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Abstract 
It may be possible to extract knowledge from functional magnetic resonance (fMRI) data with artificial 
neural networks (ANNs) and explainable artificial intelligence (xAI). However, modeling fMRI data with 
ANNs has its hurdles. One is the unbalance between inputs (one typical volume encompasses hundreds 
of thousands of voxels) and training epochs (usually hundreds), turning the training stage intractable. 
In addition, fMRI data is noisy and highly correlated, both spatially and temporally. Such characteristics 
tend to hamper current deep learning techniques and, therefore, limit fMRI data modeling and their 
explanation. 
The research here reported relies on a process encompassing data splitting by training and testing, 
dimensionality reduction, feature extraction, ANN structuring, and its training and testing. After the 
procedure, two explaining methods are put side by side, path-weights and layer-wise relevance 
propagation (LRP). 
The two methods achieve similar results, i.e., identify the same inputs responsible for the ANN’s correct 
predictions. Therefore, they support each other. An additional validation comes from neuroscientific 
established knowledge, which sanctions the results of the two explaining methods. A publicly accessible 
database, Human Connectome Project (HCP) – Young Adults, precisely the motor paradigm, is used to 
apply the procedure. 
In conclusion, the combined use of XAI techniques with ANNs modeling permits the extraction of 
knowledge from fMRI data, at least concerning motor tasks. The complete procedure is an improvement 
over traditional data analysis methods, which are correlational. The following steps will extend the 
procedure to cognitive tasks. 
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1. Introduction 

Although functional magnetic resonance imaging (fMRI) data analysis with artificial neural 
networks (ANNs) is more than one decade old [1-6], it has received renewed recent interest [7-
9]. Inherently noisy and highly correlated data, unbalance between the number of inputs and 
training epochs, and difficulty in finding pertinent features are some of the common hurdles. An 
additional complication in ANNs is understanding how they make predictions [10-12]. Models 
that deliver high prediction accuracies are helpful. However, if they are transparent, allowing one 
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to understand which inputs contribute more to the correct hits (explain) and understand how the 
progress of calculation leads to the prediction (interpret), they would be even more helpful. 
Therefore, explainable and interpretable artificial intelligence (XAI) in ANNs is needed in 
neuroscience. 

Addressing the explainability of ANN-built models of fMRI data has been recently tackled [13-
15]. One computational model for such purpose is layer-wise relevance propagation (LRP) [16, 
17], which was already applied in ANNs [7, 18]. The purpose of the present study is to put side-
by-side LRP and the path-weights concept suggested in [13, 14], answering the question: is the 
path-weights-based analysis in accordance with the state-of-the-art method of LRP-based 
explainability regarding input importance for the network’s prediction? 

2. Method 

The fMRI data processing stages are represented in Figure 1: firstly, the raw data processing; next, 
the two datasets, train and test, are used to build the model (ANN); and finally, the model is 
explained with path-weights and LRP. 

 

Figure 1: Flowchart of the global procedure. 

2.1. Raw Data Processing and Model Training and Testing 

The first two stages were already described and discussed elsewhere [13, 14]. The raw data is 
obtained from the publicly accessible website of the Young Adults database of the Human 
Connectome Project (HCP), motor paradigm in the 100 Unrelated Subjects subset [19-22]. 

The ANN has one hidden layer composed of 10 hidden nodes. Inputs are 46, and the outputs 
are five, each corresponding to a task (LF, LH, RF, RH, and T). 

2.2. Explaining with Path-Weights and Layer-Wise Relevance Propagation 

The path-weightijk is defined as the module of the product of all connection weights in a path 
defined from the input Ii  to the output Ok, passing by the hidden node Hj [13]: 



 𝑝𝑎𝑡ℎ-𝑤𝑒𝑖𝑔ℎ𝑡௜௝௞ = ቚ𝑤ூ೔ுೕ
× 𝑤ுೕைೖ

ቚ (1) 

where 𝑤ூ೔ுೕ
 is the weight between the input node Ii and the hidden node Hj, and 𝑤ுೕைೖ

 is the 
weight between the hidden node Hj and the output node Ok. 

LRP is a state-of-the-art method for explaining ANN’s predictions [16]. It is calculated 
according to the basic rule (LRP-0) [17]: 

 𝑅௝ =  ∑
௔ೕ௪ೕೖ

∑ ௔ೕ௪ೕೖబ,ೕ
𝑅௞௞  (2) 

where Rj is the relevance of node j, aj is the activation of node j, wjk is the weight of the 
connection between nodes j and k, and Rk is the relevance of node k. 

LRP computation is implemented using R’s library innsight [23], version 0.2.0. 

2.3. Grand-Weight (GW) and Grand-Relevance (GR) Computation 

There is a need for a metric that allows for the direct comparison of individual inputs between 
themselves for a given stimulus. In this way, the metric Grand-weight (GR) is the sum of the 
absolute values of the path-weights from each input to a specific output, according to the formula: 

 𝐺𝑊௜௞ =  ∑ ห𝑝𝑎𝑡ℎ-𝑤𝑒𝑖𝑔ℎ𝑡௜௝௞ห௝  (3) 

where GWik is the Grand-weight from input i to output k, and path-weightijk is the path-weight 
that goes from input i to output k through hidden node j. 

For the LRP-based analysis, to keep consistency with the path-weights-based analysis, the 
absolute values of the relevancy score for each input for a given output are summed, obtaining 
the metric Grand-relevance (GR), which allows the direct comparison between inputs regarding 
their relevance. GR formula is: 

 𝐺𝑅௜௞ =  ∑ |𝑅௜௞௟|௟  (4) 

where GRik is the Grand-relevance from input i to output k, and Rikl is the relevance score for 
input i for output k for computational epoch l. 

3. Results 

Networks’ partial and global accuracies and precisions are represented in Table 1. 

Table 1 
Confusion matrix of the ANN predictions, including the partial and global accuracies and precisions 
(LF: left foot; LH: left hand; RF: right foot; RH: right hand; T: tongue). 

Stimulus 
Prediction 

Total 
LF LH RF RH T 

In
pu

t 

LF 27 1 6 5 1 40 
LH 3 36 0 1 0 40 
RF 8 0 31 1 0 40 
RH 0 2 1 37 0 40 
T 4 0 1 0 35 40 

Total  42 39 39 44 36 200 
Accuracy (%) 67.5 90.0 77.5 92.5 87.5 83.0 
Precision (%) 64.3 92.3 79.5 84.1 97.2  

 
Figure 2 and Figure 3 depict the path-weights and the LRP calculated for the ANN. In both 

cases, the top five most relevant inputs for all the stimuli are IC 5, IC 7, IC 11, IC 12, and IC 14, 
although the magnitudes are not constant across all stimuli. 



 

Figure 2: Grand-weight (GW) values per output for the 46 inputs. 

 

Figure 3: Grand-relevance (GR) values per output for the 46 inputs. 

4. Discussion 

Overall, both methods yield the same inputs as the most important. So, the path-weights-based 
analysis is congruent with the state-of-the-art method, LRP. Hence, it is possible to conclude that 
the path-weight-based procedure explains the ANN model in coherence with the layer-wise 
relevance propagation-based method. 
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