u00e9”,
Q4933685,
[[0, 1]]

Table 2
FewRel examples: Head (h) and tail (t) are used interchangeably with subject and object annotation.

3.3.2. T-REx Dataset

Elsahar et al. [35] in ”T-REx: A Large Scale Alignment of Natural Language with Knowledge Base
Triples” address the problem of small RE datasets by utilizing Wikidata10 and DBpedia [36], a
dataset consisting of Wikipedia abstracts, to form a new dataset called T-REx. T-REx contains
11 million triple alignments from 6.2 million sentences. In this case, the triple alignment
refers to the process of mapping the extracted entities from the natural language sentence with
the triple in knowledge graph (KG) or knowledge base (KB), to form a distantly supervised
training instance. For brevity, the examples from the T-REx dataset are not included.

3.3.3. DocRED Dataset

Compared to the previous two datasets, which were primarily developed for extracting sentence-
level (intra-sentence) relations, Yao et al. [37] create a DocRED dataset for extracting document-
level (inter-sentence) relations. DocRED is based on a similar design to T-REx and FewRel,

8Not public due to details on the test data used for online evaluation. Available at:
https://github.com/thunlp/FewRel/blob/master/data/pid2name.json

9Subject and object entities are sometimes considered head and tail entities in the literature.
10https://www.wikidata.org/



in that the main and only data source is the aforementioned combination of Wikidata and
Wikipedia abstracts through distant supervision. It is important to note that the tedious process
of human annotation of part of the data using crowdsourcing has made a significant contribution
to the field. The result is 5,053 human-annotated documents with 40,276 sentences and a total
of 96 distinct relations and a large distantly supervised dataset of 101,873 documents with
828,115 sentences.

3.3.4. WikiFact Dataset

Goodrich et al. [38] explore new metrics for evaluating the factual accuracy of the generated
text, primarily for the RE task. Similar to the previously presented datasets, under the distant
supervision assumption [39], a new dataset based on Wikidata and Wikipedia, WikiFact, is
created. WikiFact consists of two distinct parts based on the training objective, data for the
relation classifier (relation extraction) and data for fact extraction (paragraph and sentence
based). In this work, only the data for RE is used, which is 13 GB in total. Table 3 previews
examples from the WikiFact dataset. Compared to the structure of the data in FewRel (Table 2),
the authors mark the entities in untokenized sentences, which leaves room for task-specific
preprocessing.

target inputs subject object

P0 SUBJ{Art Nalls} was born in 1954 in OBJ{Alexandria},
Virginia just outside Washington, D.C. and grew up
in that area.

Art
Nalls

Alexan-
dria

P0 SUBJ{Cerner} and executives at Girard agreed that
Girard did not have adequate staff to manage the
acquisition and OBJ{implementation} of the system.

Cerner implem-
entation

Table 3
WikiFact examples: Inputs (sentences) have annotated subject (SUBJ{ }) and object (OBJ{ }) spans.

3.3.5. Wiki20m Dataset

Comparable to the previously covered datasets, Wiki20m [9] utilizes distant supervision via
Wikipedia and Wikidata. Wiki20 is originally constructed for bag-level relation extraction, a
task that aims to extract relations from multiple sentences (i.e. bag-of-sentences). Wiki20m is
the version of Wiki20 with a manually annotated test set. Each instance in the dataset resembles
the structure of FewRel with tokenized sentence, head and tail data, and relation label.

3.3.6. WebRED Dataset

In ”WebRED: Effective Pretraining And Finetuning For Relation Extraction On The Web” [40]
Ormandi et al. point out generalization problems that concern Wikipedia-Wikidata11 trained
models, since the text on Wikipedia follows a certain structure and certain constraints. To
mitigate generalization problems, a set of web domains with high linguistic quality and factually

11Relation extraction datasets constructed from Wikipedia and Wikidata through distant supervision.



correct content were ranked by human annotators. From the selected web domains, the large
corpus was created and linked to Wikidata triples in a process similar to previous datasets.
Then, the part of the data was subjected to a human annotation process similar to DocRED. The
result is a two-part dataset with 523 unique (Wikidata) relations, with the 117,717 human
annotated and 199,786,781 weakly supervised examples.

3.3.7. Relation Extraction Database Based on Wikidata

While the datasets presented were created for seemingly different tasks, they share the knowl-
edge base for defining and extracting relations, Wikidata. With this property in mind, Shimorina
et al. [33] design a sentence-level RE database based on the aforementioned datasets (FewRel,
T-REx, DocRED, WikiFact, Wiki20m, WebRED). First, the datasets are preprocessed, including
deduplication and extraction of designated entities from unwanted formats. Then, the instances
(sentences) or rather, relations are uniformly labeled, with OBJ and SUBJ representing the
entities involved in a given relation. Results are 47,390,557 instances across 1,022 unique
relations, including ”P0” (no relation) and ” NA ” (unknown relation). This database is used to
maximize the number of relation types that are of interest to us and allows us to fine-tune the
models to a broader range of scientific relationships.

3.4. Combo160 Dataset

Since this work is concerned with the domain of science, it is desirable to train the models on data
that exhibit scientific relationships. To obtain such relations, theWikidata list of properties in the
science domain12 was examined. Particularly, relations inherent on chemistry, physics, biology,
mathematics, geology, and astronomy, are considered resulting in 341 applicable relations.
Based on these relations, the database created by Shimorina et al. [33] was queried to filter out
the ones of interest, resulting in a new dataset with 176 relations. The number of instances
for each relation is limited to 10,000 to prevent further increase in disproportionality of the
data, since the majority of the examples (66%) belong to the classes ”P0” (no relation) and ”NA”
(unknown relation). After the preprocessing (cutting of the relation types with frequencies less
then three and reshaping to a desirable input for OpenNRE [41] Toolkit), the dataset resulted
in 161 unique relations, containing 301,062 examples in total. Hence we name the dataset
combo160. In the Table 4 below, a summary of datasets information is given with respect
to the work of Shimorina et al. [33]. Please note that statistics presented in Table 4 refer to
sentence-level RE and are calculated after preprocessing procedures, such as deduplication.
Table 4 shows the total number of instances (# instances), relations (# R), and percentage of
negative relations (% neg.) in each of the datasets. Relations ”P0” (no relation) and ”NA” (un-
known relation) are considered negative in this context. Negative examples can be excluded if a
binary classification (yes/no relation between entities) is performed before relation classification
(RC). Essentially, the RE is further divided into two approaches: the first, binary classification
before RC and the second, RC with the classes ”no relation” and/or ”unknown” relation classes.
Here we treat ”P0” and ”NA” as regular relations although, usually, most entity co-occurrences
are either undefined or not-relation, which is the main rationale behind high percentage of

12https://www.wikidata.org/wiki/Wikidata:List_of_properties/science



dataset # instances # R % neg.

FewRel 56,000 80 0%
T-REx 12,081,023 652 0%
DocRED 778,914 96 0%
WikiFact 33,628,338 934 92%
Wiki20m 738,463 81 60%
WebRED 107,819 385 54%
Unified database 47,390,557 1,022 66%
Combo160 301,062 161 6.6%

Table 4
Dataset summary: with the number of instances, the number of relations (R), and % of negative
relations.

negative examples in datasets such as WikiFact, Wiki20m, WebRED and the unified database
[33]. The exploration of the impact of the negative examples ratio is left for future work. Hence,
to wrap up Combo160 dataset is created through filtering and preprocessing in order to obtain
the dataset fit for the relation extraction classification training for the domain of science.

4. Experimental Setup

The combo160 dataset is exported to csv format for further preprocessing using python with
appropriate libraries (pandas [42, 43], scikit-learn [44]). First, the empty values and notation
SUBJ and OBJ are cleaned up in the records. Clean sentences are then tokenized using the
BasicTokenizer implemented in OpenNRE to make the input conform to the Toolkit standards.
Following tokenization, low frequency relations (less than three times) are removed to allow
splitting between training, test, and validation, with each relation occurring at least once per
set. Using scikit-learn function train_test_split() with stratification based on relation ID
(e.g., P1234) that corresponds to the class label, the dataset is split into 80:15:5 ratio to train,
test, and validation subsets respectively.

4.1. OpenNRE Toolkit

OpenNRE is an open source and extensible toolkit that provides a unified framework for
implementing relation extraction models, introduced with the work of Han et al. [41] ”OpenNRE:
An Open and Extensible Toolkit for Neural Relation Extraction”. Toolkit enables RE extraction in a
specific setup, consistent comparison, re-implementation, variation, deployment, and evaluation
over different tasks.

The OpenNRE toolkit adresses the problem of code reusability as well, by providing extensible
base implementations for most tasks that precede or follow RE, such as tokenization (word and
subword level), common neural layers, encoder module, data processing, model training and
evaluation. OpenNRE allows three approaches to RE:

• Sentence-level RE (RE from sentence, i.e. only the existence of relations inside a single
sentence is assumed),



• Bag-level RE (RE from multiple sentences, i.e. relations can exist across multiple sen-
tences that appear consecutively),

• Document-level RE (RE from the whole document).

In this work, OpenNRE is used due to its extensibility and ease of use, as the toolkit contains a
complete procedure for training the BERT model for RE following the work of Soares et al. [5].

4.2. Training Setup

Soares et al. with ”Matching the Blanks: Distributional Similarity for Relation Learning” inves-
tigate the capabilities of BERT in extracting relations as the classification problem and then
train the BERT model on new objective specifically designed to capture relation representation,
named matching the blanks (MTB). In this work, we focus on the relation classification
problem with fine-tuning procedures. A sequence of tokens (x), e.g. words, is defined as
𝑥 = [𝑥0, 𝑥1, ..., 𝑥𝑛], where, similarly to original setup, 𝑥0 = [𝐶𝐿𝑆] and 𝑥𝑛 = [𝑆𝐸𝑃] are special
start and end markers. Moreover, let 𝑠1 = (𝑖, 𝑗) and 𝑠2 = (𝑘, 𝑙) be pairs of integers such that
0 < 𝑖 < 𝑗 − 1, 𝑗 < 𝑘, 𝑘 ≤ 𝑙 − 1, and 𝑙 ≤ 𝑛. Here, relation (r) is represented as 𝑟 = (𝑥, 𝑠1, 𝑠2), where
𝑠𝑖 represents the entity mentions in the sentence.

For this work, BERTmodels are fine-tuned for RCwith entitymarker tokens that incorporate
𝑠1 and 𝑠2 entity spans into the input via special tokens: [E1𝑠𝑡𝑎𝑟 𝑡], [E1𝑒𝑛𝑑], [E2𝑠𝑡𝑎𝑟 𝑡], and [E2𝑒𝑛𝑑].
Resulting in an augmented sequence (𝑥̃) as:

𝑥̃ =[𝑥0, ..., [𝐸1𝑠𝑡𝑎𝑟 𝑡], 𝑥𝑖, ..., 𝑥𝑗−1, [𝐸1𝑒𝑛𝑑], ..., [𝐸2𝑠𝑡𝑎𝑟 𝑡], 𝑥𝑘, ..., 𝑥𝑙−1, [𝐸2𝑒𝑛𝑑], ..., 𝑥𝑛].

One exemplary sentence depicts the procedure:
If sentence (x) is:

𝑥 =[ℎ𝑒, 𝑖𝑠, 𝑠𝑒𝑒𝑛, 𝑎𝑠, 𝑜𝑛𝑒, 𝑜𝑓 , 𝑡ℎ𝑒, 𝑓 𝑜𝑢𝑛𝑑𝑒𝑟𝑠, 𝑜𝑓 , 𝑚𝑜𝑑𝑒𝑟𝑛, 𝑎𝑟𝑐ℎ𝑒𝑜𝑙𝑜𝑔𝑦, 𝑖𝑛, 𝑐𝑧𝑒𝑐ℎ, 𝑙𝑎𝑛𝑑𝑠, "."];

and entity spans 𝑠1 and 𝑠2 are:

𝑠1 = (0, 0) and 𝑠2 = (10, 10);

then augmented sentence (𝑥̃) is:

𝑥̃ =[[𝐸1𝑠𝑡𝑎𝑟 𝑡], ℎ𝑒, [𝐸1𝑒𝑛𝑑], 𝑖𝑠, ..., 𝑚𝑜𝑑𝑒𝑟𝑛, [𝐸2𝑠𝑡𝑎𝑟 𝑡], 𝑎𝑟𝑐ℎ𝑒𝑜𝑙𝑜𝑔𝑦, [𝐸2𝑒𝑛𝑑], 𝑖𝑛, 𝑐𝑧𝑒𝑐ℎ, 𝑙𝑎𝑛𝑑𝑠, "."].

With this set-up, two models BERT and SciBERT are fine-tuned with the combo160 dataset on
the RC task with parameters set up as elaborated in Table 5. To enable training for the task
of multi-label classification, outputs of the encoders (BERT and SciBERT) are forwarded to
a neural network consisting of a linear layer, dropout layer, and softmax layer to output the
probability distribution over the number of classes.
Each of the two models (BERT and SciBERT) was trained for 3 epochs with a total of ∼ 12 hours
of training on an Ubuntu 20.04 machine with a single NVIDIA GeForce GTX 1050 Mobile (3GB)
GPU and Intel Core i7-7700HQCPU. The results of both BERT𝑏𝑎𝑠𝑒 uncased and SciBERT SciVocab
uncased models are compared following an identical training set-up to support the arguments
discussed. It is important to note that BERT𝑏𝑎𝑠𝑒 and SciBERT have the same architecture and
differ only in the corpora used to pretrain the model.



Model BERT𝑏𝑎𝑠𝑒 uncased / SciBERT SciVocab uncased
Dataset Combo160
Pooler Entity
Entity masker No
Batch size 8
Learning rate 2e-5
Maximum length 128
Maximum epochs 3
Seed 42
Optimizer Adamw [45]

Table 5
Training parameters set-up

5. Results

In this Section we present obtained results. First, the inference of two models (BERT and
SciBERT) is evaluated with standard multiclass classification metrics such as accuracy, precision
and F1-score with micro and macro averaging. Second, the results are discussed.

The distribution of relations in the training data is in Figure 2. Comparing the top 20 relations
(by the number of instances) in both datasets, we obtain a significant overlap with a difference
in only one relation P706 (in train) versus P279 (in test). The top 20 set includes relations such
as: location (P276), father (P22), sibling (P3373), instance of (P31), located in the administrative
territorial entity (P131), owned by (P127), field of work (P101), and of course the negative classes
unknown (NA /PNAN) and no relation (P0). The above relations are more general as compared
to the scientifically specific ones. Hence, relations such as chromosome (P1057), monomer
of (P4599), pathogen transmission process (P1060), lymphatic drainage (P2288), research site
(P6153), decreased expression in (P1910), and inflorescence (P3739), are more prone to scientific
domain. According to their occurrence in Combo160 dataset, they appear at the bottom 20
places. Arguably, it is expected to have a higher overall occurrence of ”general” relations,
compared to ”scientific domain” relations in the dataset constructed mainly from Wikipedia as
the source. With this in mind, next, we present the results of two trained models BERT and
SciBERT in Table 6.

BERT SciBERT

Accuracy 0.99893 0.99877
Micro precision 0.92370 0.91423
Micro recall 0.90931 0.89514
Micro F1-score 0.91645 0.90458
Macro precision 0.74523 0.77450
Macro recall 0.70157 0.72637
Macro F1-score 0.71641 0.74119

Table 6
The results for BERT and SciBERT: in terms of accuracy, micro and macro averaged precision, recall
and F1-score.



The first metric discussed, accuracy, yields comparable results for both models, with a perfor-
mance difference of 1.54980406 ⋅ 10−4 in favor of BERT. If we revisit the definition of accuracy
(Section 3.2), it becomes clear that this accuracy only rewards correct predictions and attenuates
the proportion of correctness per class. While intuitive, this metric yields biased results when
the dataset is unbalanced, as is the case with Combo160 (Figure 2). Meaning, the model that
more accurately predicts the dominant classes (presumably BERT) could have a better result
according to the accuracy metric exclusively. To discuss the matter further, we explore micro
and macro averaging. According to Grandini et al. [32] the idea of micro-averaging is to
consider all the units together, without considering disproportion between classes.

Figure 2: Relation distribution in train data: with Top 20 and Bottom 20 relation IDs

Similar to accuracy, BERT shows negligibly better performance inmicro-averaged precision
with 9.465608607 ⋅ 10−3 advantage. This advantage is also to be expected since micro-averaging
first sums all units, i.e., TP and FP, and then calculates precision based on the sums, again
neglecting the inequality of classes in the dataset. The comparison of micro-averaged recall
yields similar results with a more significant advantage of 1.417546431 ⋅ 10−2 in the performance
of BERT. Micro F1-score, as a harmonic mean between (micro) precision and recall, gives a
better assessment of the overall performance of the model than the two previously mentioned
metrics. Looking at the results of micro-averaged F1-score, a repeating trend is exhibit, with
BERT performing with a lead of 1.186484641 ⋅ 10−2. Thus, based on the micro-averaged metrics,
it can be concluded that BERT performs better due to better results of classification in dominant
classes (i.e. general ones) as compared to SciBERT.

Looking at the macro-averaged metrics, there is a significant decline in performance scores in
general. This behaviour is stemming from the unbalanced nature of dataset, as macro-averaged
metrics tend to neglect the correlation between class size and overall scores [32]. This means
that macro-averaged metrics, by virtue of their calculations, have the desirable side effect of
giving equal importance to each class (regardless of the number of instances in the class). Let



us now consider the macro-averaged scores of the models. A significant difference is exhibited
when comparing macro precision of two models, as SciBERT achieves 2.92693784 ⋅ 10−2 better
score. This means that the SciBERT model classifies the relations more confidently. Similar
results are also manifested in the macro recall and macro F1-score.

Two important conclusions can be drawn from the analysis of the provided metrics measured
on SciBERT and BERT models in classifying relations:

• The BERT model performs better on more dominant classes overall (better results on
micro-averaged metrics and accuracy) and, in particular, correctly classifies examples of
dominant relations (greater macro recall).

• The SciBERT model is competitive with BERT when it comes to more dominant relations
(general ones), but achieves better results on less dominant classes (specific to the domain
of science), having better overall results on macro-averaged metrics.

As noted at the beginning of this section, the dominant (frequent) relations tend to be more
”general”, while the less dominant (infrequent) relations tend to be more ”scientific”. Given this,
it can be concluded that SciBERT is a better fit to extract relations from the domain of science.

6. Conclusion

This research is concerned with the training (fine-tuning) of sentence-level relation extraction
models BERT and SciBERT. The relation classification is modeled as the multi-class classification
problem. For this task, the pretrained transformer-encoder models BERT and SciBERT are used
and compared to observe the effects of the usage of different pretraining corpora.

Relevant datasets suitable for the relation extraction task are explored, resulting in the
construction of a new dataset, combo160 fit for the relation extraction in the domain of science.
Two models, SciBERT and BERT, are trained on this newly constructed dataset with 161 relation
types - combo160.

Finally, the results of the twomodels are presented and compared in order to draw conclusions
about the pretraining corpora used. Using relevant metrics for classification tasks, such as
accuracy and (micro- and macro-) averaged precision, recall and F1-score, it is shown that
BERT performs marginally better on accuracy and micro-averaged metrics. This implies better
performance on more dominant classes (which turn out to be less ”scientific domain” and more
”general”), while SciBERTmodel outperforms the BERTmodel when it comes to relations specific
to the scientific domain, implied by better results on the macro-averaged metrics that account
for class disproportions in the calculation. To conclude, we list two important contributions of
this work:

• Creation (selection) of the new dataset for the relations in the domain of science
combo160;

• Two fine-tuned models BERT and SciBERT treined for RE, are available for use through
OpenNRE toolkit [41];

To further support the conclusion, the issue of defining the term ”scientific” relationship needs to
be addressed in more detail. In addition, other models with different pretraining objectives and



architectures should be explored and evaluated against the combo160 dataset. The sole dataset,
combo160, should be further analyzed to reduce and find the optimal and necessary number of
relations. This and the study of the effects of relation distribution (especially negative relations)
are the subject of future work. These results serve as the initial step in relation extraction
which will be fine-tuned to specific scientific subdisciplines like physics or chemistry, aiming to
proceed to the construction of a domain-specific knowledge graph.
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