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Abstract
Convolutional neural networks are state-of-the-art for the majority of computer vision tasks, including
estimation of optical aberrations in microscopy 3D data defined as a multitarget image regression problem.
A novel approach to making multitarget 3D image regression explainable, Image-Reg-LIME, based on
the local interpretable model-agnostic explanations (LIME) method, is presented in this study. The
explanations are provided as heat maps showing which parts of the input influence the output positively
and negatively. We modify LIME to explain the predictions of the image regression model for estimation
of the amplitudes of optical aberrations. Additionally, we propose a modification that allows explaining
why the ground truth value was not predicted. This research shows that Image-Reg-LIME is a valid
method for explaining the estimation of optical aberrations in 3D images.
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1. Introduction

Methods for making artificial intelligence (AI) explainable are becoming more available as
the field develops. Numerous methods have been developed during the past decade, such as
CAM [1], Grad-CAM [2], Grad-CAM++ [3], Smoothgrad [4], LIME [5], SHAP [6], RISE [7],
LRP [8]. However, explainability in computer vision mainly focuses on image classification and
remains underexplored in image regression.

Image regression is a task of predicting a finite rational number from image data. Examples of
such a task are: estimation of the human age [9], counting of tumor cells [10]. The output of
the multitarget (multi-output) image regression is an array of rational numbers. Estimation of
the human head pose [11] and estimation of optical aberrations are examples of multitarget
image regression.

An explainable AI method Seg-Grad-CAM [12] has been applied to the segmentation network
involved in the object pose estimation [13] (multitarget regression in 6D). The decisions of the
convolutional long short-term memory model trained on the daily temperature and precipitation
mapsto predict the river streamflow (single regression target) were explained by visualizing
important regions in these maps using a technique [14] based on Grad-CAM [2]. Another
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gradient-based method was applied to a U-Net-based CNN with a parallel path with GAP for the
task of determining the spatial position of the crack tip [15]. U-Noise [16], originally designed
to explain segmentation, has been adapted to brain age estimation [17] (single-target regression
in 3D). A method called interpretable classification and regression with feature attribution
mapping (ICAM-reg) [18] (modification of (ICAM) [19], a technique previously developed for
image classification) was applied to the brain age estimation task.

A monochromatic optical aberration can be defined as a deviation of a monochromatic (i.e.,
with a single wavelength [20]) or quasi-monochromatic [21] light beam from the trajectory
proposed by geometrical optics. Monochromatic aberrations lead to image deterioration, with
the shape of the distortion depending on the type of the aberration. Aberrations of lower orders
influence image quality more than those of higher orders.

The Zernike polynomials [22] are used to describe aberrations in an optical system. Each
Zernike polynomial corresponds to a specific type of aberration and is orthogonal to other
polynomials. The wavefront 𝜑 is the sum of the Zernike polynomials 𝑍𝑖 multiplied by their
amplitudes 𝑎𝑖, where the index 𝑖 [23, 24] corresponds to the aberration type:

𝜑 =
∑︁
𝑖

𝑎𝑖𝑍𝑖 (1)

2. Methods

2.1. Estimation of Aberrations

In a previous study, a deep convolutional neural network PhaseNet [25] was trained for multi-
target 3D image regression under supervision. PhaseNet was trained on a simulated data set to
find the amplitudes 𝑎𝑖 (Eq.1) and tested on experimentally acquired 3D images of fluorescent
beads. Later, the method was proved to be applicable to an object of a more complex shape [26].
In both studies, 11 aberrations (the aberrations of the second order, excluding defocus, third, and
fourth order) contributing to the image quality the most were considered. The 3D microscopic
images of fluorescent beads containing these 11 aberration types, which were made publicly
available by the authors [25], were used in this research.

2.2. LIME

The Local Interpretable Model-Agnostic Explanations (LIME) method [5] was chosen for this
research because it has received high recognition by the community, is model-agnostic, and
outputs both positively and negatively contributing features. The latter means that the method
can answer a twofold question, “Which parts of image X support prediction Y, and which vote
against it?” LIME is an algorithm designed for explaining the predictions of any black-box
classifier (including image classifiers) and of black-box regressors trained on tabular data.

It works by approximating the behavior of the complex model locally by learning a white
box model (such as linear or logistic regression) around the prediction made for a specific
instance. For image classification, this is done by dividing the input image into superpixels,
randomly perturbing the input by occlusion of multiple superpixel segments with the mean or a
predefined value, and observing the changes in the predictions. The impact of the segments on



the prediction is weighted according to a user-defined distance metric (e.g., cosine similarity).
To explain a classification result, LIME requires the prediction function that outputs continuous
values (probabilities).

2.3. Proposed: Image-Reg-LIME

First, to make LIME work in 3D, we replaced the default superpixel segmentation algorithm
Quick Shift [27] with Simple Linear Iterative Clustering (SLIC) [28] from Scikit-image library
[29]. The size of the input images was 323, therefore the following parameters were chosen to
ensure that the segments are large enough to be meaningful and small enough to demonstrate
precise explanations: number of segments = 83 = 512, compactness = 0.01. The channel axis
was set to 𝑁𝑜𝑛𝑒 since the images were grayscale. The rest of the parameters’ values remained
the default.

Our second modification is in setting the occlusion value to zero (black pixels) because of
the nature of the aberrations data with the black background, instead of the default mean pixel
value across the input. To explain the target regression prediction (“Why was the value 𝑎𝑖
predicted for the target class 𝑖?”), we propose to use the original prediction function 𝑓 of the
regression model as is because the network outputs continuous values.

Our key contribution is instructing Local Interpretable Model-Agnostic Explanations for
Multitarget Image Regression (Image-Reg-LIME) to answer the question with a reference value:
“Why the value 𝑎*𝑖 (e.g., ground truth) was not predicted instead of 𝑎𝑖 for the target 𝑖?” This is
achieved by instructing the method to select the perturbed data set close to the desired value
𝑎*𝑖 . The perturbed examples, which receive predictions close to 𝑎*𝑖 , are weighted with greater
values in the output explanation, according to the cosine similarity distance metric.

3. Results

Figure 1A shows a single 2D plane (plane number 27) of an example 3D input image with
experimentally introduced 𝑜𝑏𝑙𝑖𝑞𝑢𝑒 𝑎𝑠𝑡𝑖𝑔𝑚𝑎𝑡𝑖𝑠𝑚 aberration with an amplitude of 0.093𝜇𝑚.
The sample image and the network are from the PhaseNet publication [25] and the associated
GitHub page [30]. The network predicted the amplitude of 0.088𝜇𝑚 for the target aberration.
We replaced the last linear activation function of PhaseNet with 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 and retrained the
network to classify the aberration types.

Figure 1B demonstrates the explanation of classification. This experiment was used as a
sanity check to test SLIC parameters and the applicability of LIME to these data. Figure 1C
shows the explanation of the predicted regression value and Figure 1D answers, why the ground
truth was not predicted.

The result of asking Image-Reg-LIME, “Why did the model not predict the amplitude of
0.093 𝜇m?” is shown in Figure 2 (2D plane 24 from the 𝑧 stack). In other words, it helps
to understand, "Why was amplitude 0.068𝜇𝑚 predicted for vertical astigmatism instead of
amplitude 0.093𝜇𝑚?" The positive impact (in the yellow-red spectrum) stands for the decision
“not 0.093 𝜇m”, the segments with a negative impact (in blue) are against this decision, meaning
that they are actually supporting the opposite decision of predicting 0.093 𝜇m. The segments
supporting the decision “not 0.093 𝜇m” outweighed those against it, therefore, the final decision,



Figure 1: Comparisson of LIME for classification and Image-Reg-LIME for multitarget image regression.

dictated by the features with positive weights, was “not 0.093 𝜇m”. This visualization helps
to understand, "Why was amplitude 0.068𝜇𝑚 predicted for vertical astigmatism instead of
amplitude 0.093𝜇𝑚?"

The areas with the largest positive weights in the explanation (orange and dark red segments)
overlap with the locations of the largest difference in Figure 2C (bright spots in Figure 2D)
between the real input image and the image that received the desired prediction. This suggests
that the model did not predict the reference value because of this difference.

Figure 2: Example result for the question with a reference value.

4. Conclusions

First, the results prove the applicability of LIME to the classification of optical aberrations in
experimental 3D microscopy data. Second, the results suggest that the explanations of the
proposed method for explainable 3D image regression Image-Reg-LIME highlight input features
that are responsible for the prediction of the output regression value. Third, Image-Reg-LIME
is shown to point out to input features responsible for an incorrect regression prediction.
Moreover, it can be used to explain why one regression value was predicted instead of another
used-defined value. The method has the potential to be used for image regression in other
application domains, which could be a scope of future work.
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