
226

Practical Aspects of Using Fully Homomorphic Encryption
Systems to Protect Cloud Computing

Anna Ilyenko1, Sergii Ilyenko1, Olena Prokopenko1, Hennadii Hulak2,3, and Iryna Melnyk2

1 National Aviation University, 1 Liubomyra Huzara ave., Kyiv, 03058, Ukraine
2 Borys Grinchenko Kyiv University, 18/2 Bulvarno-Kudriavska str., Kyiv, 04053, Ukraine
3 National Academy of the Security Service of Ukraine, 22 Mykhaila Maksymovycha str., Kyiv, 03022, Ukraine

Abstract
Fully homomorphic encryption schemes are the most promising area of cryptographic
information security, particularly in cloud computing. Over the last ten years, Fully
Homomorphic Encryption (FHE) has moved from a theoretical idea to practical
implementation in real-world cryptographic applications. The concept of homomorphic
encryption is ideal for providing secure cloud computing, where user data will never be
in plaintext at any stage of its processing. However, there are still many problems related
to the performance and complexity of computing that need to be overcome. To confirm
the effectiveness of homomorphic encryption in the cloud, a cryptographic cloud
computing protection application based on homomorphic encryption was developed.
Based on a detailed analysis of existing FHEs, studying their mathematical apparatus, and
classifying them according to various criteria, two schemes were selected for
implementation in the application—CKKS and BFV, which allow to performance of
homomorphic processing of encrypted data. The proposed solution demonstrates a new
approach to the design of FHE applications, where the user independently chooses the
parameters for implementing the FHE scheme, according to his requirements. The
proposed test local server allows to testing of selected scheme parameters by combining
the execution of various homomorphic computations. Based on the tests, it is possible to
customize the proposed application according to one’s tasks, sacrificing performance and
security for the ability to perform more complex homomorphic computations, or vice
versa, or even to maintain a balance between them.

Keywords 1
Fully homomorphic encryption, BFV schema, CKKS schema, cloud computing.

1. Introduction

By using cloud services, the user assigns the
task of ensuring the integrity, availability, and
confidentiality of data to the cloud provider. At
the same time, ensuring data confidentiality
using standard encryption methods is
ineffective, because the server must first
decrypt the data to perform data processing
[1–3]. This necessity creates the problem of
key distribution, as well as the problem of
possible theft of data decrypted by the server
and processed in plaintext.

CPITS-2023-II: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2023, Kyiv, Ukraine

EMAIL: ilyenko.a.v@nau.edu.ua (A. Ilyenko); serhii.ilienko@npp.nau.edu.ua (S. Ilyenko) bortnik.olena.v@nau.edu.ua (O. Prokopenko);

h.hulak@kubg.edu.ua (H. Hulak); iy.melnyk@kubg.edu.ua (I. Melnyk)
ORCID: 0000-0001-8565-1117 (A. Ilyenko); 0000-0002-0437-0995 (S. Ilyenko); 0000-0001-9895-888X (O. Prokopenko); 0000-0001-

9131-9233 (H. Hulak); 0000-0001-6041-6145 (I. Melnyk)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

An effective solution to the shortcomings of
standard cryptosystems is the use of
homomorphic schemes that allow the cloud
server to process encrypted client data while
obtaining the result that would be obtained by
performing the same operations on open data.
Thus, the data is not in the open form at all
stages of processing.

This paper aims to demonstrate how fully
homomorphic encryption can be used to
ensure data privacy in cloud computing. The
development of the author’s cryptographic
application for the protection of cloud compu-
ting based on homomorphic encryption can

mailto:serhii.ilienko@npp.nau.edu.ua
mailto:h.hulak@kubg.edu.ua

227

show how exactly it is possible to implement a
fully homomorphic encryption scheme in the
model of client-server interaction, analyze the
performance of encrypted data processing in
comparison with conventional encryption
methods, and also track the correctness of the
results of the calculations performed on the
encrypted data when decrypting them.

The work aims to study and test an
approach to cryptographic protection of cloud
computing based on homomorphic encryption.
The practical value is the creation of an
author’s cryptographic application for cloud
computing protection based on fully
homomorphic encryption using CKKS and BFV
schemes. This is an application with a
windowed interface written in the Python
programming language using the capabilities
of the Microsoft SEAL cryptographic library,
which allows the user to independently select
the parameters of the homomorphic scheme
implementation and investigate its
performance and the correctness of
homomorphic computations over encrypted
data on a local cloud server.

2. Theoretical Approaches to
Security based on Fully
Homomorphic Computing

The National Institute of Standards and
Technology (NIST) defines cloud computing as
a model for providing convenient, on-demand
network access to a shared pool of configurable
computing resources (networks, servers,
storage, applications, and services) that can be
quickly provisioned and released with minimal
effort by the administrator or service provider.

Security risk analysis in cloud computing
should consider the risks of storing data in
different locations and the risks of data
distribution between employees, and the level
of risk significance may depend on the cloud
architecture model under consideration [4–5].

Based on the ENISA report, the following
categories of cloud computing security risks
exist organizational risks: loss of management,
loss of business reputation, compliance issues,
stoppage or failure of a cloud service, etc.;
technical risks: data protection risks, resource
exhaustion (under- or over-utilization),
isolation failure, malicious insider (abuse of
high privileges), data interception, data leakage,

DDoS, conflict between client procedures.
Using cloud services allows users to access

computing resources anywhere and anytime.
Considering the obvious advantages of using
cloud services, there are also obvious
disadvantages.

The main disadvantage of using cloud
services is that the user provides their data to
the cloud provider and relies on the service
provider to ensure the appropriate level of
confidentiality, integrity, and authenticity of
the user’s data through encryption, hashing,
and other cryptographic mechanisms. However,
most cloud services require user data to be
decrypted before it is processed. Therefore, if
the user does not trust the security mecha-
nisms offered by the provider, he encrypts the
data before transferring it to the cloud and
must transfer the private key along with the
encrypted data to the cloud server, which in
turn uses this key to decrypt and further
process the decrypted data. In this scheme of
interaction between the client and the server,
the secret key can be stolen during its
transmission. Data that has been decrypted by
the server for processing can also be stolen [6–8].

The use of homomorphic encryption
eliminates the possibility of compromising the
private encryption key since it does not need to
be transferred to the server, as well as the
possibility of stealing open data during
processing because the data is not decrypted
during processing and is never stored on the
cloud server in plaintext. That is why this
technology is the most promising in the field of
cloud computing security [9].

Homomorphic encryption allows the cloud
service provider to perform certain
computational functions on the data even
when it is encrypted. With traditional
encryption schemes, customers must
compromise the security of their data by
providing a private decryption key to the
service provider to use cloud services, as
traditional schemes do not allow the provider
to work with encrypted data [10–14].

The use of homomorphic cryptosystems
allows to exclude from the algorithm of
interaction between the user and the cloud
server the stages of transferring the secret key
to the cloud provider with the subsequent
decryption of data on the cloud server for
processing, so the interaction algorithm shows
in Fig. 1 looks like this: The user creates a

228

message m that must be sent and processed on
the cloud server. The user generates a key
pair—a public key Pk and a private key Sk
using some asymmetric encryption algorithm.
The user encrypts the plaintext message m
using the public key Pk. The user sends the
received cryptogram c to a remote cloud
server. The server processes the encrypted
text с. The server sends the processed
encrypted text с to the user. The user decrypts
the processing result received from the server
with a private key.

As we can see, the use of homomorphic
cryptosystems has made it possible to reduce
the algorithm of interaction between the user
and the cloud server by two stages: there is no
longer a need to send a private key to the
server, which eliminates the possibility of its
compromise, and to decrypt data on the server,
which eliminates the possibility of its theft.

Figure 1: General algorithm of interaction
between a client and a cloud server using
homomorphic encryption schemes

Modern fully homomorphic encryption
schemes (hereinafter referred to as FHE, i.e.
Fully Homomorphic Encryption) date back to
2009, when Craig Gentry presented the first
possible FHE design. Later, Gentry developed
the idea of fully homomorphic encryption and
now there are many modern schemes [15–18].

Any homomorphic encryption scheme
consists of four algorithms, namely:

1. Key generation algorithm (KeyGen):
accepts as input some parameters that
depend on the encryption scheme, and
as output receives a pair—a public key
(Pk) and a private key (Sk).

2. Encryption algorithm (Enc): accepts as
input the plaintext m and the public

encryption key Pk. The output is a
cryptogram (1):

𝑐=Enc(𝑚) (1)
3. Decryption algorithm (Dec): accepts a

cryptogram c and a private decryption
key Sk as input. The output is a
decrypted message (2):

Dec(𝑐)=𝑚 (2)

4. Evaluation algorithm (Eval): accepts a
pair of ciphers (c1, c2) as input and
evaluates the f() function over the
ciphers to get the result (3):

f(Enc(𝑚1,𝑚2))=f(Dec(𝑐1,𝑐2)=f(𝑚1,𝑚2) (3)

The paper focuses on practical schemes for
complete homomorphic encryption systems,
namely: Brakerski-Fon-Vercauteren, BFV, and
Cheon-Kim-Kim-Song, CKKS. These schemes
work based on levels where there is a noise
parameter that allows only a limited number of
multiplication operations to be performed
until correct decryption is impossible. After all,
in non-binary schemes, the problem of
multiplication depth is now acute, which is
solved differently in different schemes—
linearization and modules switching in BFV,
change of scale in CKKS, etc. Despite all the
existing problems, at this stage, homomorphic
schemes can provide an appropriate level of
security and a sufficient level of computing
performance, offering to solve various
problems with binary and non-binary
schemes, integer and floating point schemes,
etc. [7, 19–21].

To compare the homomorphic schemes, the
sizes of the public and private keys, the size of
the ciphertext, and three parameters are given
for each of them:  is security parameter, n is
grid size, and p is a power of two.

The sizes of the public and private keys, as
well as the ciphertext for each of the schemes
under consideration are shown in Table 1.

Table 1
Comparison of key pair and cryptogram sizes
of the considered FHEs

Scheme Public
key size

Private
key size

Ciphertext
size

Gentry n7 n3 n1.5
DGHV ϑ(10) ϑ(2) ϑ(5)
BGV 2pn log q 2p log q 2p log q
BFV 2p log q p 2p log q
CKKS ϑ(n) ϑ(n2) ϑ(n log n)
GSW ϑ(n2log2q) (n+1) log q (n+1)2log3q

229

3. Practical Aspects of
Implementing Fully
Homomorphic Systems

For practical testing of homomorphic
cryptographic systems for cloud computing, a
cloud server was deployed, a leveled fully
homomorphic BFV and CKKS schemes were
selected, and the Microsoft SEAL library was
selected. The designed cryptographic module
uses Pyfhel, which provides a Python shell for
the Microsoft SEAL library that can be
extended with other C++ libraries and goes
beyond simply exposing the core API by adding
a carefully crafted abstraction layer that is easy
to use in Python [22–24]. The proposed
solution demonstrates a new approach to the
design of FHE applications, where the user
independently chooses the parameters for
implementing the FHE scheme, according to
their requirements.

To evaluate the performance of the
implemented BFV and CKKS schemes,
performance tests of homomorphic addition
and multiplication for three values of n were
performed, followed by decryption, decoding,
and verification of the correctness of
homomorphic addition and multiplication.

Based on the practical tests, a comparative
Table 2 was formed, which demonstrates the
performance of the BFV scheme concerning the
addition and multiplication operations.

So, changing the value of n does not affect
the performance of the encoding operation,
and the encryption operation slows down by
70% for each increase in n.

Table 2
Performance of homomorphic addition of the
BFV scheme at different values of n

Module n 8192 16384 32768

Encoding, s 0.001 0.001 0.001
Encryption, s 0.015 0.049 0.167
Addition, s 0.002 0.010 0.046
Decryption, s 0.003 0.009 0.040
Decoding, s 0.002 0.004 0.008
Total time, s 0.023 0.073 0.262

The decoding speed decreases by 50%, and all
other operations by about 80% with each
increase in the value of the polynomial module.
The homomorphic calculations were performed
correctly, and the decrypted result coincides

with the manually calculated one, so the noise
level was greater than 0.

As with the homomorphic addition
operation, the results of the homomorphic
multiplication performance testing for the BFV
scheme are presented in Table 3.

Table 3
Performance of homomorphic multiplication
of the BFV scheme at different values of n

Module n 8192 16384 32768

Encoding, s 0.001 0.001 0.001
Encryption, s 0.015 0.049 0.167
Addition, s 0.009 0.049 0.253
Decryption, s 0.002 0.009 0.040
Decoding, s 0.003 0.004 0.008
Total time, s 0.030 0.112 0.469

According to the results of testing the speed of
operations during homomorphic multiplication,
the decoding speed decreases by 50%, and all
other operations by about 80% with each
increase in the value of the polynomial module.
The homomorphic calculations were performed
correctly, and the decrypted result coincides
with the manually calculated one, so the noise
level was greater than 0.

The percentage reduction in performance is
approximately the same for both multiplication
and addition operations in the BFV scheme.

However, the absolute speed of
multiplication operations is lower than that of
addition, due to the need to perform
relinearization to reduce the polynomial degree
of the encrypted text and module switching
operations to reduce noise. Thus, the speed of
addition and multiplication operations when n
is equal to 8192 is almost the same, but if the
value of n increases, the performance of the
multiplication operation drops evenly by 70%.

So, the most computationally complex
operations are homomorphic operations, which
take much longer than encryption, decryption,
encoding, and decoding operations. It is obvious
that the noise level increases much faster when
performing homomorphic multiplication, so
with several consecutive multiplication
operations or large number multiplication
operations, the noise level can drop to zero and
correct decryption will be impossible. However,
to perform the calculations required by the test,
even the minimum value of n equal to 8192 is
enough to ensure that the results of addition
and multiplication are correct.

230

Based on the practical tests, comparative
Table 4 is formed, which demonstrates the
performance of the CKKS scheme concerning
the addition operation.

Table 4
Performance of homomorphic addition of the
CKKS scheme at different values of n

Module n 8192 16384 32768

Encoding, s 0.001 0.007 0.030
Encryption, s 0.014 0.046 0.190
Addition, s 0.006 0.010 0.045
Decryption, s 0.001 0.002 0.006
Decoding, s 0.003 0.013 0.075
Total time, s 0.025 0.078 0.350

From the performed tests, it can be seen that
when moving from n equal to 8192 to n equal
to 16384, the encoding speed drops by 86%
and the encryption speed by 70%, with a
further transition to the value of n equal to
32768, both operations reduce their
performance by about 75%. At the same time,
the decryption speed steadily decreases by
50% in proportion to the increase in the value
of the polynomial module n. Decoding
operation is 80–85% slower on average.
Homomorphic addition, when changing the
value from n equal to 8192 to n equal to 16384,
reduces the efficiency of calculations by 70%,
and with further growth of n, the performance
drops by half, i.e. to 80%. All three values of n
for the CKKS scheme provide a sufficient noise
budget for the tested addition operations, so
the operations are performed correctly.

As with the homomorphic addition
operation, the results of testing the
performance of homomorphic multiplication
for the CKKS scheme are presented in Table 5.

Table 5
Performance of homomorphic multiplication
of the CKKS scheme at different values of n

Module n 8192 16384 32768

Encoding, s 0.001 0.007 0.030
Encryption, s 0.014 0.046 0.190
Addition, s 0.009 0.046 0.289
Decryption, s 0.001 0.001 0.006
Decoding, s 0.004 0.013 0.063
Total time, s 0.029 0.113 0.578

With homomorphic multiplication in the CKKS
scheme, decryption at the first two values of
the polynomial modulus n: 8192 and 16384
does not change, but performance drops

sharply by 85% when n is equal to 32768. At
the same time, with an increase in the value of
n, the speed of homomorphic multiplication
decreases by 83% on average, and decoding—
by 75%.

Increasing the value of n has a more
significant effect on the decrease in
multiplication performance than addition. This
is primarily because multiplication operations
take more time than addition. After all,
homomorphic multiplication additionally
requires a linearization operation to reduce
the degree of the ciphertext polynomial, as well
as a scaling operation of the scale factor in the
CKKS scheme to reduce noise. The
linearization operation and scale switching of
the scale factor are computationally expensive,
which affects the performance of
homomorphic multiplication.

However, what these two operations have
in common is that when moving from n equal
to 8192 to n equal to 16384, there is a uniform
drop in the performance of all operations, but
when n is equal to 32768, there is a sharp jump
in the speed of all operations, of course, except
for encryption and encoding operations.

It is seen that, as in the BFV scheme, the
performance of multiplication and addition
operations in CKKS when n is equal to 8192 is
almost the same, but with the growth of n, the
multiplication performance gradually
decreases, first by 75%, and then by another
80%, which is more significant than in the BFV
scheme. The graphs clearly show that when
performing the cycle of homomorphic addition
operations, the BFV scheme is more productive,
where the total time for performing the
sequence of operations: encryption, encoding,
addition, decryption, and decoding is less than
that of CKKS. With n equal to 8192 and n equal
to 16384, the performance of addition in CKKS
and BFV is almost the same, but with n equal to
32768, homomorphic addition in BFV is 20%
faster.

Figure 2: Performance of homomorphic
schemes BFV and CKKS

231

As we can see, the situation is similar to the one
when comparing the performance of
homomorphic multiplication, the overall
performance of the BFV scheme is higher than
that of CKKS. With n equal to 8192 and n equal
to 16384, the multiplication performance of
CKKS and BFV is almost the same, but with n
equal to 32768, the homomorphic
multiplication in BFV is 20% faster.

At the same time, the speed of the addition
operation is much faster for both schemes than
the multiplication operation. As explained
earlier, this is because the multiplication
operation is much more complex than the
addition operation. After all, there is a concept
of multiplication depth and noise level, which
grows much faster in homomorphic
multiplication than in addition. Therefore, to
perform homomorphic multiplication in both
schemes, additional operations are performed,
such as linearization, which reduces the degree
of the ciphertext polynomial, module
switching, to reduce the noise level in the BFV
scheme, and the scaling operation in CKKS, to
reduce the degree of the scale factor and noise
level.

The testing proved that even with n equal to
8192, the noise level is sufficient to perform at
least one addition and multiplication
operation. That is, the larger the value of n, the
more consecutive multiplications the scheme
supports, but the lower its performance. It is
also worth taking into account the peculiarities
of the implementation of the schemes—if the
noise level reaches zero, then correct
decryption of the cryptogram using the BFV
scheme will be impossible, while at the same
time since the CKKS scheme is based on
“approximate calculations,” a high noise level
will significantly affect the accuracy of
calculations.

In terms of performance, testing has shown
that the BFV scheme is faster when performing
homomorphic multiplication and addition
operations than CKKS. As for the accuracy of
calculations, the very fact that the CKKS
scheme is based on the concept of approximate
calculations makes it necessary to use the BFV
scheme to perform accurate calculations.
However, it is worth noting that CKKS is the
only option for working with floating-point
numbers.

Thus, the choice of the CKKS and BFV
schemes in most cases depends on the type of

data to be processed: integers or floating point
numbers, after testing the performance of
homomorphic calculations, we can say that if
you need to ensure a small level of
multiplication depth, then for values of n below
32768, the performance of these schemes is
the same.

4. Conclusions

The practical implementation of the designed
cryptographic application of cloud computing
protection based on homomorphic encryption
can provide a comprehensive solution for
protecting cloud infrastructure while
maintaining a balance between the required
level of security and computing performance,
as well as the number and complexity of
homomorphic computing. These capabilities
exist due to the use of the modern SEAL
cryptographic library as the basis of the
application architecture, which provides tools
for flexible implementation and customization
of CKKS and BFV schemes:

• At n = 8192 and n = 16384, the addition
performance in CKKS and BFV is the
same, at n = 32768, homomorphic
addition in BFV is 20% faster.

• At n = 8192 and n = 16384, the
multiplication performance of CKKS and
BFV is the same, at n = 32768,
homomorphic multiplication in BFV is
20% faster.

• At the same time, the speed of the
addition operation is much faster for
both schemes than the multiplication
operation. This is because to perform
homomorphic multiplication, both
schemes perform additional operations,
such as linearization, which reduces the
degree of the ciphertext polynomial,
module switching to reduce the noise
level in the BFV scheme, as well as the
CKKS scaling operation to reduce the
degree of the scale factor and noise level.

The flexibility of customizing the program
module to meet the specific needs of the user is
provided by a user-friendly graphical interface,
where one can choose: the required FHE
scheme, depending on the type of data that the
user will work with; a polynomial module n,
which is chosen small if maximum performance
is required and large if there is a need to

232

perform complex homomorphic calculations; a
security parameter that affects the level of
security but does not affect the performance
and complexity of homomorphic computing.

Along with the advantages, there are also
obvious disadvantages and unrealized
opportunities that allow the application to be
enhanced in the future. Among these, it is
possible to highlight the inability to see and
control the noise level—the user learns that
the noise level has reached the limit after
which correct decryption is impossible only
after decryption is performed and the
incorrectness of the calculations is assessed.

References

[1] A. Bessalov, et al., Multifunctional CRS
Encryption Scheme on Isogenies of Non-
Supersingular Edwards Curves, in:
Workshop on Classic, Quantum, and
Post-Quantum Cryptography, vol. 3504
(2023) 12–25.

[2] V. Sokolov, P. Skladannyi, H. Hulak,
Stability Verification of Self-Organized
Wireless Networks with Block
Encryption, in: 5th International
Workshop on Computer Modeling and
Intelligent Systems, vol. 3137 (2022)
227–237.

[3] A. Bessalov, et al., Implementation of the
CSIDH Algorithm Model on
Supersingular Twisted and Quadratic
Edwards Curves, in: Workshop on
Cybersecurity Providing in Information
and Telecommunication Systems, vol.
3187, no. 1 (2022) 302–309.

[4] N. Roy, R. Jain, Cloud Computing:
Architecture and Concept of
Virtualization, J. Sci. Technol. Manag. 4
(2015) 2394–1537.

[5] Z. Balogh, M. Turčáni, Modeling of Data
Security in Cloud Computing, IEEE
Systems Conference (2016) 1–6. doi:
10.1109/syscon.2016.7490658.

[6] D. Chen, H. Zhao. Data Security and
Privacy Protection Issues in Cloud
Computing, IEEE Int. Conf. Comput. Sci.
Electron. Eng. 1 (2012) 641–651. doi:
10.1109/iccsee.2012.193.

[7] J. Cheon, et al. Homomorphic Encryption
for Arithmetic of Approximate Numbers,
23rd Int. Conf. Theory Appl. Cryptol. Inf.

Secur. (2017) 409–437. doi:
10.1007/978-3-319-70694-8_15.

[8] D. Meng, Data Security in Cloud
Computing, IEEE Int. Conf. Comput. Sci.
Educ. (2013) 810–813. doi:
10.1007/978-1-4614-3872-4_103.

[9] P. Anakhov, et al., Evaluation Method of
the Physical Compatibility of Equipment
in a Hybrid Information Transmission
Network, Journal of Theoretical and
Applied Information Technology
100(22) (2022) 6635–6644.

[10] B. Schneier, Applied Cryptography:
Protocols, Algorithms and Source Code
in C, 2nd Edition, Wiley (2015).

[11] C. Gentry, A Fully Homomorphic
Encryption Scheme, Stanford University
(2009).

[12] A. Acar, et al. A Survey on Homomorphic
Encryption Schemes: Theory and
Implementation, ACM Computing
Surveys 51(4) (2018) 1–35.

[13] A. Ilyenko, S. Ilyenko, Program Module of
Cryptographic Protection Critically
Important Information of Civil Aviation
Channels, Int. Conf. Comput. Sci. Eng.
Educ. Appl. (2022) 235–247.

[14] S. Kazmirchuk, et al., Improved Gentry’s
Fully Homomorphic Encryption Scheme:
Design, Implementation and
Performance Evaluation, CybHyg (2019)
72–83.

[15] C. Gentry, Fully Homomorphic
Encryption Using Ideal Lattices, 41st ACM
Symposium on Theory of Computing
(2009) 169–178. doi: 10.1145/1536414.
1536440.

[16] C. Gentry, Toward Basing Fully
Homomorphic Encryption on Worst-
Case Hardness, Annual Cryptology
Conference (2010) 116–137. doi:
10.1007/978-3-642-14623-7_7.

[17] [C. Gentry, S. Halevi, Implementing
Gentry’s Fully-Homomorphic Encryp-
tion Scheme, Annual Int. Conf. Theory
Appl. Cryptogr. Techniques (2011) 129–
148. doi: 10.1007/978-3-642-20465-
4_9.

[18] C. Gentry, S. Halevi, Implementing
Gentry’s Fully-Homomorphic Encryp-
tion Scheme, Cryptology ePrint Archive,
Report (2010).

[19] Z. Brakerski, C. Gentry, V. Vaikuntana-
than, (Leveled) Fully Homomorphic

233

Encryption Without Bootstrapping, ACM
Transactions on Computation Theory
(TOCT) 6(3) (2014) 1–36. doi:
10.1145/2633600.

[20] X. Sun, et al., Private Machine Learning
Classification based on Fully
Homomorphic Encryption, IEEE
Transactions on Emerging Topics in
Computing 8(2) (2018) 352–364.

[21] D. Stehlé, R. Steinfeld, Faster Fully
Homomorphic Encryption, Int. Conf.
Theory Appl. Cryptol. Inf. Secur. (2010)
377–394. doi: 10.1007/978-3-642-
17373-8_22.

[22] A. Titus, et al., PySEAL: A Python
Wrapper Implementation of the SEAL
Homomorphic Encryption Library, arXiv
(2018).

[23] Y. Polyakov, K. Rohloff, G. Ryan.
PALISADE Lattice Cryptography Library
User Manual, Tech. Rep. (2019).

[24] S. Erabelli, pyFHE-a Python Library for
Fully Homomorphic Encryption, Ph. D.
Dissertation, Massachusetts Institute of
Technology (2020).

