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Abstract
Detecting and predicting septic shock early is crucial for the best possible outcome for patients. Accurately
forecasting the vital signs of patients with sepsis provides valuable insights to clinicians for timely
interventions, such as administering stabilizing drugs or optimizing infusion strategies. Our research
examines N-BEATS, an interpretable deep-learning forecasting model that can forecast 3 hours of vital
signs for sepsis patients in intensive care units (ICUs). In this work, we use the N-BEATS interpretable
configuration to forecast the vital sign trends and compare them with the actual trend to understand
better the patient’s changing condition and the effects of infused drugs on their vital signs. We evaluate
our approach using the publicly available eICU Collaborative Research Database dataset and rigorously
evaluate the vital sign forecasts using out-of-sample evaluation criteria. We present the performance
of our model using error metrics, including mean squared error (MSE), mean average percentage error
(MAPE), and dynamic time warping (DTW), where the best scores achieved are 18.52e-4, 7.60, and
17.63e-3, respectively. We analyze the samples where the forecasted trend does not match the actual
trend and study the impact of infused drugs on changing the actual vital signs compared to the forecasted
trend. Additionally, we examined the mortality rates of patients where the actual trend and the forecasted
trend did not match. We observed that the mortality rate was higher (92%) when the actual and forecasted
trends closely matched, compared to when they were not similar (84%).
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1. Introduction

Septic shock, the most severe form of sepsis, is characterized by profound circulatory and cellular
abnormalities and is associated with a high mortality rate [1, 2]. Early detection and treatment of
sepsis and septic shock are critical for improving patient outcomes, as delays in intervention can
lead to a rapid decline in a patient’s condition [3]. While various methods have shown promise
in predictive accuracy [4, 5], their interpretability remains a significant concern. Understanding
and explaining a model’s underlying mechanisms is crucial for gaining trust [6, 7, 8], facilitating
model debugging, and informing clinical decision-making [9, 10, 11]. Interpretability and
explainability methods for time series forecasting models can provide valuable insights into the
relationships between vital signs and the risk of septic shock [12, 13, 14, 15]. Several studies
have been undertaken to incorporate model-agnostic explainability by leveraging rule-based
[6, 7] methods and argumentation [16, 17, 18, 8, 19].

This paper explores the interpretability of vital sign forecasting models for patients with
Sepsis and septic shock condition in critical care settings. Based on our knowledge, this work is
one of the first to explore deep learning models to forecast the vital signs in the eICU dataset
[20]. Further, we investigate the interpretability and explainability of patients’ forecasted signals
in conjunction with drug infusion. Our goal is to contribute to developing more interpretable
and trustworthy models for septic shock prediction, ultimately improving patient outcomes.

2. Methodology

2.1. Method

In this paper, we utilize the N-BEATS [21] interpretable architecture to forecast the seasonality
and trend components. By accurately forecasting the trend component, we aim to provide
valuable support to clinicians in monitoring the vital signs trend of patients and making
informed decisions regarding medication administration. The interpretable configuration of
N-BEATS consists of two distinct stacks that enable the direct incorporation of trend and
seasonality decomposition within the model’s architecture. This integration allows for a clearer
interpretation of the stack outputs, as the model explicitly captures and represents the trend
and seasonality components of the time series. As described in Equation 1 [21], the trend model
is constrained to have a polynomial of small degree 𝑝, a function slowly varying across the
forecast window.

̂︀y =

𝑝∑︁
𝑖=0

𝜃𝑡𝑟,𝑖𝑡
𝑖 (1)

Here time vector t = [0, 1, 2, . . . ,𝐻 − 2, 𝐻 − 1]𝑇 /𝐻 is defined on a discrete grid running
from 0 to (𝐻 − 1)/𝐻 , forecasting 𝐻 steps ahead and 𝜃𝑡𝑟 are polynomial coefficients predicted
by a fully connected network. Similarly, the seasonality model, which captures the regular,
cyclic and recurring fluctuation, is constrained with the Fourier basis as shown in Equation 2
[21], where 𝜃𝑠𝑒𝑎 are Fourier coefficients predicted by a fully connected network.
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𝜃𝑠𝑒𝑎,𝑖 cos(2𝜋𝑖𝑡) + 𝜃𝑠𝑒𝑎,𝑖+⌊𝐻/2⌋ sin(2𝜋𝑖𝑡), (2)

2.2. Dataset

To evaluate our approach using N-BEATS, we conducted experiments on the publicly available
eICU Collaborative Research Database [20]. The dataset includes information on 139,367 unique
patients (53.96% male, 45.95% female, 0.09% other/unknown). Our experiments focused on
forecasting the mean blood pressure (MBP) of the patients diagnosed with sepsis or septic
shock. We perform data cleaning and preprocessing on our samples for the deep learning model.
Missing values in the MBP are imputed using fill forward technique. We extract 9 hours of MBP
before diagnosing sepsis or septic shock and split them into a 6-hour lookback horizon and a
3-hour forecasting horizon. Moving average smoothing with a window length of 3 is applied to
remove noise. We remove samples with a standard deviation of ≤ 0.025, as they exhibit minimal
variability. Additionally, we apply min-max scaling in the range of 0 to 190 to normalize the
samples [22]. After preprocessing, we obtain 4020 samples from 1442 patients.

3. Results and Interpretability

We assess the effectiveness of N-BEATS Generic and Interpretable configurations by analyz-
ing their performance using three error metrics: Mean Squared Error (MSE), Mean Absolute
Percentage Error (MAPE), and Dynamic Time Warping (DTW). To establish a baseline, we
compare the forecasting outcomes with a simple persistence model. This model predicts future
values of the time series by replicating the last observed value within the lookback horizon.
The performance of the models on the test set are presented in Table 1.

Table 1
Performance of N-BEATS with Generic and Interpretable Configurations.

Model Configuration MSE (1e-4) MAPE DTW (1e-3)

Presistence 24.55 8.47 34.50
N-BEATS - Generic 18.52 7.60 17.63

N-BEATS - Interpretable 21.49 8.60 18.20

Additionally, we investigate the extracted trend of the forecasts obtained using the N-BEATS
interpretable configuration and analyze cases where the forecasted trend does not align with
the actual trend. To better understand this discrepancy, we calculate the DTW score between
the actual and the forecasted trends. We select the top 25% of samples with the highest DTW
scores, indicating a significant trend mismatch. We observe that, in several samples, a noticeable
deviation between actual and forecasted trends occurs when drugs are administered after the
training cut-off, as seen with patient ID 261982, who experienced an increased MBP trend due
to the administration of vasoactive drugs like norepinephrine and vasopressin.
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Figure 1: The observed and forecasted trends of mean blood pressure (MBP) for a sample drawn from
the subset with the highest DTW scores (top 25%).

Since the drug infusion information was an unobserved variable during the training of the
forecasting model, the discrepancy in the actual and the forecasted trend can be attributed to
the fact that the model is trained on historical vital sign data, which does not include the effects
of drugs introduced after the training cut-off. Figure 1 shows the observed MBP trend, the
forecasted trend, the training cut-off, and the interval of drug infusion for a specific patient.
Furthermore, our findings suggest that cases where the actual and forecasted trends matched
had a higher mortality rate (92%) compared to cases where the trends were dissimilar (84%).
Although not directly related, conducting further experiments could provide more insights into
this aspect and explore its implications more extensively.

Exceptions to observed patterns can occur when drugs are administered before the specified
cut-off, possibly due to drug-to-drug interactions. Conducting additional studies is crucial for
understanding the causal inferences behind these interactions and better comprehending the
relationship between medication administration, vital signs, and their subsequent effects.

4. Conclusion

In conclusion, our study utilized the eICU dataset to evaluate the forecasting performance of the
interpretable N-BEATS model, highlighting the significance of accounting for drug infusion’s
influence on trends in ICU patients’ vital signs. Future research will focus on developing
approaches that integrate drug infusion information and investigate drug-to-drug interactions
within the ICU context, aiming to enhance the overall performance of forecasting models
in critical care. Addressing these challenges effectively can advance the understanding and
application of forecasting methods, leading to improved patient care and better outcomes.
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