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Abstract
A well-known algorithm in privacy-preserving ML is differentially private stochastic gradient descent (DP-SGD). While this
algorithm has been evaluated on text and image data, it has not been previously applied to ads data, which are notorious for
their high class imbalance and sparse gradient updates. In this work we apply DP-SGD to several ad modeling tasks including
predicting click-through rates, conversion rates, and number of conversion events, and evaluate their privacy-utility trade-off
on real-world ads datasets. Our work is the first to empirically demonstrate that DP-SGD can provide both privacy and utility
for ad modeling tasks.
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1. Introduction
With increasing focus on privacy on the Web and mobile
apps, and given the signal loss due to cookie depreca-
tion by several platforms, there has been a great need for
privacy-preserving ML methods applied to ad prediction
tasks. The most widely used predictive models in digital
advertising are typically trained on user data pertaining
to one or multiple sites/apps, and are used by ad technol-
ogy providers (Ad Techs) to optimize the placement of
digital ads.

Differential Privacy (DP) [1, 2] has emerged as a pop-
ular notion of privacy that is extensively studied in the
research community and widely deployed in industrial
applications, especially for training ML models with prov-
able privacy guarantees. The main goal of DP training in
ad modeling is to mitigate the privacy risks. For instance,
the training examples for ad prediction models often de-
pend on cross-site information. In the absence of privacy
guardrails, the weights of the trained model could reveal,
e.g., the browsing history of users. Such leakage of user
information present in the training data is mitigated by
DP training methods. Intuitively, DP achieves a trade-off
between privacy and utility by allowing statistical anal-
ysis and learning based on population-wide properties,
while limiting the influence of (private) information from
any individual user on the final output or model.

A training algorithm takes the set of examples as the
input and produces the (trained weights of the) model as
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the output. For deep learning, various algorithms were
proposed to privatize a learning pipeline, such as PATE [3,
4] and DP-FTRL [5]. But the most widely used generic
algorithm is DP stochastic gradient descent (DP-SGD) [6],
which goes back to the work of Abadi et al. [7]. We focus
on DP-SGD in this paper. At a high level, DP-SGD works
by clipping the norm of the per-example gradient to limit
the influence of each example, and then adding Gaussian
noise to the mini-batch averaged gradient to achieve
DP. Since most deep neural network models are trained
using SGD or variants such as Adam, DP-SGD can be
adapted to any existing training pipeline with minimum
modification by just replacing the optimizer.

However, a direct application of DP-SGD can lead to
significant utility (i.e., accuracy) loss and a large com-
putational overhead, in practice. In fact, until recently,
it was not clear if DP-SGD was suitable for large-scale
deep learning. Recent studies and success stories mostly
focused on vision [8, 9] and text [10, 11] problems.

In this work, we present a systematic study of DP-
SGD on ad prediction tasks. These tasks have highly
unbalanced label distributions, categorical features with
extremely sparse signals, and models with large embed-
ding layers. Such properties make ads prediction more
challenging than many other tasks. These difficulties
meant that DP-SGD was commonly considered infeasible
except for trivially large privacy budgets. In contrast, we
demonstrate that it is possible to train private models
with DP-SGD with only a small utility drop even in the
high privacy regime. For example, for a click-through
prediction task, the AUC loss is increased by only 15.8%
relative to a non-private baseline (0.1943 → 0.2250)
even at a privacy budget of 𝜀 = 0.5. Furthermore, we
show that with care, the computation and memory over-
heads of DP-SGD can be made almost identical to that of
non-private training.
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We will discuss the ideas that make these results pos-
sible, such as large batch training, efficient per-example
gradient norm bounding, and improved privacy account-
ing. We also provide a comparison of DP-SGD to La-
belDP [12, 13], a DP notion that protects only the labels
and not the features. To the best of our knowledge, ours
is the first systematic study on training large deep neural
networks privately for ad prediction tasks. We hope our
results serve as an optimistic example towards DP train-
ing of large ad prediction neural networks. We also hope
our detailed studies provide useful information for practi-
tioners to improve the utility and minimize the overhead
of DP training.

2. Background
Let 𝒜 be a (stochastic) training algorithm that produces
a model given a labeled training set. We call two training
sets neighboring if they differ on a single labeled example.

Definition 1 (Differential Privacy). Let 𝜀 ≥ 0, 𝛿 ∈ [0, 1].
A randomized training algorithm 𝒜 is (𝜀, 𝛿)-differentially
private ((𝜀, 𝛿)-DP) if for all 𝑆 ⊆ Range(𝒜) and all neigh-
boring training sets 𝐷,𝐷′, it holds that

Pr[𝒜(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[𝒜(𝐷′) ∈ 𝑆] + 𝛿.

DP-SGD [7] is the most widely used DP training algo-
rithm for a deep learning pipeline. Let 𝑓𝜃 be a neural net-
work with trainable weights 𝜃, and {(𝑥1, 𝑦1), . . . , (𝑥𝐵 , 𝑦𝐵)}
be a random mini-batch of training examples. Let ℓ𝑖 =
ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖) be the loss on the 𝑖th example and let ℓ̄ =
1
𝐵

∑︀𝐵
𝑖=1 ℓ𝑖 be the average loss. Standard training algo-

rithms compute the average gradient ∇𝜃 ℓ̄ and update 𝜃
with an optimizer such as SGD or Adam. In DP-SGD,
the per-example gradients ∇𝜃ℓ𝑖 are computed, and then
rescaled to have a maximum ℓ2-norm 𝐶 . The average of
the norm-bounded per-example gradients is perturbed by
adding independent Gaussian noise to each coordinate,
and is subsequently passed to the optimizer. The pri-
vacy parameters 𝜀 and 𝛿 depend on the noise multiplier,
and other parameters such as the batch size and training
steps; they can be estimated via privacy accounting [7].

3. Summary of Main Results
We focus on three common predictions tasks for which
Ad Techs build ML models.

• pCTR: predict the click-through rate for an ad.

• pCVR: predict the conversion rate for an ad click; here,
only whether a conversion takes place matters, regard-
less of the number of conversions.

Table 1
DP-SGD results (average over five runs) on three different
ads prediction datasets. Each row show the results under
a specific privacy budget 𝜀. It is common [7, 14, 15] to set
𝛿 = 𝒪(1/𝑁), where 𝑁 is the number of training examples.
In this paper, we fix 𝛿 = 1/𝑁 . The percentages are relative
loss increment calculated as (𝐿𝜀 − 𝐿∞)/𝐿∞, where 𝐿𝜖 is
the loss for the (𝜖, 𝛿)-DP model and 𝐿∞ is the loss for the
non-private (𝜀 = ∞) baseline. We use AUC loss (i.e., 1−AUC)
for pCTR and pCVR, and Poisson log loss for pConvs.

Privacy Budget Relative Loss Increment (%)
(𝜀) pCTR pCVR pConvs

0.5 16.11 9.99 97.04
1.0 13.58 9.51 85.71
3.0 8.77 8.55 68.19
5.0 7.40 7.84 67.14
10.0 6.27 7.28 60.64
30.0 5.67 6.45 46.00
50.0 5.56 5.84 41.20

• pConvs: predict the expected number of conversions
after an ad click; this is a regression problem against
integer count labels.

We evaluate pCTR on the public Criteo dataset [16], and
pCVR, pConvs on a proprietary dataset. We train the
binary classification problems on pCTR and pCVR with
the binary cross entropy loss and report the test AUC loss
(i.e., 1 − AUC), and the regression problem on pConvs
with the Poisson log loss (PLL), and report the test PLL.
Let 𝑓𝜃(𝑥) be the scalar prediction (i.e., the logit value) of
the neural network, and 𝑦 be the integer counting label.
PLL is defined as ℓ(𝑓𝜃, (𝑥, 𝑦)) := exp(𝑓𝜃(𝑥))− 𝑦𝑓𝜃(𝑥).
In all our experiments with (𝜀, 𝛿)-DP, we set 𝛿 to be
1/𝑁 , where 𝑁 is the number of training examples in the
dataset.

The percentage increases in loss at various privacy bud-
gets are presented relative to a non-private baseline1 in
Table 1. We found DP-SGD can properly train the models
for all three tasks with a reasonable loss gap, even for very
high privacy (e.g., 𝜀 < 1) regimes. Furthermore, when im-
plemented carefully, the computation and memory over-
heads can be minimized, allowing a training throughput
similar to the non-private baseline. Next, we present in
detail the techniques that enabled optimal privacy-utility
trade-off and minimum memory/computation overhead,
respectively.

1Our non-private AUC loss for the pCTR task is 0.1943. We are
unable to report the absolute non-private baseline losses for pCVR
and pConvs on the proprietary datasets due to confidentiality.



10 1 100 101

Privacy Budget ( )

0.50

0.55

0.60

0.65

0.70

0.75
AU

C Optimizer-LearningRate
Yogi-0.01 (*)
SGD-0.01

Yogi-0.001
SGD-0.1

Figure 1: AUC under different (optimizer, learning rate) com-
binations on Criteo pCTR. Each dot is the average test AUC
of 5 random runs with a specific combination of 𝜀, optimizer,
and learning rate. We evaluate the following optimizers: SGD,
Yogi [17], Adagrad [18], Adam [19], AdamW [20]; and learn-
ing rates: 0.001, 0.01, 0.1. The blue line (Yogi-0.01) is with the
optimal hyperparameters used in the non-private baseline.

4. Privacy-Utility Trade-off
One of the main obstacles for adopting DP-SGD in real-
world deep learning pipelines is the potential deterio-
ration of the model performance. Norm-rescaling and
Gaussian noise introduce, respectively, bias and variance
to gradient estimation. As a result, the trained models
have lower performance. In this section, we study these
challenges in detail by using the training setup from the
non-private baseline as the starting point, and describe
various improvements that lead to our main results. We
state our results for Criteo pCTR, but the key points also
hold on other prediction tasks.

4.1. Hyperparameter Tuning
The hyperparameters for training the non-private base-
line models in real-world applications are typically ex-
tensively tuned. However, those hyperparameters are
not necessarily the best for training with DP. Figure 1
plots the AUC of DP trained models under different op-
timizer and learning rate configurations. Specifically,
the blue line shows that directly reusing the optimal
hyperparameters for the non-private baseline leads to
significant utility gap comparing to the best hyperparam-
eters re-tuned under DP training. Note that the optimal
hyperparameters also depend on 𝜀: SGD with learning
rate 0.1 performs better than with learning rate 0.01 in
the low privacy (large 𝜀) regime but worse in the high
privacy (small 𝜀) regime. For simplicity, we choose a
single configuration (SGD-0.01) for the rest of the study;
this already improves the AUC significantly compared
to using the non-private hyperparameters2.

2Ideally, hyperparameter tuning should be performed with DP, e.g.,
using [21]. However, following most prior work on DP training,
we ignore the DP cost for hyperparameter tuning.

Table 2
AUC under different per-example norm bound (𝐶) and privacy
budget (𝜀) on Criteo pCTR.

𝜀 𝐶 = 1.0 𝐶 = 3.0 𝐶 = 30.0

0.5 .7498± .0011 .7441± .0014 .5000± .0000
3.0 .7524± .0010 .7610± .0010 .6971± .0021
8.0 .7528± .0010 .7629± .0010 .7473± .0009

4.2. Bias-Variance Trade-off
With fixed noise multiplier (and other hyperparameters
like the training steps), the norm bound 𝐶 for each per-
example gradient allows a bias-variance trade-off in the
gradient estimation for a fixed 𝜀. Specifically, increasing
𝐶 reduces bias but increases the variance in gradient
estimation due to the addition of more noise. A proper
choice of 𝐶 improves the quality of trained model. For
example, Table 2 shows that in a low privacy regime
(where the noise multiplier is smaller), increasing 𝐶 leads
to better model performance because the added noise is
already small. On the other hand, a large 𝐶 can hurt
performance in the high privacy regime by requiring
large amounts of noise. Adaptively choosing the norm
bound 𝐶 has been studied in the literature [22, 23].

4.3. Large Batch Training
Batch size is an important hyperparameter that affects
different aspects of DP training. Specifically, increasing
the batch size leads to a larger subsampling ratio, which
implies larger noise multiplier for the same 𝜀. On the
other hand, increasing the batch size also reduces the
effective noise that is added to the average gradient be-
cause the noised sum of gradients are divided by the
batch size [7, Algorithm 1]. Moreover, when fixing the
number of training epochs, varying the batch size also
changes the number of training steps, which affects both
the privacy accounting and model utility.

In Figure 2, we plot the relationship between the Gaus-
sian noise standard deviation (std) required to guarantee
a certain 𝜀, when the batch size changes. In Figure 2(a),
we fix the total number of passes (epochs) over the data;
the noise std continues to decrease as the batch size in-
creases beyond 106. However, this is not very realistic,
because with fixed training epochs, increased batch sizes
lead to decreased number of training steps. Modern neu-
ral networks trained with stochastic optimizers usually
require a minimum number of steps to fit the data well.
In Figure 2(b), we plot the relation under the condition
of fixed number of training steps. In this case, the benefit
of large batch sizes plateaus.

Since SGD optimization is itself stochastic, reducing
the noise std might not improve the model ad infini-
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Figure 2: Relationship between batch size and noise std for
fixed (a) training epochs and (b) training steps. The dotted
line shows the batch size (1024) in the non-private baseline.

Table 3
AUC with large batch size and training epochs on Criteo
pCTR. The results can be compared with Table 2 (batch size
1024, 8 epochs).

𝜀 batch size epochs 𝐶 AUC

0.5 16,384 64 30 0.7740± 0.0003
0.5 8,192 32 30 0.7689± 0.0003

3.0 16,384 64 30 0.7810± 0.0003
3.0 8,192 32 30 0.7782± 0.0003

8.0 16,384 64 30 0.7818± 0.0003
8.0 8,192 32 30 0.7799± 0.0004

tum. However, larger batches reduce noise, which allows
the norm bound 𝐶 to be increased while keeping the
total added noise and privacy level fixed. Increasing 𝐶
can yield performance gains. Specifically, Table 3 shows
the model performances on Criteo pCTR with increased
batch sizes, training epochs, and norm bound 𝐶 . Com-
paring with Table 2, large batch sizes lead to significant
performance boost. Note that for 𝜀 = 0.5, the model can-
not properly train (AUC = 0.5) for 𝐶 = 30, but reaches
AUC = 0.77when the batch size increases 16×. We note
that large batches have previously been used to improve
DP-SGD for vision and language models [10, 8, 9].

4.4. Microbatching
Microbatching was originally used to mitigate the com-
putation and memory overhead of vanilla DP-SGD imple-
mentations [7]. It works by partitioning each mini-batch
of 𝐵 training examples into “microbatches” of size 𝐵𝜇,
and performing ℓ2-norm rescaling on the average gra-
dient of each microbatch (as oppose to the per-example
gradient). With large 𝐵𝜇, even a vanilla DP-SGD imple-
mentation could be quite efficient because microbatch
average gradients can be computed with standard back-
propagation API. However, because group norm bound-
ing changes the sensitivity of the mean gradient query,
the magnitude of Gaussian noises scale up by a factor of
𝐵𝜇 under the same privacy guarantee. As a result, large

0 5 10 15 20 25 30
Scaling Factor

0.745

0.750

0.755

0.760

0.765

0.770

0.775

0.780

AU
C

epsilon=1.0
Clip Norm
Microbatch Size

0.5 1.0 3.0 5.0 10.0 30.0 50.0
epsilon (log scale)

0.765

0.770

0.775

0.780

0.785

0.790

AU
C

B=1,C=32

B=1,C=32

B=8,C=16
B=8,C=16

B=8,C=16 B=8,C=16
B=8,C=32Tune Clip Norm

Tune Microbatch Size
Tune Both

(a) 𝜀 = 1.0 (b) Tuning for each 𝜀

Figure 3: The impact on utility by tuning the norm bound 𝐶
and microbatch size 𝐵𝜇 individually, and jointly, for Criteo
pCTR. The search range for both 𝐶 and 𝐵𝜇 are {1, 8, 16, 32}.

𝐵𝜇 generally leads to worse model utility.
In our case, with an efficient implementation (Sec-

tion 5), we do not need to use microbatching. However,
we empirically found that small 𝐵𝜇 could improve the
model utility. One potential reason is that this allows a
different kind of bias-variance trade-off from changing
the norm bound 𝐶 (Section 4.2). The increased noise
leads to higher variance in gradient estimation. On the
other hand, averaging the gradients within the micro-
batch before clipping could potentially reduce the bias
when there are cancellations. For example, averaging 𝐵𝜇

i.i.d. Gaussian vectors reduces the expected norm by a
factor of 1/

√︀
𝐵𝜇. The cancellation of gradient vectors

is hard to characterize theoretically, but as shown in Fig-
ure 3(a), increasing 𝐵𝜇 moderately indeed improve the
utility for Criteo pCTR. Similar to 𝐶 , the maximum tol-
erable value before it starts hurting the utility increases
with 𝜀. On the other hand, 𝐶 and 𝐵𝜇 seem to be helping
with bias reduction in different ways, because increasing
each of them by the same scaling factor leads to differ-
ent AUC, even though the Gaussian noise scale (i.e., the
variance) would be increased by the same amount. As a
result, we could combine the two factors to further boost
the utility, as verified in Figure 3(b).

4.5. Tighter Privacy Accounting
Privacy accounting estimates the privacy budget 𝜀 for
a DP-SGD trained model according to the specific hy-
perparameters such as the noise std, the norm bound
𝐶 , the number of training steps, etc. Rényi Differential
Privacy (RDP) accounting has been the most widely used
approach in DP-SGD since the original paper [7]. With
RDP, 𝜀 can be computed using only the number of epochs,
the batch size, and the noise std.

In this paper, we explore latest advances in privacy
accounting to provide tighter estimates. Specifically, sev-
eral recent works [24, 25] studied numerical methods for
estimating the privacy parameters of a DP mechanism
to an arbitrary accuracy using the notion of privacy loss
distributions (PLD). A crucial property is that the PLD of
a composition of multiple mechanisms is the convolution
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Figure 4: (a) Comparison between RDP and PLD accounting
and (b) comparison of computational efficiency. Measured on
Criteo pCTR with identical model architecture, hyperparam-
eters one a single Nvidia® Tesla® P100 GPU.

of their individual PLDs. Thus, Koskela et al. [26] used
the Fast Fourier Transform (FFT) in order to speed up
the computation of the PLD of the composition; faster
algorithms and more accurate algorithms have been pro-
posed in subsequent work [27, 28], and have been the
basis of multiple open-source implementations from both
industry and academia including [29, 30, 31]. In particu-
lar, in this paper, we use the so-called “connect-the-dots”
algorithm of Doroshenko et al. [32] for privacy account-
ing.

Figure 4(a) compares RDP accounting to the improved
PLD accounting. Because the PLD estimation is tighter,
a given 𝜀 requires smaller noise than implied by RDP ac-
counting. We observe consistent improvements of model
utility across all privacy regimes, with a larger gap for
smaller 𝜀’s.

5. Computation & Memory
Overhead

Another obstacle to using DP-SGD in real-world deep
learning systems is the potential computation and mem-
ory overhead. A naive implementation of DP-SGD that
explicitly computes each per-example gradient can lead
to several orders of magnitude more memory consump-
tion and computational cost. Therefore, efficient imple-
mentations of DP-SGD have been studied from various
angles, including micro-batching [7], layer-specific al-
gorithms [33, 34], just-in-time compilation [35], and ap-
proximation via random projections [36].

Here we demonstrate that when implemented with
care, DP-SGD can be run with small computation and
memory overheads for ads prediction models. This is
enabled by the following observations: 1. To bound sen-
sitivity, we only need per-example gradient norms, not
per-example gradient vectors. 2. Once per-example gra-
dient norms are computed, the norm-bounded average
gradients can be computed using standard backpropaga-
tion with reweighted loss. 3. Most ads prediction models

Table 4
Comparison of memory consumption via the maximum batch
size that can be trained on Criteo pCTR with one Nvidia®

Tesla® P100 GPU (‘-’ indicates that the training process ran
out of memory.)

Batch Size
Number of steps per second

Baseline DP-SGD Ghost Clipping

32 62.73± .08 7.48± .08 28.57± .61
64 63.91± .71 - 28.05± .33
256 41.60± .70 - 27.52± .35

1,024 14.17± .83 - 14.07± .09
4,096 3.77± .16 - 3.88± .26
16,384 3.10± .34 - 3.27± .28
65,536 2.91± .13 - 2.62± .24
524,288 0.96± .05 - 0.80± .06

1,048,576 - - -

only use embedding and linear layers. As first noted
by Goodfellow [33], the per-example gradient norms for
fully connected layers can be efficiently estimated with
standard backpropagation sans materializing the per-ex-
ample gradient vectors. Since an embedding layer is
equivalent to a fully connected layer on one-hot encoded
inputs, Goodfellow’s observation can be used in DP-SGD.

Based on these observations, we implement a two-pass
algorithm that computes per-example gradient norms in
the first pass and the norm-bounded average gradient
in the second pass. Since most of the computation and
memory overhead comes from materializing per-example
gradient vectors, our implementation is able to reduce
these significantly. This technique is usually called “ghost
clipping”, and is also effective in private training for com-
puter vision [37] and natural language processing [14, 15].
We implement this algorithm in JAX [38], and compare
to a baseline implementation using JAX just-in-time (JIT)
compilation, which is already faster than a vanilla imple-
mentation as reported in Subramani et al. [35], as well as
the non-private baseline (called Baseline).

Figure 4(b) plots the number of examples per second
using different training algorithms and batch sizes. We
observe that Fast-DP-SGD scales similarly to the non-
private baseline, and the computation overhead is negli-
gible for intermediate to large batch sizes. On the other
hand, the JIT based implementation is not only slower
but also incapable of handling batch sizes larger than 64
because its memory overhead grows linearly with the
batch size. The maximum batch size that each algorithm
can handle on a single GPU is documented in Table 4. We
can see that the batch size cap is the same for Fast-DP-
SGD and the non-private baseline, demonstrating that
the memory overhead is negligible.

The experiments above were done on a single GPU.
The batch size can be easily scaled beyond the maximum
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value in Table 4 by using multi-device data parallelism,
and gradient accumulation across multiple backpropaga-
tion steps.

6. Comparison to Label DP
Label differential privacy (LabelDP) [39] is a notion where
the features are public and only the labels need privacy
protection. It has been recently studied in deep learn-
ing [12, 13], and more specifically in ad modeling [40].
In this section, we compare DP-SGD with LabelDP algo-
rithms under the same privacy budget 𝜀. (Note that this is
not an apples-to-apples comparison since unlike DP-SGD,
LabelDP protects only the labels; furthermore, since we
use randomized response as our LabelDP algorithm, we
have 𝛿 = 0.)

From Figure 5, we observe that LabelDP generally pro-
vides higher utility in low privacy (large 𝜀) regimes, while
DP-SGD outperforms it in high privacy (small 𝜀) regimes.
The behavior in high privacy regimes is counter-intuitive
because DP-SGD has stronger privacy guarantees yet pro-
vides better utility.

7. Conclusions
In this work we showed that it is possible to privately
train ad models using DP-SGD, while neither significantly
sacrificing utility nor incurring computational cost. An
interesting research direction is to develop new private
training algorithms for “hybrid DP”—an interpolation
between vanilla DP and Label DP in which some but
not all of the features are public. Another line of work
would be to study if the low-rank nature / sparsity of the
gradients can be exploited to reduce the noise needed for
private training.
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A. Training Details
The Criteo pCTR dataset [16] contains around 40 mil-
lion examples. The raw dataset comes with a labeled
training set and an unlabeled test set. We split the raw
training set chronologically into a 80/10/10 partition of
train/validation/test sets. The reported metrics are on
this labeled test split. Each example consists of 13 integer
features, 26 categorical features, and one binary label.
We preprocess each integer feature with a log transfor-
mation.

The neural network consists of six layers. In the first
layer, each categorical feature is mapped into a dense
feature vector via an embedding layer. The embedding
dimension is decided via a heuristic rule as int[2𝑉 0.25],
where 𝑉 is the number of unique tokens in each categor-
ical feature. The dense features are then concatenated
with the log-transformed integer features to form the
first layer representation. This representation are fed
into four fully connected layers, each with an output di-
mension of 598 and a ReLU activation function. Finally,
a fully connected layer is used to compute the scalar
prediction (the logit). There are around 78M trainable
parameters in this neural network model.
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The network is trained with binary cross entropy loss.
Unless otherwise specified, we train the network for five
epochs, and we scale the base learning rate with a cosine
decay [41]. In the non-private baseline, we use the Yogi
optimizer [17] with a base learning rate of 0.01, and a
batch size of 1024.

Directly reusing the same hyperparameters for private
training leads to suboptimal results. We discuss how to
achieve better privacy-utility trade-off by adjusting dif-
ferent hyperparameters in Section 4. Even though the
analysis shows that optimal hyperparameters could be
different for different range of privacy budget 𝜀’s, for
simplicity, we use a fixed value for most of hyperparam-
eters in the final results of Criteo pCTR in Table 1: SGD
optimizer with base learning rate 0.01, momentum 0.9,
batch size 65,536, and training for 150 epochs. We only
tune the norm bound 𝐶 ∈ {1.0, 10.0, 50.0, 100.0} and
microbatch size 𝐵𝜇 ∈ {1, 4, 8} for each 𝜀 separately.

The model and training setup for the pCVR and pConvs
are similar, except that the pConvs come with integer
labels, thus are trained and evaluated with a Poisson log
loss (PLL). Specifically, let 𝑓𝜃(𝑥) be the scalar prediction
from the final layer of the neural network, interpreting
exp(𝑓𝜃(𝑥)) as predicting the mean of a Poisson distribu-
tion, then the log-likelihood of the integer label 𝑦 is

𝑦𝑓𝜃(𝑥)− exp(𝑓𝜃(𝑥))− log(𝑦!).

The maximum (log-)likelihood training objective is thus
equivalent to minimizing the following PLL function:

ℓ(𝑓𝜃, (𝑥, 𝑦)) = exp(𝑓𝜃(𝑥))− 𝑦𝑓𝜃(𝑥). (1)

Note the log(𝑦!) term is dropped since it is independent
of the trainable parameters 𝜃. Therefore this is an unnor-
malized PLL.
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