
 Personalization of XML text search via search histories

© George Chernishev

Saint-Petersburg State University

Chernishev@gmail.com

Abstract

Full-Text XML search is a difficult

problem due to its structural and textual

constrains. The latter being individually well

explored topics, lack mechanisms of

integration with each other. Different

approaches were proposed to cope with this

problem. A technique of personalization usage

to enhance one of these methods is given. The

usage of direct or indirect results assessment is

presented.

1 Introduction and related work

 During the recent years XML has been widely

applied and accepted as a standard for data integration

and exchanging. As the popularity was growing, so did

the range of applications of this format and formidable

collections of text documents, represented in XML

appeared. This, in turn, led to the actualization of a

textual search in XML documents.

XML documents can be divided into following

categories:

• Data-Centric

• Document-Centric

The former are data in a classical interpretation:

results of mathematical calculations, experimental

measurements, etc. They are processed by standard

XML query languages like XPath and XQuery [23].

The latter are composed of the mixture of a structure

and a text. The well-knows examples of such a

collections are IEEE INEX [19], ACM SIGMOD record

collection [20], DBLP [18], Shakespeare’s plays in

XML [22], United States Library of Congress

documents in XML [21], etc. Text searching in

document-centric XML requires combining two classes

of methods. The first one is a classical interaction with

hierarchical data, and the second class consists of

Information Retrieval methods. Simple reuse of data-

oriented XML query languages resulted in poor

performance. The main drawbacks of this were the

absence of ranking mechanisms, a poor granularity of

results, the problem of weight manipulation etc.

 New approaches [1, 4, 8, 10, 11] helped to

solve or alleviate these problems. These can be

generally classified into the following groups [7]:

• Keyword search and IR methods reuse.

That group is composed of the attempts to

implement traditional Informational Retrieval

methods to XML search.

• Tagged search, where term receives

additional information about a tag, where it should

be found.

• Navigation approach. This approach

attempts to enrich navigational languages with some

means to allow textual search.

• A mixture of XQuery-like language and

keyword search. The goal of these systems is to add

a feature of textual search to XML query language,

while leaving untouched its initial capabilities to

search non-textual data.

A full overview of this classification, and an

extensive list of example systems can be found in [7]. A

few systems deal with user’s awareness of document

structure directly. The main portion of these is the

representatives of the third and the fourth groups, and a

large effort was put into this issue recently. These

efforts aim to lower the impact of the scarcity of user's

awareness of a document structure. There exist two

main approaches to this problem.

• The first method [12, 13, 14, 15] is based upon

the idea of differentiation of users by the level of

structure knowledge, and division into a few groups. In

the mentioned papers it was suggested to divide users

into two groups: the first one is composed of those who

have no knowledge about document schema at all, and

those who have partial knowledge about hierarchical

relationship on elements. Then, the modification of the

language was proposed. The main idea of this

modification is "Less power is better", and this is

achieved through restrictive modifications. These

modifications restrict an expressive power of the

language for the purposes of safety. Here, safety means

protection from errors introduced by a query designer.

For example, the following restrictions could be used:

forbid using parent-child axis and using instead

ancestor-descendant or restrict usage of predicates to a

narrower class.

• Second method employs the idea of relaxations

[2, 3]. The papers present the following idea: having a

query, with a tree pattern representation, a query

evaluator constructs additional trees using special

modification technique - relaxations. The goal of these

relaxations is to enrich the variety of the expected

results with possible relevant information. The trees

after such transformations could range from the base

tree to the tree containing only one node with all

predicates attached. Then, these queries are evaluated,

and their results are combined and presented to user.

 There are a lot of exterior to XML evaluation

and information retrieval techniques dedicated to

improving quality and speed of search using:

onthologies, statistics etc [6, 16]. These are

concentrating on different aspects of the problem. One

of these methods refines the quality of results via

methods of per-user personalization [5]. These methods

utilize some external information during or earlier the

phase of a query evaluation. Personalization could be

implemented in a variety of means, ranging from a

different order of results presentation due to different

ranking schemas, to a completely different set of

results, due to additional constraints.

Figure 1: Architecture of query engine with

personalization

 In [5] a method of rule-based personalization

was proposed. Its architecture is shown on Fig. 1.

Personalization occurs in two modules: the

personalization module, which performs query

rewriting and the ranking module, which employs

different mechanisms of ranking corresponding to

different user profiles. The system uses a repository of

user profiles, which contain rules specific to a given

user. When the query is formed, the system rewrites it

according to these rules. Contextual hints, concerning

the information field, represented in a form of rules, are

fed into the aforementioned system. This additional

information could be, for example user's geographical

location, his age, interests. These data could change the

nature of search and supply more relevant answers.

 In this paper I present the idea of application of

these mechanisms to user's awareness of a document

structure. The proposal is to extract (from query history)

and keep some facts about user’s knowledge of

document. Query evaluator would utilize these facts,

performing the rewriting.

2 Model

2.1 Overview

Figure 2: Architecture of the proposed query engine

with personalization and feedback

 The architecture of the system partially reuses

the design of the personalized query engine from the

previous chapter; it is shown in Figure 2. Let’s see how

query flows through the stages mentioned in the

diagram. When the query reaches into personalization

module it is copied and rewritten according to

applicable transformations of its tree pattern. These

applicable transformations are acquired from the

repository. Then, these queries are evaluated; their

results are mixed according to the personal ranking

scheme, and presented to user. By choosing the relevant

documents user can notify the system about

effectiveness of existing transformations, or of the

necessity of new ones. The result analyzer is

responsible for dealing with user feedback from

delivered results.

 Our mechanism of the query rewriting will be

based on a modified well-known technique of query

rewriting called relaxations [2]. In a general case,

relaxation is a query, derived from the source query,

which is complying with some subset of rules. The

following different approaches to relaxations exist [2, 9,

15]. The core can be briefly described as:

• Axis generalization. This relaxation is a

modified source query, where parent-child condition is

substituted with ancestor-descendant condition.

Consider such an example query (in XPath notation):

/a/b. The relaxed query is the /a//b.

• Leaf deletion. An idea of constraint dropping

is the basis of this relaxation. Its result is a set of

queries, each one of them has some leaves clipped out.

• Subtree promotion. It is possible to get

relevant results from a modified query, which has some

of its nodes lifted up the hierarchy. An extreme case of

this structural promotion is the leaf promotion. The

example of application this relaxation to /a/b[./c] is

/a[./c]/b.

• Contains promotion. Another case of

promotion is the textual constrains promotion. This

operation takes the constraint of some node and then

moves it to its parent, resulting in a new relaxed query.

Given a query like this a/b/c[“textual constraint”] a

possible relaxation would be a a/b[“textual

constraint”]/c.

We would change the sense and the notion of

relaxations. To distinguish the sense, we will call our

modification of relaxations – transformations. The

above-listed relaxations are designed by their in-system

meaning, we would aim to redesign them guided by

more explicit user’s specificity.

 Possible transformations could be divided into

two classes:

• Structural transformations

The aim of these transformations is to determine user

awareness regardless of textual content.

Figure 3: Structural transformations

Here is an example of transformations: the

leftmost tree is the initial query, the solid line marks an

ancestor-descendant relationship and the thick line is a

parent-child relationship. Then, we have a list of some

possible transformations, which became less and less

strict.

• Content transformations

Their aim is to determine user's awareness of the

subject in general. This class of transformations guides

the dissemination of textual constraints. For example,

having a bush representing a query, a set of acceptable

transformations will consist of trees, the content

predicates of which are "lifted up" to parent nodes.

Figure 4: Content transformations

Figure 4 shows an example of possible

transformations with textual constraints. The leftmost

tree pattern in the upper row is the initial query. The

rightmost tree pattern shows the least specific query

which could supply user with relevant results, which

can’t be found by initial query. Thus, it could relieve

user from additional work: for example, searching for a

few related facts (the example shows a book of calculus

theorems, some of which are proved on the basis of

others) in a mathematical book, without knowing their

hierarchical relations, one can write a dozen of queries

with irrelevant results or even, nothing.

The core of this system is the module Result

Analyzer and its subsystem called history. The history

contains user’s queries, system response (query results),

and users response (it may consist of the chosen item, a

set of chosen items, users time to examine a particular

result or some other behavior which can be a hint of

success or failure).

2.2 History properties

Now we describe some important history properties:

1) Storage of a query, results and user's

judgment.

The main role of the history is to create all

necessary conditions for the fact analyzer and supply all

possible transformations.

2) History management

History must include control interface which should

allow flexible customization of the acquisition and

usage of rules, which represent user's knowledge

(through transformations)

3) Dynamical nature of history: updates and

discards.

User's knowledge is not static. During the work with

the document, a user acquires the knowledge about its

schema. Also, he could get knowledge about a textual

content of some subset of nodes and start using it very

effectively. To enhance quality of search, this model

should update its facts about user's knowledge, deleting

or substituting the former. Or there exist another kind of

cases - when a user didn't used the system for a long

time, one can assume that his knowledge has reduced,

so the system has to mark this by discarding the related

data. Also, history should cope with dynamicalness of

the source data. That means that adequate responses to

updates and in a lesser extend to deletes of the

underlying XML source data are required. This

situation with the preference of updates upon deletes is

generated by the nature the texts: it is not likely that

information would be deleted.

4) Hierarchy and compositionality of facts.

The facts of user awareness could be combined with

each other, effectively giving new knowledge.

Conversely, the system may have more general

knowledge of user awareness, but the query involves

some specific information, which should be deduced.

3 Further work

Further work includes the evaluation of existing fact

manipulation models, experiments with them. The aim

is to find appropriate model and tailor it for XML

retrieval needs, or invent it. Also, this model should

allow subsistent level of self-manipulation, to provide

sufficient level of freedom of model altering to user

needs. This model lacks specific ways of determining

user response, and they should be introduced. The

model will also undergo some refinement caused by

alternation of the relaxation model: that not all kinds of

transformations can be derived from existing systems,

and not all relaxation will fit into this model due to

different purposes of these systems.

References

[1] Shurug Al-Khalifa, Cong Yu, H. V. Jagadish.

Querying structured text in an XML Database. In

Proceedings of the 2003 ACM SIGMOD

international conference on Management of data,

pages 4-15, 2003.

[2] Sihem Amer-Yahia and SungRan Cho and Divesh

Srivastava. Tree Pattern Relaxation. In Proceedings

of the 8th International Conference on Extending

Database Technology, pages 496-513, 2002.

[3] Sihem Amer-Yahia and Laks V. S. Lakshmanan

and Shashank Pandit. FleXPath: flexible structure

and full-text querying for XML. In Proceedings of

the 2004 ACM SIGMOD international conference

on Management of data, pages 83-94, 2004.

[4] Sihem Amer-Yahia, Chadvar Botev,Jayavel

Shanmugasundaram. TeXQuery: A Full-Text

Search Extension to XQuery. In Proceedings of the

13th international conference on World Wide Web,

pages 583-594, 2004.

[5] Amer-Yahia, S.; Fundulaki, I.; Jain, P. &

Lakshmanan, L. Personalizing XML text search in

PIMENT. In Proceedings of the 31st international

conference on Very large data bases, VLDB

Endowment, pages 1310-1313, 2005.

[6] Sihem Amer-Yahia, Emiran Curtmola, Alin

Deutsch. Flexible and efficient XML search with

complex full-text predicates. In Proceedings of the

2006 ACM SIGMOD international conference on

Management of data, pages 575-586, 2006.

[7] Sihem Amer-Yahia and Mounia Lalmas. XML

search: languages, INEX and scoring, SIGMOD

Record, pages 16-23, December 2006.

[8] Sara Cohen and Jonathan Mamou and Yaron Kanza

and Yehoshua Sagiv. XSEarch: a semantic search

engine for XML. In Proceedings of the 29th

international conference on Very large data bases,

pages 45-56, 2003

[9] C. Delobel and M.C. Rousset. A Uniform

Approach for Querying Large Tree-structured Data

through a Mediated Schema. International

Workshop on Foundations of Models for

Information Integration

[10] Norbert Fuhr, Kai Großjohann. XIRQL: A Query

Language for Information Retrieval in XML

Documents. In Research and Development in

Information Retrieval, ACM-SIGIR, New Orleans,

pages 172-180 2001.

[11] Lin Guo and Feng Shao and Chavdar Botev and

Jayavel Shanmugasundaram. XRANK: ranked

keyword search over XML documents. In

Proceedings of the 2003 ACM SIGMOD

international conference on Management of data,

pages 16-27, 2003.

[12] Jaap Kamps and Maarten Marx and Maarten de

Rijke and Börkur Sigurbjörnsson. Best-match

querying from document-centric XML. In

Proceedings of the 7th International Workshop on

the Web and Databases, pages 55-60, 2004.

[13] Jaap Kamps, Maarten Marx, Maarten de Rijke,

Börkur Sigurbjörnsson. Structured queries in XML

retrieval. In Proceedings of the 14th ACM

international conference on Information and

knowledge management, pages 4-11, 2005.

[14] Jaap Kamps, Maarten Marx, Maarten de Rijke,

Börkur Sigurbjörnsson. Articulating information

needs in XML query languages. In ACM

Transactions on Information Systems (TOIS),

Volume 24 , Issue 4,pages 407 – 436, 2006.

[15] T. Schlieder. Similarity Search in XML Data using

Cost-Based Query Transformations. ACM

SIGMOD 2001 Web and Databases Workshop.

May, 2001.

[16] Börkur Sigurbjörnsson and Jaap Kamps and

Maarten de Rijke. Processing content-oriented

XPath queries. In Proceedings of the thirteenth

ACM international conference on Information and

knowledge management, pages, 371-380 2004.

[17] Anja Theobald, Gerhard Weikum. An Index Based

XXL Search Engine for querying XML data with

relevance ranking. In Proceedings of the EDBT

Conference, Prague, 2002.

[18] DBLP in XML. http://dblp.uni-trier.de/xml

[19] INEX: Initiative for the Evaluation of XML

Retrieval. http://inex.is.informatik.uni-duisburg.de

[20] SIGMOD record in XML.

http://acm.org/sigmod/record/xml/

[21] The Library of Congress.

http://lcweb.loc.gov/crsinfo/xml

[22] The plays of Shakespeare in XML.

http//www.oasis-

open.org/cover/bosakShakespeare200.html, by J.

Bosak.

[23] The World Wide Web Consortium. XQuery 1.0

and XPath 2.0 Full-Text. W3C Working Draft.

http://www.w3.org/TR/2005/WD-xquery-full-text-

20050404/

