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Abstract
We perform an experimental analysis of how the inner architecture of large language models behaves
whilst extracting geographic knowledge. Our aim is to conclude on whether models actually incorporate
geospatial information or simply follow statistical patterns in the data; hence to contribute to the research
area of creating knowledge graphs from large language models. To achieve this, we study one specific
geospatial relation and explore different techniques that leverage the masked language modeling abilities
of BERT and RoBERTa. Our study should be construed as a stepping stone to the general study of the
ways large language models encapsulate geospatial knowledge. In addition, it has allowed us to observe
important points one should focus on when querying language models, which we discuss in detail.
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1. Introduction

There has been a lot of interest recently in the development of large language models (LLMs) and
their relationship to knowledge graphs (KGs) [1]. LLMs such as BERT [2] and RoBERTa [3] were
pre-trained in a self-supervised manner using a great amount of textual corpora. In the probing
setting [4], LLMs can fill a masked word included in a text sequence to extract a relational
assertion for a given subject [5]. For example, BERT successfully fills the sentence "Athens
is located in" with "Greece", which can be preceived as a KG subject-predicate-object triple
<Athens, located in, Greece>.

Witnessing that LLMs are constantly evolving and that they have been exposed on a vast
quantity of data, the question of whether we can extract their knowledge and automatically
create KGs arises. An analysis of the factual and commonsense knowledge in publicly available
pretrained language models was published in [1], where the authors concluded that it is not
trivial to extract a KG from them. Another work proposed the injection of factual knowledge
into BERT [6], [7] discussed how we can create structured KBs from LLMs, and [8] explored
how robustly world knowledge is stored in LLMs.

In this paper, we are interested in geospatial KGs [9] and their relationship to LLMs. Geospatial
KGs include YAGO2 [10], YAGO2geo [11], WorldKG [12], KnowWhereGraph [13], the geospatial
extension of YAGO4 of [14] and others. Geospatial KGs contain information about geographic
entities (e.g., the city of Athens) and their geospatial (e.g., Athens’ geometry in the WGS84
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coordinate reference system) and thematic characteristics (e.g., Athens’ population or the name
of its mayor). Geospatial KGs can store both qualitative (e.g., Thessaloniki being north of Athens),
and quantitative (e.g., their distance being 504km) knowledge about geographic entities.

LLMs like BERT and RoBERTa have been trained on Wikipedia, book corpora, web text etc.
As these sources (especially Wikipedia) contain a lot of geospatial knowledge like the one stored
in geospatial KGs, it is very interesting to explore the LLMs’ capabilities in this regard. For
example, there is a lot of qualitative knowledge about geographic entities in Wikipedia, such as
cardinal direction knowledge to describe the relative position of various entities on the world
map (e.g., “Bulgaria borders Greece to the north”). Additionally, many geospatial properties
included in Wikipedia can be implicitly reasoned through different texts. For instance, Athens
is in Greece (Europe) and Accra is in Ghana (Africa). The conclusion that Athens is north of
Accra can be inferred by the additional fact that Europe is north of Africa. Understanding such
relations and being able to easily answer qualitative geospatial questions that depend on them
can be an important capability of LLMs.

Motivated by the above discussion, we seek to broaden our perspective regarding the ways
LLMs can answer geospatial questions. The contributions of the paper are the following:

• We carry out an experiment regarding the ways LLMs can answer qualitative geospatial
questions of the form X is a city in Y. To achieve this, we exploit the fill-the-mask pipeline
on the pre-trained models BERT and RoBERTa without fine-tuning them. In this way,
we aim to understand if LLMs are actually able to answer simple qualitative geospatial
questions correctly.

• We present our findings on answering geospatial questions using LLMs, and we experi-
ment with the effect different layers and their attention heads have on the final results.
We also explore different techniques on mask filling while retrieving the answers from
the LLMs. To support our findings, we include detailed results for each experiment. In
addition, in Appendix A we conduct a complementary study to further analyse the results
of our experimental evaluation concerning different variations of LLMs.

The rest of the paper is structured as follows: Section 2 discusses related work, while Section 3
gives a detailed overview of the methodology we followed to show if the LLMs studied can
answer geospatial questions. Section 4 presents the experimental evaluation we conducted.
Section 5 concludes the paper and makes recommendations for extending this work. In Ap-
pendix A we present our complementary experiments using different variations of the LLMs.
As a contribution to the research community we release our source code1.

2. Related Work

Recent works have studied the possibility that LLMs could be used for KG construction and
augmentation. Generally the LM-as-KG paradigm embodies three different approaches: prompt-
base retrieval, case-based analogy, and context-based inference [15]. In prompt-base retrieval,
one masks the desired answer and deems the returned token to be the answer; e.g., Paris is the
capital of [MASK]. In case-based analogy, the prompt includes an example prior to the mask one

1https://github.com/AI-team-UoA/gsp-knowledge-extraction-llms
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wants filled; e.g., Athens is the capital of Greece. Paris is the capital of [MASK]. In context-based
inference, the prompt is enriched with relating information; e.g., Athens is in Greece.

Petroni et al. [1] introduced the LAMA probe, which is a prompt-based retrieval approach.
Using the LAMA probe, they explored the factual knowledge an LLM encapsulates, simply from
its pre-training procedure. Their contribution consists of a systematic analysis which reaches
the conclusion that BERT-large is better at knowledge extraction compared to its competitors,
that relation extraction performance is not easily improved simply by increasing the data
volume, and finally, that we need better understanding regarding aspects of knowledge that
LLMs capture. Wang et al. [7] moved one step further and proposed a framework that can
construct KGs from LLMs. Their approach suggests a single forward pass of the LLMs without
fine-tuning through textual corpora. The proposed MaMa (Match and Map) framework consists
of two stages that result in an open KG with mapped facts being in a fixed schema, while
unmapped ones being in an open schema. They argue that the resulting KGs (with a measured
precision of more than 60%) indicate that their approach is reliable. Hao et al. [16] presented a
more advanced prompt-based retrieval approach by introducing a framework that can construct
a relational KG via an LLM without textual corpora parsing, simply by the utilisation of some
examples and a prompt. They paraphrase the initial prompt and use the alternatives to find
out which of them can help the LLM to effectively produce valid answers through the use of
the said examples and the score they achieve. Their approach leverages the masked language
modeling (MLM) abilities of LLMs and retrieves knowledge via fill-the-mask tasks.

Razniewski et al. [5] argue that LLMs should be a means to curate and augment KBs and
not simply replace them. They propose some pragmatic and intrinsic considerations such as a
common bias of the aforementioned techniques, namely the lack of disambiguation between
statistical correlation and explicit knowledge. Considerable attention has also been paid to
the inner workings of the LLMs: their layers and the corresponding attention heads. Clark
et al. [17] hypothesise that some attention heads of BERT-base appear to behave in specific
patterns that could indicate that BERT learns syntactic dependencies of the English language. A
similar study has been conducted by Kovaleva et al. [18], also focusing on BERT’s self attention
mechanisms, suggesting that BERT can benefit from attention heads disabling in some tasks.

In the area of KGs, there is research on the enhancement of KGs along temporal and spatial
dimensions, the latter being the topic of this paper. YAGO2 [10] is such an example that
extends the classic Subject-Property-Object (SPO) triples adding Time and Location. It was
further extended with richer geospatial knowledge (not just coordinates) in YAGO2geo [11]
and YAGO4 [14]. Other recent approaches to geospatial knowledge graphs are WorldKG [12]
and KnowWhereGraph [13].

As per the geospatial abilities of LLMs, Roberts et al. [19] probed GPT4 which performed
generally well but remains unclear if it did so by reasoning or simple memorization. Cohn et
al. [20] conducted dialectal evaluations on state-of-the-art models and suggest the models do
not always succeed in spatial reasoning. Faisal et al. [21] proposed a framework to examine
LLMs’ geographic knowledge and biases. They seemed to understand geographic proximity but
serious limitations exist. Hoffman et al. [22] propose geoadaptation, a task-agnostic training
step performed on pretrained LLMs which they argue allows models to learn geographic and
dialectal knowledge. Finally, Mai et al. [23] discuss the development of a foundation model for
geospatial AI and introduce a framework to achieve such goal.



3. Methodology

We focus on Transformer-based language models that have been pre-trained through the masked
language modeling (MLM) paradigm. BERT [2] was trained on BookCorpus (800M words) [24]
and the English version of Wikipedia (2,500M words), excluding lists, headers and tables. As for
the MLM tasks, 15% of the tokens were masked (i.e., replaced with the special [MASK] token).
More specifically, in 10% of that 80%, the masked token was replaced with another random
token and in 10% it was left unchanged. BERT was also pre-trained on Next Sequence Prediction
(NSP). In this task, the model should predict if a sentence A was following sentence B or not.
RoBERTa [3] follows similar training techniques (MLM, NSP) and almost identical architecture
to BERT. However, the authors have changed some major points; the MLM is performed via
dynamic masking and tokenization is replaced with byte-pair encoding (BPE). Finally, the data
upon which it was trained (apart from that BERT used) include CC-News2, OpenWebText3 and
Stories [25]. We use the pretrained versions of BERT and RoBERTa without fine-tuning them.

In the rest of the paper we try to answer the question: Can BERT and RoBERTa answer the
very simple geospatial question “Is X a city in Y?”. The question is posed as a geospatial phrase
(GSP) of the form X is a city in Y. For example, if an LLM has learned that “Athens is a city in
Greece” it should be able to answer the GSP Athens is a city in Y.

We chose to carry out this very simple experiment since “in” is an important topological
relation in all qualitative spatial reasoning models [26] and, as such, it deserves to be studied
first. Also, “city” is an important class of geographic features and there is plenty of knowledge
about cities and the administrative divisions they belong to (e.g., states of countries) in the data
BERT and RoBERTa have been trained on (e.g., Wikipedia or BookCorpus).

3.1. Knowledge extraction settings

Layers. BERT-like models take a sequence of tokens as an input and pass it through their inner
layers. When they are used for MLM, a specific head is added on top of the models that takes
the contextual embeddings as an input, passes them through a feed-forward neural network
(FNN) and returns a sequence of predicted tokens. We aim to explore how the answers are
constructed at each layer of the model. In order to record that, we changed the default forward
function of these models to have the answer from a layer of our choice. When asking a model
with K layers to fill the masked tokens from the layer N, we actually allow the model to use all
layers 1 ≤ 𝑖 ≤ 𝑁 and then bridge the gap between the remaining layers and the MLM head
(i.e., layers 𝑁 < 𝑗 ≤ 𝐾 were not used at all). If one requests to get an answer from the K𝑡ℎ

layer, the process is identical to a simple fill-the-mask task in which the model would use all of
its layers to produce the outcome.
Top-K answers. A softmax function is applied to the embeddings every BERT-like model
returns. These embeddings are then sorted and the top-k of them (along with the confidence
of the model) are kept as the most probable answers. We tampered with a few different top-k
values, but we settled to a top-k value of 10 and 100. Note that a large model (24 layers) with
top-k=100 would return a total of 2400 answers.

2https://commoncrawl.org/2016/10/news-dataset-available/
3https://skylion007.github.io/OpenWebTextCorpus/
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Multi-mask filling methods. Some geospatial relations like the relation “in” we are working
with, require more than one mask to be filled, e.g., [MASK] is a city in [MASK]. We test two
different approaches as to how the full answer would be constructed, as described below:

• Left-To-Right (LTR): Firstly, the model fills the left most mask and proceeds to the
remaining ones on the right. For example:
[MASK] is a city in [MASK] −→Athens is a city in [MASK] −→Athens is a city in Greece.

• Right-To-Left (RTL): This is the exact opposite of LTR and starts the process of filling
from the right most [MASK] token. The above example would be reformulated as:
[MASK] is a city in [MASK] −→ [MASK] is a city in Greece−→ Athens is a city in Greece.

The reason both these different approaches were tested lies mainly in the fact that inserting
biases while attempting to extract geospatial knowledge is fairly easy. According to the GSP,
the choice of the method can affect the outcome greatly. For instance, using LTR in the relation
"X is a city in Y" creates the following problem; for the answer 𝐴𝑖 of the top-k answers, the
model would attempt to produce top-k tokens for the other mask. However, even if the model
was an oracle and could safely predict 𝐴𝑗 as the correct answer (𝐴𝑖 is a city in the country of
𝐴𝑗), it would continue to produce top(k-1) more answers which would be wrong. As a result,
the percentage of correct answers is severely limited by a human induced bias. For this reason,
we introduce one more parameter; the cutoff.
Cutoff. When cutoff is enabled, the model constructs top-k answers for the first mask to be
filled (according to the opted method), and then returns one token for each of the top-k answers.
Alternatively, when cutoff is disabled, the total answers produced are 𝐿 ·𝐾𝑀 , where 𝐿 is the
number of layers, K is the top-k value, and M is the number of masks.
Layer Drop. In some experiments we explore if some specific layers affect the final results to a
great extent. That is why we drop some of them from the model. Simply freezing a layer would
still allow the tokens to flow through it and be susceptible to its normalization mechanism. We
aim however to completely remove a layer and disallow it from influencing the data. In this
regard, when removing the 𝑖𝑡ℎ layer, we copy the internal encoder structure except for the 𝑖𝑡ℎ

layer, and assign the new layer list to the model. As a result, we are able to keep all the other
layers unaffected by the removal and examine the influence such tweaks have on the results.
Attention Heads Drop. In a similar mindset, we also examine the extent to which specific at-
tention heads (from specific layers) affect a model’s answers. We utilize the internal mechanisms
of a model that allow us to easily prune said heads; when pruned they serve as a no-op.

3.2. Compatibility Matrices

We are not only interested in the correct percentage of the answers, we also want to examine the
consistency of the models’ results. This is the reason why we construct compatibility matrices
with which we are able to compare the percentage of compatibility between the layers. They
are 2D heat maps that visually demonstrate how similar the answers yielded at each state of
the model while answering a geospatial question. We constructed the following two types of
compatibility matrices:



• Self-Compatibility: These matrices are symmetrical and compare a model to itself. By
examining them, we are able to see how much the model changes its answers through-
out the layers. Note that the main diagonal is not always 100% because we count the
compatibility discarding the duplicate answers.

• Cross-Model Compatibility: Similar to the self-compatibility matrices, these compare
different models (with the same architecture or not). We note some interesting points
utilizing these graphs as to how different models behave whilst constructing their answers.

3.3. Validation

We utilize the GeoPy python API4 to validate the answers to a geospatial question provided
by an LLM. It is a module for geocoding that uses the OpenStreetMap (OSM) Nominatim
service5. It takes a name as an input and returns the location matching that name along with
its characteristics such as the feature type (e.g., city). The validation of an answer (𝑋𝑖, 𝑌𝑗)
to “X is a city in Y.” would proceed as follows. Running 𝑔𝑒𝑜𝑝𝑦(𝑛𝑎𝑚𝑒 = 𝑋𝑖, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑡𝑦𝑝𝑒 =
𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = 𝑌𝑗) we would get the city that belongs in the country of 𝑌𝑗 and matches the
name 𝑋𝑖. Note that the feature type of city may also allow towns, villages and communes.
Unfortunately, sometimes GeoPy might confuse a clearly wrong answer for an existing location.
For example 𝑔𝑒𝑜𝑝𝑦(𝑛𝑎𝑚𝑒 = 1982) returns Elewijt, Belgium6. That is why we further restrict
GeoPy’s answer and model’s answer to have an edit distance (i.e., changes needed to match the
two strings) of 0 or 17.

4. Experiments

Settings and evaluation metrics. In our experimental evaluation, we use the two major
variations of the BERT and RoBERTa models’ sizes - base and large. As far as BERT is concerned,
we also experiment upon the different casing versions. The uncased version (as opposed to the
cased one) was trained with all textual data being lowered during the pre-processing procedure.
For the top-k variable, we selected the values 10 and 100. More values were tested (e.g., 300,
1000), but ultimately we settled down on these for the following reasons. Higher top-k values
dramatically reduced P@C (percentage of correct answers) on each layer, whilst simultaneously
blunting the fluctuations at lower layers. As the answers on the results in the early stages
are not yet sufficiently evaluated by the model, a lot of correct answers lie lower than they
should be; hence a high top-k reveals those answers and tends to yield somewhat linear graphs.
Such results would not allow us to focus on different layers’ performance and their deeper
analysis. Moreover, we needed a sufficient, yet small, top-k to be used as a reference for future
GSPs’ experimentation that have a finite number of correct answers. For example there exist
approximately 190 countries, hence “[MASK] is a country.” cannot have 300 correct responses.
To evaluate our experiments, for each layer of a model, we compute the correct percentage of
the answers produced by this layer (P@C) and we depict it in graphs. When a model returns a

4https://pypi.org/project/geopy/
5https://nominatim.org/
61982 is the zip code of Elewijt, Belgium
7𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1982, 𝑒𝑙𝑒𝑤𝑖𝑗𝑡) = 7
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specific token as an answer, it also assigns a score to it, corresponding to the confidence it has for
the token to be the actual answer. For each layer we compute the mean score of the mentioned
confidence for the returned tokens, we normalize it and then feed it to a MinMaxScaler so that
we can depict the different levels of confidence in the graphs. The closer the color of a scatter
point is to black, the more confident the model was on that specific layer.

Task 1 - Results. We attempt to construct answers for the GSP of "_ is a city in Europe.". In
Figure 1, we present the percentages of the correct answers each layer produces for the said
phrase. As we can observe, the BERT models perform adequately in this specific task, while
the RoBERTa models struggle with higher top-k values. This holds true probably because of
the datasets that were used during pre-training; RoBERTa processed a great volume of data
irrelevant to the Wikipedia textual corpus.
Intuitively, we can assume that the uncased versions of the models would perform worse, for
the selected GSP, as we are searching for answers that are cities and almost always appear
capitalized. However in some examples uncased versions achieve better scores. We can also
observe that almost all the models appear to be strongly confident on lower levels with moderate
P@C; this could indicate a high level of randomness to the answers. Another difference between
the BERT and RoBERTa models appears on the final layers. RoBERTa seems to rearrange its
answers and performs worse even though it had previously reached a higher score.

Figure 1: Correct percentage of answers per layer

Task 2 - Layer Pruning. In 1 we can see that sometimes local minima appear on the graphs,
indicating layers that affect the general model performance. We therefore remove the said layers
and observe the resulting graphs. Our results are included in Figure 2. What we can see is
that such pruning allows the models to reach similar maximum scores with fewer layers. Even
though a slight drop appears on the maximum P@C, in some cases we have pruned enough
layers to decrease the total model size (trade-off); this could indicate that not all layers are
necessary for such tasks and should we attempt to fine-tune them for better results, the process
would be less computationally heavy and expensive.

Task 3 - Attention Head Pruning. As shown in Figure 3, we experimented with different
combinations of what heads to keep and what to prune. It has been argued that specific heads



Figure 2: Pruned Models vs Original Models, top-k = 100

Figure 3: Attention Heads Pruning, top-k = 100

are able to perform better at certain tasks as classifiers [18, 17]. We could not however specify a
general rule of thumb in our experiments. Through trial and error we were able to sometimes
rectify the final scores or moderately affect them while having pruned a significant amount
of heads. It seems that attention heads are crucial, but sometimes the models come equipped
with more that the necessary amount [27]. What is also believed to be true, is that some heads
on a layer often exhibit similar behaviours [17]. Hence, in some cases we were able to remove
approximately half of a layer’s heads without significant performance reduction.

Task 4 - Multiple Masks. As discussed in Section 3, when more than one mask appears,
we need to specify the order we will fill them. It is understandable from the results shown

Figure 4: LTR vs RTL, top-k = 10



in Figure 4 that cutoff affects the total number of the produced answers. This is the reason
cutoff-enabled curves perform better. Moreover, we observe that RTL achieves higher scores
since multiple cities belong to a country while the reverse is non true. This fact indicates again
the lack of a general rule, as the optimal method has to be chosen in regards to the GSP.

Task 5 - Compatibility Matrices. In some cases, the models seem to return similar answers;
both between their layers and generally between different models. That is why we constructed
compatibility matrices that count the number of common answers per layer, which helps us
determine some insights on the similarities between them. For this experimental setting, we
present in Figure 5 the compatibility matrices for the layers of the uncased BERT-base model
ans its corresponding matrix for the negation of the same phrase, with top-k equal to 100. As
we can observe, close layers in a model seem to yield similar answers. This compatibility span
may appear to be slightly higher on upper layers; answers are more stable with fewer changes.
Regarding the negation matrix, many scores are higher than what we expected. This is an
indication that the models almost discard the negation. An interesting point lies also to the
comparison of base and large models where the base’s 12 layers are more compatible to the last
24 layers of the large versions. The additional matrices that reflect different model cases can be
found in Appendix A.

Figure 5: On the left lies the bert-base-uncased self compatibility matrix on the GSP: “[MASK] is a city
in Europe." that portrays the similarities between each layers’ answers. On the right, a compatibility
matrix of the same model comparing the aforementioned phrase with negation. We observe that many
answers are identical for both GSPs despite the negation.

5. Summary and Future Work

In this work, we carried out an experiment to investigate how LLMs behave whilst constructing
simple geographic knowledge of the form X is a city in Y via the MLM paradigm. We experi-
mented with the effect different layers and their attention heads have on the final output of
the model and explored different techniques for mask filling. We found out that the results of



geographic knowledge extraction from LLMs can vary highly; different methods and/or models
greatly fluctuate the metric P@C.

In future work, we would like to study whether other kinds of geospatial knowledge can be
extracted from LLMs using appropriate templates; in the introduction we have discussed various
kinds of such knowledge. We also want to study how much geospatial answering and geospatial
reasoning can be done by more recent language models such as ChatGPT, Bard, Claude and
LLaMA. Through these models we would like to extend our research to more relations that are
also important in the geospatial dimension such as cardinal relations. We aim to validate our
future work using geospatial KGs and evaluate the aforementioned models on their geographic
knowledge.
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A. Appendix

A.1. Additional Compatibility Matrices

In Figure 6, we can see the self compatibility matrices for the large versions of the models BERT-
uncased and RoBERTa, which are symmetrical, and the diagonals correspond to a layer being
compared to itself. Moreover, on a comparison between BERT’s base (discussed in Section 4) and
the large versions shown in Figure 7, we can easily observe that the answers the base version
yields shifted to the last 12 layers of the large versions. The early levels of BERT-large achieve
very low similarity scores compared to the BERT-base layers.



Figure 6: Self compatibility between the large models BERT-uncased and RoBERTa

Figure 7: Layer compatibility between cased BERT-base and BERT-large models

Table 1
Highest scores for top-k ∈ {10, 100}

GSP Model Layer Top-k Method Cutoff Score (%)

_ is a city in Europe bbu 12 10 - - 100
_ is a city in Europe bbu 12 100 - - 90
_ is a city in Europe blu 23 100 - - 90

_ is a city in _ bbc 12 10 LTR true 50
_ is a city in _ bbc 12 100 LTR true 52

A.2. Highest Scores

In Table 1, we present the highest scores for top-k ∈ {10, 100} and how it was achieved. The
model column consists of abbreviations of the models (bert-base-cased: bbc, bert-base-uncased:
bbu, bert-large-uncased:blu). Unsurprisingly, a top-k value equal to 10 is able to yield better
scores than the higher value. When we include multiple masks, scores decline dramatically and
only with the cutoff variable enabled are the models able to perform better. Moreover, the LTR
method seems to outperform the RTL one. What is more, bert-large-uncased achieved a higher
score on the 23𝑟𝑑 layer.
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