
89

Methods of Parametric Identification Based on Monkey
Behavior

Eugene Fedorov , Anait Karapetyan, Kostiantyn Rudakov and Anatolii Chepynoha

Cherkasy State Technological University, Cherkasy, Shevchenko blvd., 460, 18006, Ukraine

Abstract
In modern conditions, a relevant task is the development of methods for the parametric

identification of models of artificial neural networks used in intelligent computer systems. To

enhance the effectiveness of parametric identification, metaheuristic methods based on

monkey behavior (Monkey Search, Monkey Algorithm, Spider Monkey Optimization) have

been proposed. These metaheuristic methods use dynamic parameters to ensure global search

in the initial iterations and local search in the final iterations, which improves the accuracy of

the search and does not require the transformation of the objective function. The proposed

metaheuristics expand the application domain of monkey-based parametric identification

methods and contribute to the improvement of the efficiency of intelligent computer systems.

Further research perspectives include exploring the proposed methods for a wide range of

artificial intelligence tasks.

Keywords 1
Metaheuristics, monkey search with dynamic parameters, monkey algorithm with dynamic

parameters, spider monkey optimization with dynamic parameters, and parametric

identification of artificial neural network models

1. Introduction

In modern conditions, the development of methods for the parametric identification of artificial

neural network models used in intelligent computer systems [1-3] is an urgent task.

However, existing parametric identification methods that obtain approximate solutions through
global search do not guarantee convergence, while methods that obtain approximate solutions through

local search have a high probability of getting trapped in local optima. Furthermore, methods that obtain

exact solutions have high computational complexity. Thus, there is a problem of insufficient efficiency
in existing parametric identification methods.

To reduce the probability of getting stuck in a local extremum and to speed up parametric

identification, modern heuristics (or metaheuristics) are used [4-5]. Metaheuristics expand the
possibilities of heuristics by combining heuristic methods based on a high-level strategy [6-7].

Metaheuristics often use the behavior of one or a group of animals [8-9]. Metaheuristics are an

approximate and usually non-deterministic method [10-11]. Advanced metaheuristics use experience

accumulated during the search, represented in memory, to manage the search process [12-13].
Object of research: The process of parametric identification of an artificial neural network model.

Subject of research: Methods of parametric identification of an artificial neural network model based

on metaheuristics. This work aims to enhance the efficiency of the parametric identification of an
artificial neural network model using metaheuristic methods with dynamic parameters based on the

behavior of monkeys. To achieve the stated objective, the following tasks need to be addressed:

1. To develop a numerical optimization method based on the synthesis of the monkey search
algorithm.

International Scientific Symposium «Intelligent Solutions» IntSol-2023, September 27–28, 2023, Kyiv-Uzhhorod, Ukraine

EMAIL: anait.r.karapetyan@gmail.com (A. Karapetyan); y.fedorov@chdtu.edu.ua (E. Fedorov); k.rudakov@chdtu.edu.ua (K. Rudakov);

toxachep@ukr.net (A. Chepynoha)

ORCID: 0000-0002-7412-3252 (A. Karapetyan); 0000-0003-3841-7373 (E. Fedorov); 0000-0003-0000-6077 (K. Rudakov);

0000-0003-3921-6557 (A. Chepynoha)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

90

2. To develop a numerical optimization method based on the synthesis of the monkey algorithm.
3. To develop a numerical optimization method based on the synthesis of the spider monkey

optimization algorithm.

4. Conduct a numerical investigation of the proposed optimization methods.

2. Literature Review

Existing metaheuristics are categorized into non-nature-inspired, evolutionary, immune, biological,
physical, chemical, mathematical, and social. Almost all metaheuristics employ random search, which

reduces the likelihood of converging to a random extremum. Metaheuristics are capable of solving

problems of discrete optimization (e.g., the traveling salesman problem, knapsack problem, assignment

problem, clustering) and continuous optimization (finding the point at which a function reaches an
extremum).

Existing metaheuristics have one or more of the following drawbacks:

 failure to consider the impact of iteration number on the solution search process [14-15];

 the method's description is oriented towards solving only specific problems or is an abstract

method description [16-17];

 lack of guaranteed convergence of the method [18-19];

 inability to use non-binary potential solutions [20-21];

 insufficient accuracy of the method [22-23];

 inability to solve problems of constrained optimization [24-25];

 lack of automated procedure for determining parameter values [26-27].
Therefore, the task arises to develop effective metaheuristic optimization methods. Among the most

popular are metaheuristics based on monkey behavior [28].

3. Monkey search with dynamic parameters

The "monkey search" was proposed by Mucherino [28] and is based on the behavior of a monkey

that climbs a tree in search of food, while remembering where it found good food in the past. Figure 1
shows a binary decision tree, with the path to the best node highlighted in bold. In this algorithm, the

monkey randomly climbs the tree and discovers new left and right nodes. Node discovery corresponds

to generating new solutions based on the current or current and best solution using perturbation. The
monkey stops when the current best node (best solution) is found or when the maximum tree height is

reached. Upon reaching either of these stopping conditions, the monkey descends back to the root node

of the tree.

Then the monkey climbs up the tree again, choosing between previously discovered left and right
nodes, with a higher probability of selecting the best nodes. A new binary tree is created at each

iteration. When the number of nodes at the maximum tree level reaches a specified value, the

construction of the current tree is completed. This algorithm uses memory that stores the best solutions
obtained from the first trees. The first trees have randomly generated solutions as their roots, and

subsequent trees have roots of solutions from memory, randomly selected. After filling all memory with

the best solutions, if a new solution is better than one or more solutions in memory, then the new
solution replaces the worst solution in memory. If the new solution is too close to a solution in memory,

the new solution is ignored. The monkey search stops when the maximum number of built trees is

reached. In contrast to the original method, this method uses dynamic mean square deviation to generate

the position vector.

3.1. Algorithm for optimizing numerical functions

1. Initialization.
1.1. Specifying the minimum distance between vertex positions (solutions) in memory  , the

parameter  that controls the step size for generating a new solution, subject to the condition

that, 0  , 0 1  .

91

1.2. Specifying the maximum number of trees N , maximum number of levels for each tree

H , maximum number of vertices for each tree H at a given level HN , memory size L , length

of the vertex position vector M , minimum and maximum values for the solution
min max,j jx x ,

1,j M .

1.3. Specifying the cost function (objective function) () min
x

F x  , where x is the vector

position of the tree vertex.
1.4. Creating the optimal solution randomly as a real vector

* * *

1(,...,)Mx x x , * min max min() (0,1)j j j jx x x x U   , (1)

where (0,1)U - is the function returns a standard uniformly distributed random number.

1.5. Memory MP  .

2. Tree number 1n  .

3. Creation of the n -th tree.

3.1. Set of explored node positions nV  .

3.2. Set of edges nA   .

3.3. Set of node positions H at the level H

nV  .

3.4. Exploring the root of the tree.

3.4.1. If
MP L , then - randomly create a root position, then the root position is randomly

created.

1(,...,)root root root

Mx x x , min max min() (0,1)root

j j j jx x x x U   , (2)

3.4.2. If
MP L , then from memory, MP a vertex with a number is randomly selected

(1 (1) (0,1))v round L U   , which becomes a root rootx , where ()round – is a function

rounding a number to the nearest integer.
3.4.3. Add the root position to the set of explored node positions

{ }root

n nV V x . (3)

3.5. Set the position of the current tree vertex
cur rootx x . (4)

3.6. Ascending to explored tree vertices.

3.6.1. Tree level number 1m  .

3.6.2. If : (,)left cur left

n nx V x x A   and : (,)right cur right

n nx V x x A   , then go to step 3.7.

3.6.3. Calculate the probability of ascending to the left vertex

1/ ()

1/ () 1/ ()

left

left right

F x
p

F x F x



. (5)

3.6.4. Select the position of the current vertex

(0,1)U  ,
,left

cur

right

x p
x

x p





 
 


. (6)

3.6.5. If m H , then 1m m  , go to step 3.6.2, otherwise 3.5.

3.7. Ascending to unexplored tree vertices.

3.7.1. Create the position of the left vertex leftx by perturbation (e.g., mutation).

3.7.1.1. max min() 1 ()j j j

m
m x x

H
 

 
   
 

, () (0,1)left cur

j j jx x m N  , 1,j M ,

where (0,1)N – is a function returning a standard normally distributed random number.

3.7.1.2.
minmax{ , }left left

j j jx x x ,
maxmin{ , }left left

j j jx x x , 1,j M .

3.7.2. Create the position of the right vertex rightx by perturbation (e.g., mutation).

92

3.7.2.1. max min() 1 ()j j j

m
m x x

H
 

 
   
 

, () (0,1)right cur

j j jx x m N  , 1,j M .

3.7.2.2.
minmax{ , }right right

j j jx x x ,
maxmin{ , }right right

j j jx x x , 1,j M .

3.7.3. If () min{ (), ()}cur left rightF x F x F x , then go to step 3.7.1.

3.7.4. Add the vertex positions to the set of explored vertex positions

{ , }left right

n nV V x x . (7)

3.7.5. Add the edges to the set of edges

{(,),(,)}cur left cur right

n nA A x x x x . (8)

3.7.6. If m H , then 1m m  , go to step 3.5.

3.7.7. Add the vertex position to the set of vertex positions H at the level

{ , }H H left right

n nV V x x . (9)

3.7.8. If
H H

nV N , then go to step 3.5.

4. Determine the best vertex position of n -th tree

argmin ()
H

n

best

n
x V

x F x


 . (10)

5. Add the best vertex position of n -th tree to the memory.

5.1. If 0MP  , then { }M M best

nP P x , go to step 6.

5.2. If 0 min
M

M best

n
x P

P x x 


    , then go to step 6.

5.3. If
MP L , then { }M M best

nP P x , go to step 6.

5.4. Determine the worst position in the memory.

5.5. If () ()worst best

nF x F x , then \{ }M M worstP P x , { }M M best

nP P x .

6. If n N , then 1n n  , go to step 3, otherwise – stop.

7. Identification of the best global position
* arg min ()

Mx P
x F x


 . (11)

The solution is *x .

Figure 1: Binary decision tree

4. Monkey Algorithm with Dynamic Parameters

The Monkey Algorithm, proposed by Zhao and Tang [28], is based on the model of monkeys

climbing mountains. It consists of three processes: the climbing process, the observation-jump process,
and the somersault process. The climbing process is a step-by-step procedure of changing the positions

of the monkeys from their initial positions to new positions, which uses a pseudogradient stochastic

93

approximation. After the climbing process, each monkey arrives at its vertex and enters the observation-
jump process. It inspects its surroundings and determines if there are other positions higher than its

current position. If so, it jumps from the current position and then repeats the climbing process until it

reaches the mountain peak. After these processes, each monkey finds a local maximum mountain peak.

The goal of the somersault process is to make the monkeys find globally maximum mountain peaks in
new search areas. To achieve this, the monkeys perform a somersault into a new search area in the

direction of the center of the current positions of all the monkeys. In contrast to the original method,

this method uses dynamic step size to generate the position vector.
Algorithm for optimizing numerical functions

4.1. Algorithm for optimizing numerical functions

1. Initialization

1.1. Set the minimum and maximum step lengths
min max,a a for generating the position vector

during the ascent process, and the minimum and maximum step lengths
min max,b b for generating

the position vector during the observation-jump process, meanwhile
min max min max0, 0, 0, 0a a b b    .

1.2. Set the maximum number of iterations N , the maximum number of iterations for local

search LN , the population size K , the length of the monkey's position vector M , and the

minimum and maximum values for the position vector
min max,j jx x , 1,j M .

1.3. Define the cost function (objective function):

() min
x

F x  , (12)

where x is the monkey's position vector.

1.4. Create the initial population P .

1.4.1. Monkey number 1k  .

1.4.2. Generate a random position vector kx

1(,...,),k k kMx x x

min max min() (0,1).kj j j jx x x x U   (13)

where (0,1)U – is a function that returns a standard uniformly distributed random number.

1.4.3. If kx P , then { }kP P x , 1k k  .

1.4.4. If k K , then go to step 1.4.2.
1.5. Determine the monkey with the best objective function value:

*

1,
argmin (),k

k K
k F x


 *

* .
k

x x (14)

1.6. Set the initial step lengths max(1)a a , max(1)b b .

2. Number of iterations 1n  .

3. Climbing process.

3.1. Monkey number 1k  .

3.2. 1m  .

3.3. Create a position vector increment kx

1(,...,),k k kMx x x   

(1 2 (0,1)) (),kjx round U a n   (15)

where ()round – is a function that rounds a number to the nearest integer.

3.4. Calculate the pseudo-gradient of the cost function

() ()
() ,

2

k k k k
kj k

kj

F x x F x x
F x

x

   



 1, .j M (16)

3.5. Create a position vector based on mutation

1(,...,),My y y sgn(()) ().j kj kj ky x F x a n  (17)

3.6. If
min max1, j j jj Mx y x    , then kx y .

94

3.7. If Lm N , then 1m m  , go to step 3.3.

3.8. If k K , then 1k k  , go to step 3.2.

4. Observation-jump process.

4.1. Monkey number 1k  .

4.2. Create a position vector y based on mutation

1(,...,),My y y (1 2 (0,1)) ().j kjy x U b n   (18)

4.3. If    min max() () 1,k j j jF y F x j M x y x      , then kx y , otherwise go to step 4.2.

4.4. If k K , then 1k k  , go to step 4.2.

5. Climbing process.

5.1. Monkey number 1k  .

5.2. 1m  .

5.3. Create a position vector increment kx

1(,...,),k k kMx x x    (1 2 (0,1)) ().kjx round U a n   (19)

5.4. Calculate the pseudo-gradient of the cost function

() ()
() ,

2

k k k k
kj k

kj

F x x F x x
F x

x

   



 1, .j M (20)

5.5. Create a position vector based on mutation

1(,...,),My y y ()sgn(()) ().j kj kj ky x n F x a n  (21)

5.6. If min max1, j j jj Mx y x    , then kx y .

5.7. If Lm N , then 1m m  , go to step 5.3.

5.8. If k K , then 1k k  , go to step 5.2.

6. Somersault process b.

6.1. Monkey number 1k  .

6.2. Create a position vector based on the crossover

1(,...,),M  
1

1
.

K

j lj

l

x
K




  (22)

6.3. Create a position vector y based on the crossover

1(,...,),My y y (1 2 (0,1))().j kj j kjy x U x    (23)

6.4. If min max1, j j jj Mx y x    , then kx y .

6.5. If k K , then 1k k  , go to step 6.2.

7. Determine the best monkey based on the cost function
*

1,
argmin ().k

k K
k F x


 (24)

8. Determine the global best position.

If *

*() ()
k

F x F x , then *

*

k
x x .

9. If n N ,

then 1n n  ,
min max min() () 1

n
a n a a a

N

 
    

 
,

min max min() () 1
n

b n b b b
N

 
    

 
, go to step 3.

The result is *x .

5. Optimization of Spider Monkey with Dynamic Parameters

Spider Monkey Optimization (SMO) was proposed by Bansal, Sharma, Jadon, and Clerc [28] and is

based on the behavior of spider monkeys, which is based on the fission-fusion social structure (FFSS).

The key features of FFSS are: An example of numbered list is as following.

95

1. Animals based on FFSS are social and live in groups of 40-50 individuals. The FFSS swarm
can reduce competition for food among group members by dividing them into subgroups for food

search.

2. The female (global leader) usually leads the group and is responsible for finding food sources.

If she fails to obtain enough food for the group, she divides the group into smaller subgroups (ranging
in size from 3 to 8 members) who forage independently.

3. Subgroups should also be led by a female (local leader) who makes decisions about planning

an efficient feeding route for each day.
4. Members of these subgroups communicate within and outside the subgroup depending on the

availability of food and to maintain territorial boundaries.

In the developed strategy, the behavior of animals living according to the FFSS principle (such as
spider monkeys) is divided into four stages. In the first stage, the group begins to search for food and

evaluates the distance to it. In the second stage, based on the distance to the food, group members update

their positions and reevaluate the distance to food sources. In the third stage, the local leader updates

her best position in the group, and if the position is not updated a certain number of times, all members
of this group begin to search for food in different directions. In the fourth stage, the global leader updates

her best position, and if it is not updated a certain number of times, she divides the group into smaller

subgroups. All four stages are performed continuously until the desired result is achieved. FFSS follows
the properties of self-organization and division of labor to achieve intelligent swarm behavior of

animals. However, the proposed algorithm differs from the natural behavior of spider monkeys. In this

algorithm, the leader's position (local or global) is not constant but depends on the leader's ability to
find food. In addition, the algorithm does not model the different communication tactics of spider

monkeys. This algorithm consists of six phases: Local Leader Phase, Global Leader Phase, Local

Leader Learning Phase, Global Leader Learning Phase, Local Leader Decision-making Phase, and

Global Leader Decision-making Phase. Unlike the original method, this method uses the dynamic
probability of retaining a solution and the dynamic probability of a random solution.

5.1. Algorithm for optimizing numerical functions

1. Initialization.

1.1. Setting the minimum and maximum probabilities min max,p p .

1.2. Setting the maximum number of iterations N , the maximum number of groups maxG , the

maximum number of iterations without updating the position of the local leader LLN (usually
LLN M K ), the maximum number of iterations without updating the position of the global

leader GN (usually [/ 2,2]GN K K), the population size K ((for integer division of the

population into groups we assume 60K ), the length of the monkey position vector M , and

the minimum and maximum values for the position vector
min max,j jx x , 1,j M .

1.3. Setting the cost function (objective function) () min
x

F x  ,

where x – is the monkey position vector.

1.4. Number of groups 1G  .

1.5. Creation of one group.

1.5.1. Monkey number in the group. 1k  .

1.5.2. Random creation of a position vector gkx

1 1 1 1(,...,)k k kMx x x ,
min max min

1 () (0,1)kj j j jx x x x U   , (25)

where (0,1)U – is a function returning a standard uniformly distributed random number.

1.5.3. If 1 1kx P , then 1 1 1{ }kP P x , 1k k  .

1.5.4. If 1k P , then go to step 1.5.2.

1.6. Determine the local leader in the group

1

*

1
1,

arg min (),k
k P

k F x


 *

*

1 1
.

k
x x (26)

96

1.7. Determine the global leader

*

*

1
.x x (27)

1.8. Number of iterations without updating the position of the local leader

1 0.m  (28)

1.9. Number of iterations without updating the position of the global leader

0.m  (29)

1.10. Probability of preserving the position min(1)sp p .

1.11. Probability of a random position max(1)rp p .

2. Iteration number 1n  .

3. Local leader phase.

3.1. Group number 1g  .

3.2. Monkey number в g -group 1k  .

3.3. Component number 1j  .

3.4. Randomly select the number of the second monkey

  1 1 (0,1) ,gs round P U   (30)

where ()round – is a function that rounds a number to the nearest integer.

3.5. If s k , then go to step 3.4.

3.6. Save the position vector or create a position vector based on the crossover (crossing the

position vector of the monkey with the position vectors of the local leader and the other monkey)

(0,1)U  ,

*

, ()
.

(0,1)() (1 2 (0,1))(), ()

s

gkj

gkj s

gkj gj gkj gsj gkj

x p n
x

x U x x U x x p n





 
 

     

(31)

3.7. If j M , then 1j j  , go to step 3.4.

3.8. If gk P , then 1k k  , go to step 3.3.

3.9. If g G , then 1g g  , go to step 3.2.

4. Modify the position of group members.

4.1. Group number 1g  .

4.2. Monkey number в g -group 1k  .

4.3. If () ()gk gkF x F x , then gk gkx x .

4.4. If gk P , then 1k k  , go to step 4.3.

4.5. If g G , then 1g g  , go to step 4.2.

5. Calculate probabilities for group members.

5.1. Group number 1g  .

5.2. Monkey number в g -group 1k 

1,

1/ ()
0.1 0.9 .

max1/ ()
g

gk

gk

gs
s P

F x
p

F x


 
(32)

5.3. If gk P , then 1k k  , go to step 5.3.

5.4. If g G , then 1g g  , go to step 5.2.

6. Global leader phase.

6.1. Group number 1g  .

6.2. 1c  .

6.3. If gc P , then go to step 6.13.

6.4. Monkey number в g -group 1k  .

97

6.5. If (0,1) gkU p , then go to step 6.11.

6.6. 1c c  .

6.7. Randomly select the component number 1j 

  1 1 (0,1) .j round M U   (33)

6.8. Randomly select the number of the second monkey

  1 1 (0,1) .gs round P U   (34)

6.9. If s k , then go to step 6.8.

6.10. Create a position vector based on the crossover
*(0,1)() ()(1 2 (0,1))().gkj gkj gj gkj gsj gkjx x U x x n U x x      (35)

6.11. If gk P , then 1k k  , go to step 6.5.

6.12. Modify the position of group members

,gk gkx x 1, ,gk P

1, .g G
(36)

6.13. If g G , then 1g g  , go to step 6.2.

7. Local leader learning phase.

7.1. Group number 1g  .

7.2. Determine the best monkey in the g -group based on the objective function
*

1,

arg min ().
g

gk
k P

k F x


 (37)

7.3. Determine the local leader in the g -group.

If *

*() ()ggk
F x F x , then *

*

g gk
x x , 1g gm m  .

7.4. If g G , then 1g g  , go to step 7.2.

8. Global leader training phase.
8.1. Determine the best local leader

* *

1,
argmin ().g

g G
g F x


 (38)

8.2. Determine the global leader.

If *

*() ()
g

F x F x , then *

*

g
x x , otherwise 1m m  .

9. Local leader decision-making phase.

9.1. Group number 1g  .

9.2. If
LL

gm N , then go to step 9.9.

9.3. 0gm  .

9.4. Monkey number в g -group 1k  .

9.5. Component number 1j  .

9.6. Create a position vector randomly or based on the crossover (crossing the position vector
of the monkey with the position vectors of the global and local leaders)

(0,1),U 
min max min

* *

() (0,1), ()
.

(0,1)() (0,1)(), ()

r

j j j

gkj r

gkj j gkj gkj gj

x x x U p n
x

x U x x U x x p n





   
 

    

(39)

9.7. If j M , then 1j j  , go to step 9.6.

9.8. If gk P , then 1k k  , go to step 9.5.

9.9. If g G , then 1g g  , go to step 9.2.

10. Global leader decision-making phase.

10.1. If Gm N , then go to step 11.

98

10.2. Number of iterations without updating the position of the global leader 0m  .

10.3. Fuse the group into the population

1

.
G

g

g

P P


 (40)

10.4. If maxG G , then 1G G  , fission the population P into G groups, go to step 10.6.

10.5. If maxG G , then 1G  .

10.6. Determine local leaders in groups
*

1,

arg min (),
g

g gk
k P

x F x


 1, .g G (41)

10.7. Number of iterations without updating the positions of local leaders

0,gm  1, .g G (42)

11. If n N , then 1n n  ,

min max min() () 1 ,r n
p n p p p

N

 
    

 
 min max min() () ,r n

p n p p p
N

 
    

 
 (43)

go to step 3.

The result is *x .

6. Numerical study of the proposed methods

The numerical study was conducted on the Ackley function

2

1 1

1 1
() exp exp cos() exp(1),

M M

j j

j j

f x a b x cx a
M M 

   
          

  
  (44)

where 20, 0.2, 2a b c    ,
min max32.768, 32.768j jx x   , 30M  .

In the study, the population size is 60K  the maximum number of iterations or trees 100N  (for

monkey search and monkey algorithm), or (for spider monkey optimization), were used minimum

distance between node positions in memory
max min|| ||

8

x x



 , a parameter controlling the step size for

generating a new solution 0.1  , the maximum number of levels for each tree 100H  , the maximum

number of vertices on H level 100HN  , memory size 10L  , minimum and maximum step lengths
min max0.1, 0.001a a  for generating the position vector during the ascent process, minimum and

maximum step lengths
min max1, 10b b  for generating the position vector during the observation-jump

process, the maximum number of local search iterations 1000LN  , minimum and maximum

probabilities min max0.1, 0.9p p  , the maximum number of groups max 6G  , the max number of

iterations without updating the position of the local leader 1800LLN  , the maximum number of

iterations without updating the position of the global leader 60GN  . The results of comparing the

proposed methods with classical methods are presented in Table 1.

Table 1
Comparison of proposed metaheuristic methods for parametric identification with existing ones based
on mean squared error criterion

Method
Mean squared error

of the proposed method with
dynamic parameters

of existing method

Monkey search 0.04 0.08
Monkey algorithm 0.03 0.07

Spider monkey optimization 0.02 0.06

99

An example of a real-world applied problem is neural network training. A multi-layer perceptron
with five input neurons, one output neuron, one hidden layer, and 30 weight coefficients was selected

as the neural network, performing function approximation.

7. Discussion

The selected parameter values of the proposed parametric identification methods ensure a high

probability of mutation and random solution generation in the initial iterations and a low probability of
mutation and random solution generation in the final iterations.

Classical methods based on the behavior of monkeys do not take into account the iteration number

in the mutation operator and the random solution generation operator, which reduces the accuracy of

the solution search (Table 1). The proposed methods allow for the elimination of these shortcomings.
One limitation of the study is that the proposed methods used a population size of 60.

8. Conclusions

In the article, the problem of insufficient efficiency of parameter identification methods for artificial

neural network models used in intelligent computer systems is considered. To improve the efficiency

of parameter identification methods, metaheuristic methods based on the behavior of monkeys with
dynamic parameters were proposed, which improve upon classical methods (monkey search, monkey

algorithm, spider monkey optimization). The proposed methods of parameter identification, due to

global search at initial iterations and local search at final iterations, allow to increase the accuracy of
search and does not require the transformation of the target function. The proposed metaheuristics can

expand the scope of application of parameter identification methods based on monkey behavior and

contribute to the increase of efficiency of intelligent computer systems. The prospects of further
research include the investigation of the proposed methods for a wide range of artificial intelligence

tasks.

9. References

[1] Neskorodieva, T., Fedorov, E. Method for automatic analysis of compliance of settlements with

suppliers and settlements with customers by neural network model of forecast // Advances in

Intelligent Systems and Computing, 2021, 1265 AISC, pp. 156–165. doi:10.1007/978-3-030-
58124-4_15

[2] Neskorodieva, T., Fedorov, E. Neural Network Models Ensembles for Generalized Analysis of

Audit Data Transformations // Lecture Notes in Networks and Systems, 2022, 344, pp. 263–279.
[3] Aggarwal, C.C. Neural Networks and Deep Learning. Cham, Switzerland: Springer, 2018, 497 p.

[4] S. Kumar, R. Mahapatra. Analytical Analysis of Two-Warehouse Inventory Model Using Particle

Swarm Optimization. PCIS 2021, Vol. 2. pp. 215-226. doi:10.1016/j.amc.2014.12.137
[5] Yang, X.-S. Nature-inspired Algorithms and Applied Optimization / X.-S. Yang. – Charm:

Springer, 2018. – 330 pp.

[6] Yang, X.-S. Optimization Techniques and Applications with Examples / X.-S. Yang. – Hoboken,

New Jersey: Wiley & Sons, 2018. – 364 p.
[7] Nakib, A. Metaheuristics for Medicine and Biology / Nakib A., Talbi El-G. – Berlin: Springer-

Verlag, 2017. – 211 p.

[8] Subbotin, S., Oliinyk, A., Levashenko, V., Zaitseva, E. Diagnostic Rule Mining Based on Artificial
Immune System for a Case of Uneven Distribution of Classes in Sample. Communications. –

Vol.3. – 2016. – P.3-11. doi:10.26552/com.c.2016.3.3-11

[9] Blum, C., Raidl, R. Hybrid Metaheuristics. Powerful Tools for Optimization. – Charm: Springer,
2016. – 157 p.

[10] Bozorg‐Haddad, O., Solgi, M., Loaiciga, H. Meta-heuristic and Evolutionary Algorithms for

Engineering Optimization. New Jersey: Wiley & Sons, 2017. – 293 p.

doi:10.1002/9781119387053

100

[11] Chopard, B., Tomassini, M. An Introduction to Metaheuristics for Optimization / B. Chopard,. –
New York: Springer, 2018. – 230 p.

[12] Radosavljević, J. Metaheuristic Optimization in Power Engineering. – New York: The Institution

of Engineering and Technology, 2018. – 536 p. doi:10.1049/PBPO131E

[13] Alba, E., Nakib, A., Siarry, P. Metaheuristics for Dynamic Optimization. – Berlin: Springer-
Verlag, 2013. – 398 p.

[14] Nozari, H., Aliahmadi, A., Jafari-eskandari, M., Khaleghi, Gh. An Extended Compact Genetic

Algorithm for Milk Run Problem with Time Windows and Inventory Uncertainty // International
Journal of Applied Operational Research. - Vol. 5, No. 2. - 2015. - pp. 35-48

[15] Nametala, C.A.L., Faria, W.R., Júnior, B.R.P.. On the performance of the Bayesian optimization

algorithm with combined scenarios of search algorithms and scoring metrics // Genetic
Programming and Evolvable Machines. - Vol. 23, Issue 2. - 2022. - pp 193–223

[16] Pinto, C. , Runkler, T.A., Sousa, J.M. Wasp Swarm Algorithm for Dynamic MAX-SAT Problems.

Proceedings of the 8th international conference on Adaptive and Natural Computing Algorithms,

Part I. – 2007. – P. 350-357.
[17] Sharma, A., Sharma, H., Khandelwal, A., Sharma, N.. Designing Controller Parameter of Wind

Turbine Emulator Using Artificial Bee Colony Algorithm. Proceedings of Congress on Intelligent

Systems 2020, pp. 143-151
[18] Neskorodieva, T., Fedorov, E., Chychuzhko, M., Chychuzhko, V. Metaheuristic Method for

Searching Quasi-Optimal Route Based On the Ant Algorithm and Annealing Simulation //

Radioelectronic and Computer Systems, 2022, 2022(1), pp. 92–102
[19] Balamurugan, R., Natarajan, A.M., Premalatha, K. Stellar-mass black hole optimization for

biclustering microarray gene expression data. Appl Artif Intell. – 2015. – Vol. 29. – P. 353-81.

doi:10.1080/08839514.2015.1016391

[20] Mirjalili, S., Mirjalili, S.M., Hatamlou, A. Multi-verse optimizer: a nature-inspired algorithm for
global optimization. NCA – 2015. – Vol. 49. – P. 1–19. doi:10.1007/s00521-015-1870-7

[21] Cuevas, E., Echavarria, A., Ramirez-Ortegon, M.A. An optimization algorithm inspired by the

states of matter that improves the balance between exploration and exploitation. Appl Intell. –
2014. – Vol. 40. – P. 256–272. doi:10.1007/s10489-013-0458-0

[22] Patel, V.K., Savsani, V.J. Heat transfer search (HTS): A novel optimization algorithm. Inf Sci. –

2015. – Vol.324. – P. 217–246. doi:10.1016/j.ins.2015.06.044

[23] Moein S., Logeswaran, R. KGMO: A swarm optimization algorithm based on thekinetic energy of
gas molecules. Inf Sci. – 2014. – Vol. 275. – P.127–144. doi:10.1016/j.ins.2014.02.026

[24] Hatamlou A. Black hole: A new heuristic optimization approach for data clustering. Inf Sci. –

2013. – Vol.222. – P.175–184. doi:10.1016/j.ins.2012.08.023
[25] Yan, G-W., Hao, Z.-J. A novel optimization algorithm based on atmosphere clouds model. Int J

Comput Intell – Vol. 12, №1. – 2013 – P. 16.

[26] Shareef, H., Ibrahim, A.A., Mutlag, A.H. Lightning search algorithm. Appl Soft Comput. – 2015.
– Vol. 36. – P. 315-33. doi:10.1016/j.asoc.2015.07.028

[27] Kaveh, A., Khayatazad, M. A new meta-heuristic method: ray optimization. Comput Struct. –

2012. – Vol. 112. – P. 283-294. doi:10.1016/j.compstruc.2012.09.003

[28] Kashan, A.H. A New metaheuristic for optimization: optics inspired optimization (OIO). Technical
Report, Department of Industrial Engineering, Tarbiat Modares University. – 2013.

doi:10.1016/j.cor.2014.10.011

	1. Introduction
	2. Literature Review
	3. Monkey search with dynamic parameters
	3.1. Algorithm for optimizing numerical functions

	4. Monkey Algorithm with Dynamic Parameters
	4.1. Algorithm for optimizing numerical functions

	5. Optimization of Spider Monkey with Dynamic Parameters
	5.1. Algorithm for optimizing numerical functions

	6. Numerical study of the proposed methods
	7. Discussion
	8. Conclusions
	9. References

