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Abstract
The emergence of large language models (LLMs) has revolutionized machine learning and related fields,
showcasing remarkable abilities in comprehending, generating, and manipulating human language.
However, their conventional usage through API-based text prompt submissions imposes certain limita-
tions in terms of context constraints and external source availability. LLMs suffer from the problem of
hallucinating text, and in the last year, several approaches have been devised to overcome this issue:
adding an external Knowledge Base or an external memory consisting of embeddings stored and retrieved
by vector databases. In all the current approaches, though, the main issues are: (i) they need to access
an embedding model and then adapt it to the task they have to solve; (ii) in case they have to optimize
the embedding model, they need to have access to the parameters of the LLM, which in many cases are
“black boxes”. To address these challenges, we propose a novel framework called Reinforced Retrieval
Augmented Machine Learning (RRAML). RRAML integrates the reasoning capabilities of LLMs with
supporting information retrieved by a purpose-built retriever from a vast user-provided database. By
leveraging recent advancements in reinforcement learning, our method effectively addresses several
critical challenges. Firstly, it circumvents the need for accessing LLM gradients. Secondly, our method
alleviates the burden of retraining LLMs for specific tasks, as it is often impractical or impossible due to
restricted access to the model and the computational intensity involved. Additionally, we seamlessly link
the retriever’s task with the reasoner, mitigating hallucinations and reducing irrelevant and potentially
damaging retrieved documents. We believe that the research agenda outlined in this paper has the
potential to profoundly impact the field of AI, democratizing access to and utilization of LLMs for a wide
range of entities.
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1. Introduction

The advent of Large Language Models (LLMs) has brought about a paradigm shift in machine
learning and its related disciplines. LLMs [1, 2, 3, 4, 5] have exhibited unprecedented capabilities
in understanding, generating, and manipulating the human language. Famously, ChatGPT
[3] has entered the public space by reaching one million users in a matter of days. The way
these models are used is through API that only allows submitting a textual prompt and getting
back from the server the generated text. However, this causes an immediate limitation: all
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information must be passed through this context, and we know transformer-based models do
not scale nicely. Even if they did, API costs are charged on the basis of their usage. Therefore,
using long contexts would be expensive. Even if one had the resources to run their own LLM,
the costs of training and of the hardware infrastructure, and the environmental impact should
be considered. There is an impendent need, though, to accommodate the enormous power of
those models to specific user needs by making sure that they could use the reasoning capabilities
of LLMs, through in-context learning [1] on their data.
A solution is to adopt a retrieval-augmented approach [6, 7]. In this setting, a retriever is used
to filter out relevant information to be passed as context to the reasoner. This generates a new
problem, however, namely that the retriever and the reasoner are not aligned [8, 9, 10]. In
particular, the retriever might not be trained on the task of interest to the user. Moreover, the
retriever might actually provide “dangerous” pieces of information to the reasoner, as proved in
[11], leading to poor results and, more importantly, to hallucinations.
Ideally, one would have to fine-tune these models to account for these issues. Within this

setting, fine-tuning the model for a given task is technically impossible. We asked ourselves: “Is
it still possible to use the API that gatekeeps those powerful LLMs on our data without the need for
fine-tuning?” We show that this question has a positive answer and in this paper, we propose a
novel framework, Reinforced Retrieval Augmented Machine Learning (RRAML), in which we
combine the reasoning capabilities of large foundational models enhanced by the provision of
supporting relevant information provided by a retriever that searches them in a large database.
In this setting, an efficient retriever model is tasked to search for relevant information in an
arbitrarily large database of data provided by users. Once this set of relevant data has been
retrieved, it is forwarded to the reasoner (a large foundational model such as ChatGPT, for
instance) through its API to “reason” on the input and produce an adequate result. In particular,
we plan to overcome current limitations, namely that the retriever’s task is detached from that
of the reasoner, reducing in such a way the tendency of LLM to hallucinate and diminishing
the number of damaging documents (as defined in [12, 13, 8]) returned by the retriever. The
approach we devise in this research work exploits recent advances in reinforcement learning.
Recently, in fact, reinforcement learning techniques like PPO [14] have been used to improve
large foundational models with human feedback where the loss is non-differentiable. We
propose to link the training phase of the retriever to the final task outcome by the use of a
purposefully crafted reward model that depends either on human feedback or on the specific
characteristics of the task data. The RL technique also offers the advantage of not requiring
fine-tuning an LLM as a reasoner, which can be considered a black box in this setting, and
exchanged freely.

Finally, we argue that the research agenda we lay out in this paper has the potential to hugely
impact the field of AI and democratize the access and use of these large foundational models to
a large set of entities.

2. Methodology

The system takes as input a task description, a query, and a database and gives as output the
response generated by a reasoner. The overall system architecture, shown in Figure 1, consists



of three main components: a Generative Language Model, a Retriever, and a Reasoner (typically
an LLM).
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Figure 1: High-level design of the RRAML framework. On the left side, there are the three inputs: Task
Description, user’s query, and a database that represents the external knowledge used to augment/update
the reasoner. Then, we present the overall architecture flow with the Retriever, Generative Language
Model, and Reasoner. Finally, how the reward is computed and propagated in the Generative Language
Model and Retriever.

More in detail, the Generative Language Model takes the task description and query as input
and generates a prompt. The Retriever takes the query and the database as input and outputs a
support set, which is then concatenated with the query and passed to the Reasoner.

2.1. Data

The data is a critical component of the framework: the task description guides the generation of
an appropriate prompt, the query represents the user request, and the database provides the
data needed by the reasoner to perform the task.

Task Description The task description is a string that defines the nature of the task, possibly
with expected results, that the user wants to perform. For example, if the user wants to
generate a summarization of multiple news articles, a possible task description could be “News
Summarization”. If the user wants to perform question answering on a vast document collection,
the task description could be “Question Answering”.

Query The query represents the user’s need. The Retriever will operate on the database w.r.t
to the user’s query, and the resulting data is input for the task. For example, if the user wants
to summarize a collection of news articles, the query could be the topic the user is interested in.
If the user wants to answer a specific query, this becomes the actual question.



Database The database is a collection of public or private data (or documents) that can be
queried to provide relevant information to satisfy the user’s information needs. The database
represents the knowledge needed by the Reasoner to perform the task. The data stored in
the database will depend on the specific task and may include text, images, audio, and other
data types (as in [8]). For example, if the user wants to summarize multiple news articles,
the database could be an indexed collection of articles. If the user wants to perform Question
Answering, the database may consist of facts related to a particular topic (as in [9, 10]).

2.2. Models

Generative LanguageModel The Generative Language Model component of the framework
is responsible for generating textual instructions based on the input Task Description and Query
that maximize the rewards w.r.t Reasoner. Specifically, it receives a string representing the task
to be performed (Task Description) and a query (Query) that represents the user’s request. The
Generative Language Model then generates a textual prompt that is relevant to the query and
the task by performing automatic prompt engineering.

Retriever The Retriever component of the framework is responsible for retrieving relevant
data from the Database based on the user’s query. We refer to the Retriever outputs as support
set (as in [9, 10]). A support set is a subset of the data from the Database that either directly
answers the given query or contributes to the final answer.

Prompt Aggregator This component is responsible for processing the input required by
the Reasoner. In its simplest form, it just needs to concatenate the prompt generated by the
Generative Language Model with the Support Set provided by the Retriever. However, in a
more complex version, it may need to rework the prompt based on the number of support sets
received to ensure that the LLM can provide a coherent response. For example, if the Retriever
provides two support sets, the Prompt Aggregator may need to split the prompt into two parts
and concatenate each part with one of the support sets.

Reasoner The Reasoner is responsible for generating the answer to the user’s query based
on the final prompt generated by the Prompt Aggregator. The Reasoner can be a pre-trained
model like GPT or a custom-trained model specific to the task at hand. The output of the LLM
is a textual response, which can be further parsed to comply with the intended output.

2.3. Reinforcement Learning

The Reinforcement Learning (RL) part of the framework is responsible for fine-tuning the
Generative Language Model (GLM) and Retriever based on the computed reward. The RL is
a crucial part of RRAML, it will be used to constantly improve the GLM and Retriever. As
mentioned earlier, the retriever will get a penalty if some of his recommendations will leads
the Reasoner to a hallucinate, for example by adding damaging documents. The RL allows
use to integrate and augment the signals in the training of these models, going beyond the



data present in their training set, ensuring that they are aligned with the environment (i.e., the
reasoner and the final task).

Reward The reward function can be defined based on the similarity between the generated
output and the expected output and it can be estimated by training a Reward Model [14].

RL algorithm The specific RL method which can be used is Deep Q-Networks (DQN) [15],
which is a model-free RL algorithm that learns to maximize the cumulative reward over time.
DQN combines Q-Learning, which is a RL algorithm that learns the optimal action-value
function, with a Deep Neural Network to approximate the action-value function. In the proposed
framework, DQN is used to train the Generative Language Model and the Retriever to maximize
the reward obtained from user feedback. The update process is performed by backpropagating
the reward signal through the neural networks using Stochastic Gradient Descent (SGD). The
weights of the neural networks are updated in the direction that maximizes the expected reward,
using the Q-Learning update rule. The update is performed iteratively until convergence, which
is achieved when the expected reward stops improving.

Human-in-the-loop Human preferences can be incorporated into our ML system by allowing
users to provide feedback on the system’s output. This feedback will be used to compute the
reward for the RL algorithm and will help improve the performance of the overall system
over time. We acknowledge that some tasks may not have a clear expected output or may
require additional context that is not available in the input data. In these cases, we will leverage
human-in-the-loop approaches to provide additional context and guidance to the system. For
example, crowd-sourcing platforms or internal subject matter experts can be used to provide
feedback on the system’s output and help train the model on more complex tasks.

3. Use Case Example

RRAML promises to be effective in many applications. Consider a situation where a company
possesses a private database, which consists of factual information expressed in natural language,
and they need to apply reasoning to this data. The volume of their data may exceed the context
capacity of the LLM, and fine-tuning is not an option, for pricing/environmental impact or
because the LLM is served by other company APIs. To tackle this challenge, RRAML uses its
retriever to get only the relevant facts within the context, enabling the LLM to reason over
them.

For instance, suppose a company has an employee list, projects that employees are currently
or were previously assigned to, and performance evaluation grids with text-based feedback
from superiors. The company might want to assign employees to a new project on a specific
topic. To do so, it is necessary to input the information contained in these data to the LLM.
However, due to capacity constraints, the entire data cannot fit within the context. Therefore,
the retriever has to return a subset of this information, perhaps excluding data on projects from
the distant past, employees who are already overburdened with multiple projects, or employees
who have never worked on a project related to the same topic.



4. Related Work

Recent years have seen the emergence of large language models. Starting from the first Gen-
erative Pre/Training Model, better known as GPT [16], these kinds of large language models
have rapidly improved. Even further, deep learning models have now reached multimodal
capabilities beyond just images, with methods proficient on audio [17, 18, 19], video [20, 21],
and 3D [22, 23, 24]. GPT-4 [25] is the most recent iteration, but in the meanwhile, many have
rushed to propose their own version. Google has recently released BARD1, while Meta has
proposed their own take on LLM with LLaMA [4]. The research community has also capitalized
its effort by releasing several open source LLM of different sizes, like Bloom [2], Dolly2, and
RWKV [26]. However, all these models fail to scale to a larger context size, either by excessive
computational costs or by “losing it in the middle”, as shown in [27].
To address this context-length limitation, some have tried to incorporate external knowledge
into LLMs [28, 29, 30]. In particular, in “Retrieval-enhanced machine learning” [31], authors
have envisioned a framework in which retrieval systems can enhance the performance of a
machine learning model. More recently, there have been attempts of jointly training retrieval
models with LLMs [6, 32], notably, the line of research on neural databases, in which the authors
tried to replace a traditional database with a neural framework removing the need for a schema
[10, 9, 8]. However, all these works assume full access to the reasoner module, which is not the
case for most users in practice.
To overcome this limitation, many have tried to craft systems that are able to deliver an optimized
prompt that is input to the LLM. For instance, the research conducted by [33] demonstrated
a substantial influence of the sequence in which prompts are presented on the ultimate per-
formance of the task. Meanwhile, a study by Nie et al. [34] highlighted that the performance
is susceptible to the arrangement of the examples in the prompt, prompt templates, and the
in-context instances in the prompt. Lester et al. [35] suggested a method to enhance task
performance by adding adjustable tokens during fine-tuning. LLM-AUGMENTER iteratively
revises [30] to improve the model response.
All the works introduced above do not improve on the retriever, which is assumed fixed. In
our work, we propose to finetune the retriever in conjunction with the reasoner to improve
on results. Since the feedback is non-differentiable we resort to reinforcement learning. In
particular, recent formulation such as Proximal Policy Optimization (PPO) [36] make use of a
differentiable neural reward module to include and account for generally non-differentiable
feedback, like in the case of reinforcement learning with human feedback (RLHF).

5. Conclusions

In conclusion, RRAML provides a promising framework for building intelligent interfaces to
interact with large language models like GPT. By combining a generative language model with
a retriever, this approach can effectively improve the performance of language models and help
them understand user intents better.

1https://bard.google.com/
2https://github.com/databrickslabs/dolly
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However, this approach also comes with several challenges and uncertainties, such as the
need for a large amount of training data, the potential for bias in the data and models, and the
difficulty of balancing the trade-offs between generative and retrieval-based approaches.

Despite these challenges, RRAML holds great promise for creating more intelligent, natural,
and effective interfaces for interacting with language models. We hope that this paper has
provided a useful overview of this approach and its potential applications, and we look forward
to further research and development in this exciting area.
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