
DisTL: A Temporal Logic for the Analysis of the
Expected Behaviour of Cyber-Physical Systems
Valentina Castiglioni

1
, Michele Loreti

2
and Simone Tini

3,*

1

Reykjavik University, Reykjavik, Iceland

2

University of Camerino, Camerino, Italy

3

University of Insubria, Como, Italy

Abstract
The behaviour of systems characterised by a closed interaction of software components with the envi-

ronment is inevitably subject to uncertainties. We propose a general framework for the specification and

verification of requirements on the behaviour of these systems. We introduce the Distribution Temporal

Logic (DisTL), a novel temporal logic allowing us to specify properties on the expected behaviour of sys-

tems, and to include the presence of uncertainties in the specification. We equip DisTL with a robustness

semantics and we prove it sound and complete w.r.t. the semantics induced by the evolution metric, i.e., a

hemimetric expressing how well a system is fulfilling its tasks with respect to another one. Finally, we

give a statistical model checking algorithm for DisTL specifications, and we apply our framework to a

simple unmanned ground vehicle scenario.

Keywords
Cyber-physical systems, Uncertainty, Evolution sequence, Temporal logic, Statistical model checking

1. Introduction

We have recently proposed a formal framework to model and analyse the behaviour of systems

that are subject to uncertainty. The most prominent example is that of cyber-physical systems [1]

(CPSs), in which software components, or agents, must interact with a highly changing and,

even, unpredictable environment. To reason on these systems, we have introduced, in [2, 3], the

evolution sequence model: the behaviour of the system is modelled in terms of the modifications

that the interaction of the agents with the environment induce on a set of application-relevant

data, called data state. As those modifications are subject to uncertainty, induced by the

environment and system’s approximations, we model them as probability measures, henceforth

simply called distributions, on the attainable data states. Hence, the evolution sequence of a

system is the sequence of distributions over the data states obtained at each step, and can also

be seen as the discrete-time version of the cylinder of all possible trajectories of the system,

that takes into account the effects of uncertainty at each step. We have also provided the notion

of evolution metric between evolution sequences, which allows us to quantify the behavioural

distance [4, 5, 6] between systems.

ICTCS 2023: 24th Italian Conference on Theoretical Computer Science, September 13–15, Palermo, Italy

*
Corresponding author.

$ valentinac@ru.is (V. Castiglioni); michele.loreti@unicam.it (M. Loreti); simone.tini@uninsubria.it (S. Tini)

� 0000-0002-8112-6523 (V. Castiglioni); 0000-0003-3061-863X (M. Loreti); 0000-0002-3991-5123 (S. Tini)

© 2023 Copyright © 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:valentinac@ru.is
mailto:michele.loreti@unicam.it
mailto:simone.tini@uninsubria.it
https://orcid.org/0000-0002-8112-6523
https://orcid.org/0000-0003-3061-863X
https://orcid.org/0000-0002-3991-5123
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Then, we have introduced, in [7], a novel temporal logic, called Robustness Temporal Logic

(RobTL), allowing us to specify temporal requirements on the evolution of distances between

the nominal behaviour of a system and its perturbed version. In particular, we can use RobTL

formulae to specify robustness properties [8, 9, 10, 11] against uncertainties of the agents in

the system. This is made possible by using atomic propositions of the form Δ(exp, p) ◁▷ 𝜂,

to compare a threshold 𝜂 with the distance, specified by an expression exp, between a given

evolution sequence and its perturbed version, obtained by applying a perturbation specified by

p, starting from a given time step. Then, we combine atomic propositions with classic Boolean

and temporal operators, in order to extend these evaluations to the entire evolution sequences.

The expressive power of RobTL comes at a price: besides the behaviour of the agents and the

environment, we must be able to specify the perturbation that affects the system, in order to

measure its robustness. While our tool Stark, the Software Tool for the Analysis of Robustness in

the unKnown environment [12] available at https://github.com/quasylab/jspear, offers a domain

specific language allowing us to do so, it might be the case that we do not know which data are

manipulated by a perturbation, nor when and how such manipulations occur. Indeed, it might

also be the case that we do not have access to a full specification of the system, but only to a

collection of observations on data, following the deployment of the agents in the real world.

Although we can still use Stark to perform some comparisons between the observed evolution

sequence, obtained from the collected observations, and an ideal evolution sequence, in this

case we cannot use RobTL to specify robustness properties of the system. Our aim, with this

paper, is to provide an alternative approach to the study of systems robustness, in order to fill

this gap.

Our Contribution: The Distribution Temporal Logic Let us consider a simple scenario:

an unmanned ground vehicle is proceeding on a straight path towards a toll booth (henceforth,

the objective), where it has to stop to allow the passenger to retrieve the entry ticket to

the motorway. With classic probabilistic temporal logics (like, e.g., PCTL [13], CSL [14, 15],

probabilistic variants of LTL [16], and probabilistic variants [17, 18] of MTL [19] and STL [20]),

we can verify whether the vehicle is going to stop within a certain distance from the objective,

and/or whether the probability to do so is above/below a desired threshold. We remark that

this is achieved by reasoning in a trace-by-trace fashion: first we check the property over each

trajectory of the system, and then we sum up the probability weights of those satisfying it.

Here we want to perform a different analysis: due to the presence of uncertainties, it would

be preposterous to require the vehicle to stop precisely at the objective. Our aim is to express

that the vehicle is expected to stop there, and to allow a certain variance on its actual final

position, to take uncertainties into account, while guaranteeing that hazardous behaviours are

avoided. Technically speaking, we want to specify that, when considering all possible system

behaviours, the final (i.e., stationary) position of the vehicle agrees with a desired distribution,

like, e.g., a Gaussian centred over the objective.

To this end, we introduce the Distribution Temporal Logic (DisTL), a novel temporal logic

allowing us to express requirements on the expected behaviour of the system in the presence of

uncertainties and perturbations, by using distributions over data states as atomic propositions.

We equip DisTL with a real-valued semantics expressing the robustness of the satisfaction of

https://github.com/quasylab/jspear

DisTL specifications. The robustness of a system s with respect to a formula 𝜙 is expressed as a

real number J𝜙Ks ∈ [−1, 1]: if it is positive, s satisfies 𝜙. In detail, J𝜙Ks describes how much the

behaviour of s has to be modified in order to violate (or satisfy) 𝜙. We can then interpret J𝜙Ks as

an indicator of how well s behaves with respect to the requirement 𝜙. To formalise “how well",

we use the evolution metric of [2, 3], a (time-dependent) hemimetric on the evolution sequences

of systems based on a hemimetric on data states and the Wasserstein metric [21]. The reason to

opt for a hemimetric, instead of a more standard (pseudo)metric, is that it allows us to compare

the relative behaviour of two systems and thus to express whether one system is better than the

other. We use the evolution metric to define the robustness of systems with respect to DisTL

formulae. As atomic propositions are distributions over data states, by means of the evolution

metric we can compare them to the distributions in the evolution sequences of systems. In this

way, we obtain useful information on the differences in the behaviour of two systems from the

comparison of their robustness. In particular, we prove the robustness to be sound and complete

with respect to our metric semantics: whenever the robustness of s1 with respect to a formula

𝜙 is greater than the distance between s1 and s2, then we can conclude that the robustness of

s2 with respect to 𝜙 is positive. We have also implemented in Stark a statistical algorithm for

the evaluation of systems robustness with respect to DisTL specifications.

In order to show how our techniques can be applied, we consider the unmanned ground

vehicle scenario described above as a case study.

2. The Evolution Sequence Model

Evolution Sequences We consider systems consisting of a set of agents and an environment,

whose interaction produces changes on a shared data space 𝒟, containing the values assumed

by variables, representing: (i) physical quantities, (ii) sensors, (iii) actuators, and (iv) internal

variables of the agents. Technically, we assume a finite set of variables Var such that for each

𝑥 ∈ Var the domain 𝒟𝑥 ⊆ R is either finite, or a compact subset of R. Notice that, in particular,

this means that 𝒟𝑥 is a Polish space. Moreover, as a 𝜎-algebra over 𝒟𝑥 we assume the Borel

𝜎-algebra, denoted ℬ𝑥. The data space 𝒟 over Var is then defined as the Cartesian product

over the variables domains 𝒟 =×𝑥∈Var𝒟𝑥, and it is equipped with the product 𝜎-algebra

ℬ𝒟 =
⨂︀

𝑥∈Var ℬ𝑥 [22].

We call data state the current state of the data space, and represent it by a mapping d : Var→
R, with d(𝑥) ∈ 𝒟𝑥 for all 𝑥 ∈ Var. At each step, the agents and the environment induce some

changes on the data state, providing a new data state at the next step. Those modifications are

also subject to the presence of uncertainties, meaning that it is not always possible to determine

exactly the values assumed by data at the next step. Hence, following [2], we model the changes

induced at each step as a distribution on the attainable data states. The behaviour of the system

is then expressed by its evolution sequence, i.e., the sequence of distributions over the data states

obtained at each step. In other words, the evolution sequence is the discrete-time version of the

cylinder of all possible trajectories of the system. In this paper, we do not focus on how evolution

sequences are generated: we simply assume a Markov kernel governing the evolution of the

system, and the evolution sequence is the Markov process generated by it.

Definition 1 (Evolution sequence, [2]). Given a data space 𝒟, let Δ(𝒟,ℬ𝒟) be the set of

distributions over the space (𝒟,ℬ𝒟). Let step : 𝒟 → Δ(𝒟,ℬ𝒟) be the Markov kernel generating

the behaviour of a system s having 𝜇 as initial distribution. Then, the evolution sequence of s is

a countable sequence 𝒮𝜇 = 𝒮0𝜇,𝒮1𝜇, . . . of distributions in Δ(𝒟,ℬ𝒟) such that, for all D ∈ ℬ𝒟:

𝒮0𝜇(D) = 𝜇(D)

𝒮𝑖+1
𝜇 (D) =

∫︁
𝒟
step(d)(D) d𝒮𝑖𝜇(d).

We denote by S𝒟 the set of all possible evolution sequences over 𝒟.

A Distance on Evolution Sequences We introduce a distance measuring the differences in

the behaviour of systems that will be used to define the robustness of DisTL specifications. The

idea is first to introduce a distance on distributions over data states measuring their differences

with respect to a given target, and then to extend it to the evolution sequences. Following [2],

to capture the tasks of the system, we use penalty functions 𝜌 : 𝒟 × N→ [0, 1] i.e., functions

that assign to each data state d and time step 𝜏 a penalty in [0, 1] expressing how far the values

of the parameters related to the considered task in d are from their desired ones at time 𝜏 .

For brevity, we denote by 𝜌𝜏 the mapping corresponding to the 𝜏 -th element in the list 𝜌, i.e.,

𝜌𝜏 (d) = 𝜌(d, 𝜏).
We have implemented a simple language, PF, to model penalties in Stark:

Definition 2 (Penalties). Penalties in PF are defined as follows:

pf ::= 0 | f@𝜏 | pf1 ; pf2 | pf𝑛

where pf ranges over PF, 𝑛 and 𝜏 are finite natural numbers, and:

• 0 is the null penalty, i.e., at each time step it assigns penalty 0 to any data state;

• f@𝜏 is an atomic penalty, i.e., a function f : 𝒟 → [0, 1] that is applied after 𝜏 time steps

from the current instant;

• pf1 ; pf2 is a sequential penalty, i.e., penalty pf2 is applied at the time step subsequent to

the (final) application of pf1;

• pf𝑛 is an iterated penalty, i.e., penalty pf is applied for a total of 𝑛 times.

This simple language allows us to define some non-trivial penalties that we can use to analyse

systems behaviour, like in the following example designed for our case study:

Example 1. As the task of the vehicle is to stop at the objective, it is natural to use the

normalisation of its distance from it, stored in variable p_dist, as a penalty. However, we notice

that since the distance changes in time, in order to have a meaningful penalty value we also

need to change the normalisation factor. In fact, if, for instance, we normalise only with respect

to the initial distance, the penalty is fated to decrease in time, and thus we may loose important

information on the behaviour of the vehicle when it gets closer to the objective. Therefore,

assuming that the vehicle is at an initial distance from the objective of 10000 m, we consider

the following penalty:

𝜌pos = (f10000@0)100; (f7000@0)100; (f2500@0)75; (f10@0)76 f𝑥(d) =
d(p_dist)

𝑥
.

Each pf ∈ PF denotes a penalty function of type 𝒟 × N→ [0, 1]. To obtain it, we employ

two auxiliary functions: effect and next. Both functions are defined inductively on the structure

of penalties (where, as no confusion arises from the context, we use 0 to denote both, the null

penalty, and the function mapping each data state into 0). Function effect(pf) describes the

effect of pf at the current step:

effect(0) = 0

effect(f@𝜏) =

{︃
0 if 𝜏 > 0,

f if 𝜏 = 0

effect(pf𝑛) = effect(pf)

effect(pf1; pf2) = effect(pf1)

Function next(pf) identifies the penalty that will be applied at the next step:

next(0) = 0

next(f@𝜏) =

{︃
f@(𝜏 − 1) if 𝜏 > 0,

0 otherwise

next(pf𝑛) =

{︃
next(pf); pf𝑛−1

if 𝑛 > 0,

0 otherwise

next(pf1; pf2) =

{︃
next(pf1); pf2 if next(pf1) ̸= 0,

pf2 otherwise.

We can now define the semantics of penalties as the mapping ⟨·⟩ : PF→ (𝒟×N→ [0, 1]) such

that, for all d ∈ 𝒟 and 𝑖 ∈ N:

⟨pf⟩(d, 𝑖) = effect(next𝑖(pf))(d),

where next0(pf) = pf and next𝑖(pf) = next(next𝑖−1(pf)), for all 𝑖 > 0.

The next proposition follows directly from the definition of the mapping ⟨·⟩.

Proposition 1. For each pf ∈ PF, the mapping ⟨pf⟩ is a penalty function.

Then we use penalty functions to obtain a distance on data states:

Definition 3 (Metric on data states). Let 𝜌 : 𝒟 × N→ [0, 1] be a penalty function on 𝒟, and

let 𝜏 ∈ N be a time step. The metric on data states in 𝒟, m𝜌
𝜏 : 𝒟 ×𝒟 → [0, 1], is defined, for all

d1,d2 ∈ 𝒟, by

m𝜌
𝜏 (d1,d2) = max{𝜌𝜏 (d2)− 𝜌𝜏 (d1), 0}.

Note that m𝜌
𝜏 (d1,d2) is a hemimetric expressing how much d2 is worse than d1 according

to 𝜌𝜏 . Then, we need to lift the hemimetric m𝜌
𝜏 to a hemimetric over Δ(𝒟,ℬ𝒟). To this end,

we make use of the Wasserstein lifting [21]: for any two distributions 𝜇, 𝜈 on (𝒟,ℬ𝒟), the

Wasserstein lifting of m𝜌
𝜏 to a distance between 𝜇 and 𝜈 is defined by

W(m𝜌
𝜏)(𝜇, 𝜈) = inf

w∈W(𝜇,𝜈)

∫︁
𝒟×𝒟

m𝜌
𝜏 (d,d

′) dw(d,d′)

where W(𝜇, 𝜈) is the set of the couplings of 𝜇 and 𝜈, namely the set of joint distributions w over

the product space (𝒟 ×𝒟,ℬ(𝒟 ×𝒟)) having 𝜇 and 𝜈 as left and right marginal, respectively,

i.e., w(D×𝒟) = 𝜇(D) and w(𝒟 × D) = 𝜈(D), for all D ∈ ℬ(𝒟). (See [3, 23] for a discussion

on the definition of the Wasserstein lifting over hemimetrics.)

The evolution hemimetric of [2] is then obtained as the infinity norm of the tuple of the

Wasserstein distances between the distributions in the evolution sequences. Since in most

applications the changes on data induced by the system can be appreciated only along wider

time intervals than a computation step by the agents, we consider a discrete, finite set OT of

time steps at which the modifications on data give us useful information on the evolution of the

system.

Definition 4 (Evolution metric). Assume a finite set OT of time steps, a penalty function 𝜌
and the metrics on data states m𝜌

𝜏 . Then, the evolution metric over 𝜌 and OT, is the mapping

Em𝜌
OT : S𝒟 × S𝒟 → [0, 1] defined, for all 𝒮1,𝒮2, by

Em𝜌
OT(𝒮1,𝒮2) = max

𝜏∈OT
W(m𝜌

𝜏)(𝒮1,𝜏 ,𝒮2,𝜏).

We remark that since we are interested in verifying requirements over a finite horizon (and

we use only bounded temporal operators in the logic), the choice of having OT finite is not too

restrictive.

Case Study: Unmanned Ground Vehicle As a running example, we consider the unmanned

ground vehicle scenario described in the Introduction. Since our objective is merely to showcase

the features of the new logic, we work under the following simplifying assumptions: 1. All

the objects on the scene, including the vehicle, are one-dimensional; 2. When we start the

simulation, the (program controlling the) vehicle already knows its distance from the point at

which it has to stop (i.e., its distance from the button on the toll booth, henceforth referred

to as the objective); 3. The acceleration of the vehicle can assume two values: a positive one A

m/s
2
, and a negative one -B m/s

2
(with B> 0); 4. The vehicle is equipped with a speed sensor,

s_speed, that is subject to uncertainty (related to instrument accuracy); 5. The speed can never

be negative (i.e., we do not allow the vehicle to shift into reverse). Every TIMER steps, the

vehicle decides whether to accelerate or brake, according to the sensor readings and its distance

from the objective.

To specify the details of the behaviour of the vehicle we use our tool Stark. The vehicle is

modelled as a Stark component, consisting of a set of local variables, used to allocate sensor

readings and the value of the acceleration actuator, and a Stark controller, i.e., the process

rendering the behaviour of the vehicle. Due to space limitations, we give only an informal

presentation. The interested reader can find the full Stark specification at https://github.com/

quasylab/jspear/tree/Tony. The behaviour of the controller is specified by means of four processes,

or states: Ctrl, Accelerate, Decelerate and Stop. The computation starts from Ctrl that checks, every

TIMER steps, whether the vehicle can accelerate or if it has to brake, and sets the acceleration

actuator accordingly. The decision is taken on the basis of the sensed speed and the distance

from the objective. States Accelerate and Decelerate manage, respectively, the acceleration and

braking phases: the vehicle maintains a constant acceleration (of A m/s
2

in the case of Accelerate,

and of -B m/s
2

for Decelerate), for TIMER steps; then Ctrl is woken up for a new check. When

the speed becomes zero, and it is not possible to get closer to the objective, process Stop sets the

acceleration actuator to 0m/s
2
, and the vehicle becomes stationary.

To model the evolution of the scenario we use a Stark environment, that allows us to set the

position of the objective, and to model the movement of the vehicle towards it. In this simple

scenario, the uncertainty in the model is given by the precision error in the readings of sensor

s_speed. Hence, we include a random noise in the updates of that value made by the environment.

3. The Distribution Temporal Logic

We now introduce the Distribution Temporal Logic (DisTL) which allows us to specify require-

ments on the expected behaviour of the system, in the presence of uncertainties and perturbations.

The logic bases on two atomic properties, target(𝜇)𝜌𝑞 and brink(𝜇)𝜌𝑞 , where 𝜇 is a distribution

over data states in (𝒟,ℬ𝒟), 𝜌 is a penalty function and 𝑞 is a real in [0, 1]. We will use target(𝜇)𝜌𝑞
to express a desirable behaviour, whereas brink(𝜇)𝜌𝑞 can be used for unwanted, or hazardous,

behaviours. These formulae are evaluated over a evolution sequence 𝒮 and a time step 𝜏 . Let us

analyse the formula target(𝜇)𝜌𝑞 . To establish whether the system exhibits the desired behaviour,

we compare the given distribution 𝜇 with the distribution 𝒮𝜏 : our means of comparison is the

Wasserstein lifting of the hemimetric between data states evaluated with respect to the penalty

𝜌. (Notice that 𝜌 is a parameter of the formula target(𝜇)𝜌𝑞 . This is due to the fact that the

penalty is not a property of the system but part of the requirements imposed on its behaviour.)

As 𝜇 is our target distribution, it is natural to check whether 𝒮𝜏 is worse than 𝜇, i.e., to evaluate

the distance W(m𝜌
𝜏)(𝜇,𝒮𝜏). Given the presence of uncertainties, it would not be feasible to say

that the system satisfies the considered formula if and only if W(m𝜌
𝜏)(𝜇,𝒮𝜏) = 0. Instead, we

use the parameter 𝑞 as a tolerance on the distance: if 𝒮𝜏 is such that W(m𝜌
𝜏)(𝜇,𝒮𝜏) ≤ 𝑞, then

the behaviour of the system can be considered acceptable. In other words, 𝑞 is the maximal

acceptable distance between the desired behaviour 𝜇 and the current behaviour 𝒮𝜏 .

Conversely, in the formula brink(𝜇)𝜌𝑞 the distribution 𝜇 expresses some unwanted, haz-

ardous, behaviour. Hence, the distribution 𝒮𝜏 reached by the system must be better than 𝜇,

i.e., W(m𝜌
𝜏)(𝒮𝜏 , 𝜇) > 0. Also in this case, due to the presence of uncertainties, we need to

make use of a threshold parameter 𝑞: assuming a distribution 𝒮𝜏 acceptable when it is only

slightly better than 𝜇 can still lead to an unwanted behaviour (because, in this case, the differ-

ence between the two distributions may be due only to some noise). Hence, we let 𝑞 be the

minimal required distance between 𝒮𝜏 and 𝜇, so that 𝒮𝜏 is an acceptable behaviour if and only

if W(m𝜌
𝜏)(𝒮𝜏 , 𝜇) ≥ 𝑞.

Let var(𝜇) ⊆ Var be the set of data variables over which the distribution 𝜇 is defined.

https://github.com/quasylab/jspear/tree/Tony
https://github.com/quasylab/jspear/tree/Tony

Similarly, for a penalty function 𝜌, we can consider the set var(𝜌) ⊆ Var.

Definition 5 (DisTL). The modal logic DisTL consists in the set of formulae ℒ defined by the

following syntax:

𝜙 ::= ⊤ | target(𝜇)𝜌𝑞 | brink(𝜇)𝜌𝑞 | ¬𝜙 | 𝜙 ∨ 𝜙 | 𝜙1 𝒰 [𝑎,𝑏] 𝜙2

with 𝜙 ranging over ℒ, 𝜇 ∈ Δ(𝒟,ℬ𝒟) a distribution over data states, 𝜌 a penalty function such

that var(𝜌) ⊆ var(𝜇), 𝑞 ∈ [0, 1], and [𝑎, 𝑏] an interval in OT.

Disjunction and negation are the standard Boolean connectives, and 𝜙1 𝒰 [𝑎,𝑏] 𝜙2 is the

bounded until operator stating that 𝜙1 is satisfied until, at a time in [𝑎, 𝑏], 𝜙2 is. As expected,

other standard operators can be defined as macros in our logic:

𝜙1 ∧ 𝜙2 ≡ ¬(¬𝜙1 ∨ ¬𝜙2) ♢[𝑎,𝑏]𝜙 ≡ ⊤ 𝒰 [𝑎,𝑏] 𝜙2 □[𝑎,𝑏]𝜙 ≡ ¬♢[𝑎,𝑏]¬𝜙.

Formulae are evaluated over evolution sequences and time steps. In a quantitative semantics

approach, for a formula 𝜙, an evolution sequence 𝒮 , and a time step 𝜏 , the value J𝜙K𝒮,𝜏 ∈ [−1, 1]
expresses the robustness of 𝒮 with respect to 𝜙 at time 𝜏 , i.e., how much the behaviour 𝒮𝜏 can

be modified, either while preserving the validity of property 𝜙 (if 𝜙 is already satisfied), or in

order to obtain it.

Definition 6 (DisTL: quantitative semantics). For any evolution sequence 𝒮 , time step 𝜏 , and

DisTL formula 𝜙, the robustness of 𝒮 with respect to 𝜙 at 𝜏 , notation J𝜙K𝒮,𝜏 ∈ [−1, 1], is defined

inductively with respect to the structure of 𝜙 as follows:

J⊤K𝒮,𝜏 = 1

Jtarget(𝜇)𝜌𝑞K𝒮,𝜏 = 𝑞 −W(m𝜌
𝜏)(𝜇,𝒮𝜏)

Jbrink(𝜇)𝜌𝑞K𝒮,𝜏 = W(m𝜌
𝜏)(𝒮𝜏 , 𝜇)− 𝑞

J¬𝜙K𝒮,𝜏 = − J𝜙K𝒮,𝜏
J𝜙1 ∨ 𝜙2K𝒮,𝜏 = max {J𝜙1K𝒮,𝜏 , J𝜙2K𝒮,𝜏}

J𝜙1 𝒰 [𝑎,𝑏] 𝜙2K𝒮,𝜏 = max
𝜏 ′∈[𝜏+𝑎,𝜏+𝑏]

min
{︁

J𝜙2K𝒮,𝜏 ′ , min
𝜏 ′′∈[𝜏+𝑎,𝜏 ′)

J𝜙1K𝒮,𝜏 ′′
}︁
.

Intuitively, the value W(m𝜌
𝜏)(𝜇,𝒮𝜏) quantifies the difference between the distribution 𝒮𝜏

reached by the system at time 𝜏 and 𝜇. Hence, on the one hand the robustness Jtarget(𝜇)𝜌𝑞K𝒮,𝜏
expresses whether the distribution in the evolution sequence of s is within the maximal ac-

ceptable distance 𝑞 from 𝜇. On the other hand, it also expresses how much 𝒮𝜏 can be modified

while guaranteeing that the behaviour of the system remains within the specified parameters.

Clearly, the closer 𝜇 and 𝒮𝜏 , the higher the robustness. Similarly, Jbrink(𝜇)𝜌𝑞K𝒮,𝜏 quantifies the

robustness with respect to 𝜇 (and 𝜌) in terms of how much 𝒮𝜏 may get close to 𝜇 while keeping

the minimal required distance 𝑞. Hence, the farther 𝒮𝜏 and 𝜇, the higher the robustness. The

semantics of boolean connectives and bounded until is standard. Notice that due to the potential

asymmetry of our distances, it is not true in general that brink(𝜇)𝜌𝑞 = ¬target(𝜇)𝜌1−𝑞 .

Example 2. Let us now use DisTL to formalise the requirement on the final position of the

vehicle discussed at the beginning of this section: we want to express that it is distributed

like a Gaussian centred on the objective and with variance 𝜎2
, for some 𝜎. In the Stark

implementation of the system, the position of the vehicle is modelled in terms of its physical

distance from the objective: when variable p_dist equals 0, the position of the vehicle corresponds

to the objective. Hence, we can use

𝜇pos = p_dist ∼ 𝒢(0, 𝜎2)

as the target distribution over the position. Given the penalty 𝜌pos defined in Example 1, and a

desired tolerance 𝜀, we can use the formula

𝜙1 = □[𝜏1,𝜏2]target(𝜇pos)
𝜌pos
𝜀

to capture the requirement on the final position, where the time interval [𝜏1, 𝜏2] is chosen

according to the systems parameters.

Clearly, we can use DisTL also to express strict requirements (i.e., without approximations and

tolerances): for instance, we must require that the vehicle is stationary in the final position, i.e.,

that its speed equals 0. This can be done by means of a Dirac (or point) distribution 𝛿0(p_speed),
henceforth denoted 𝜇sp, where p_speed is the variable storing the value of the physical speed of

the vehicle. Consider the penalty function

𝜌sp(d) = (d(p_speed)/MAX_SPEED@0)h,

where MAX_SPEED is the parameter storing the maximal speed of the vehicle. We can then use

the atomic formula target(𝜇sp)
𝜌sp
0 to express that the speed of the vehicle must be 0 (notice the

tolerance 0). Then, we can combine the two formulae to express that the vehicle is expected to

stop in an 𝜀-neighbourhood of the objective, within a time horizon h (determined according to

the other parameters of the system, like TIMER, A, and B):

𝜙2 = ♢[0,h]
(︀
target(𝜇sp)

𝜌sp
0 ∧ target(𝜇pos)

𝜌pos
𝜀

)︀
.

Soundness and Completeness of the Robustness Semantics We can show that DisTL

characterises the distance between evolution sequences. More precisely, the quantitative se-

mantics of DisTL induces a distance between evolution sequences that coincides with the

symmetrisation of the hemimetric Em𝜌
OT and is therefore a pseudometric. Clearly, since the

evolution metric is defined in terms of a given penalty function 𝜌, it will be characterised by

the distance over formulae in ℒ𝜌, which is the sub-class of ℒ with atomic propositions of the

form (·)𝜌(·).

Definition 7 (DisTL distance). The DisTL distance between 𝒮1,𝒮2 ∈ S𝒟 with respect to a

penalty function 𝜌 and OT is defined as

L𝜌
OT(𝒮1,𝒮2) = sup

𝜙∈ℒ𝜌,𝜏∈OT
|J𝜙K𝒮1,𝜏 − J𝜙K𝒮2,𝜏 | .

Firstly, we show that the symmetrisation of Em𝜌
OT is an upper bound to L𝜌

OT.

Lemma 1. For any penalty function 𝜌, and 𝒮1,𝒮2 ∈ S𝒟 we have:

L𝜌
OT(𝒮1,𝒮2) ≤ max

{︀
Em𝜌

OT(𝒮1,𝒮2),Em
𝜌
OT(𝒮2,𝒮1)

}︀
.

Then, we show that for all evolution sequences 𝒮1,𝒮2 there exists a formula 𝜙 in ℒ𝜌 such

that the symmetrisation of Em𝜌
OT coincides with the difference in the evaluations of 𝜙 over

𝒮1,𝒮2.

Lemma 2. For all 𝒮1,𝒮2 ∈ S𝒟 and penalty functions 𝜌, there is a formula 𝜙 ∈ ℒ𝜌 with

|J𝜙K𝒮1,𝜏 − J𝜙K𝒮2,𝜏 | = max
{︀
Em𝜌

OT(𝒮1,𝒮2),Em
𝜌
OT(𝒮2,𝒮1)

}︀
,

for some 𝜏 ∈ OT.

From Lemma 1 and Lemma 2 we infer that the DisTL distance L𝜌
OT and the symmetrisation

of Em𝜌
OT coincide.

Theorem 1. For all evolution sequences 𝒮1 and 𝒮2 we have that:

L𝜌
OT(𝒮1,𝒮2) = max

{︀
Em𝜌

OT(𝒮1,𝒮2),Em
𝜌
OT(𝒮2,𝒮1)

}︀
.

Theorem 1 entails the soundness (Lemma 1) and completeness (Lemma 2) of our notion of

robustness. In particular, as a direct consequence of Theorem 1, we can obtain the following

classic result (see, e.g., [24]): whenever the robustness of a evolution sequence 𝒮 with respect

to a formula 𝜙 is greater than the distance between 𝒮 and 𝒮 ′, then the robustness of 𝒮 ′ with

respect to 𝜙 is positive as well.

Corollary 1. Let 𝜙 be any formula in ℒ𝜌, 𝜏 ∈ OT and let 𝑖 ∈ {1, 2}. Whenever J𝜙K𝒮𝑖,𝜏 ≥
max

{︀
Em𝜌

OT(𝒮1,𝒮2),Em
𝜌
OT(𝒮2,𝒮1)

}︀
, then J𝜙K𝒮3−𝑖,𝜏 ≥ 0.

4. Statistical Model Checking

In this section we present an algorithm, based on statistical techniques and simulation, that

allows us to estimate the robustness of a system s with respect to a DisTL formula 𝜙. This

algorithm consists in three basic steps:

(i) A randomised procedure, based on simulation, that allows us to estimate the evolution

sequence of system s, assuming an initial data state ds: Starting from ds we sample 𝑁
sequences of data states d𝑗

0, . . . ,d
𝑗
𝑘, for 𝑗 = 1, . . . , 𝑁 ; then all the data states collected at

time 𝑖 are used to estimate the distribution 𝒮𝑖𝛿ds
.

(ii) A mechanism to estimate the Wasserstein distance between two (unknown) distributions

𝜇 and 𝜈 on (𝒟,ℬ𝒟), similar to the one presented in [25]: To estimate W(m𝜌
𝑖)(𝜇, 𝜈) we

use 𝑁 independent samples {d1
1, . . . ,d

𝑁
1 } taken from 𝜇 and ℓ𝑁 independent samples

{d1
2, . . . ,d

ℓ𝑁
2 } taken from 𝜈.

(iii) A procedure that computes the robustness by inspecting the syntax of 𝜙 and by using the

first two components.

1: function Sat(ds, 𝜏, 𝜙, ℓ,𝑁)

2: h← Horizon(𝜙)
3: 𝐸 ← Estimate(ds, h, 𝑁)
4: return Eval(𝐸, 𝜏, 𝜙, ℓ,𝑁)

5: end function

Figure 1: Function used to evaluate system robustness with respect to a formula.

The proposed approach has been implemented in Java, as part of Stark, and is available at

https://github.com/quasylab/jspear/tree/Tony. We omit the presentation of the first two steps (that

have already been discussed at length in [3, 7]), and we give an overview of the third step. We

limit ourselves to recall the following result, from [2, 3], on the estimation of the Wasserstein

distance:

Theorem 2 ([2, 3]). Let 𝜇, 𝜈 ∈ Δ(𝒟,ℬ𝒟) be unknown. Let {d1
1, . . . ,d

𝑁
1 } be independent samples

taken from 𝜇, and {d1
2, . . . ,d

ℓ·𝑁
2 } independent samples taken from 𝜈. Let {𝜔𝑗 = 𝜌𝑖(d

𝑗
1)} and

{𝜈ℎ = 𝜌𝑖(d
ℎ
2)} be the ordered sequences obtained by applying the penalty 𝜌𝑖 to the samples. Then,

it holds, almost surely, that W(m𝜌
𝑖)(𝜇, 𝜈) = lim𝑁→∞

1
ℓ𝑁

∑︀ℓ𝑁
ℎ=1max

{︁
𝜈ℎ − 𝜔⌈ℎ

ℓ
⌉, 0

}︁
.

Statistical Estimation of Robustness The computation of the robustness of a system s with

respect to a formula 𝜙, at a given time step 𝜏 and starting from the data state ds, is performed

via the function Sat given in Figure 1. Together with the data state ds, the step 𝜏 , and the

formula 𝜙, function Sat takes as parameters the two integers ℓ and 𝑁 identifying the number

of samplings that will be used to estimate the Wasserstein metric. This function consists of

three steps. First the time horizon h of the formula 𝜙 is computed (by induction on the structure

of 𝜙) to identify the number of steps needed to evaluate the robustness. In the second step,

function Estimate is used to simulate the evolution sequence of s from ds by collecting the

sets of samplings 𝐸 = 𝐸0, . . . , 𝐸h. Then, in the third step, function Eval, presented in Figure 2,

is used for the evaluation of the robustness. The structure of Eval is similar to the monitoring

function for STL defined in [20]. Function Eval is defined recursively on the syntax of 𝜙. In

the cases of the atomic formulae target(𝜇)𝜌𝑞 and brink(𝜇)𝜌𝑞 , firstly we use function Sample to

obtain ℓ ·𝑁 independent samples of the distribution 𝜇. Then, we use function Wass to compute

the Wasserstein distance between the sampling of 𝜇 and the sampling 𝐸𝜏 of the distribution

reached at step 𝜏 by s.

The following theorem guarantees that when 𝑁 goes to infinite, the robustness computed by

function Sat converges, almost surely, to the exact value.

Theorem 3. For any formula 𝜙, system s, data state ds, time step 𝜏 , and integer ℓ > 0

lim
𝑁 ↦→∞

Sat(ds, 𝜏, 𝜙, ℓ,𝑁) = J𝜙K𝒮ds ,𝜏
.

Proof. The proof follows by induction on the structure of the formula 𝜙, using Theorem 2 to

deal with the base cases of 𝜙 = target(𝜇)𝜌𝑝 and 𝜙 = brink(𝜇)𝜌𝑝.

https://github.com/quasylab/jspear/tree/Tony

1: function Eval(𝐸, 𝜏, 𝜙, ℓ,𝑁)

2: match 𝜙
3: with ⊤ :

4: return 1.0
5: with target(𝜇)𝜌𝑞 :

6: 𝐸′ ← Sample(𝜇, ℓ ·𝑁)
7: return 𝑞 −Wass(𝐸′, 𝐸𝜏 , 𝜌)

8: with brink(𝜇)𝜌𝑝 :

9: 𝐸′ ← Sample(𝜇, ℓ ·𝑁)
10: return Wass(𝐸𝜏 , 𝐸

′, 𝜌)− 𝑞

11: with ¬𝜙1 :

12: return −Eval(𝐸, 𝜏, 𝜙1, ℓ,𝑁)

13: with 𝜙1 ∨ 𝜙2 :

14: returnmax{Eval(𝐸, 𝜏, 𝜙1, ℓ,𝑁), Eval(𝐸, 𝜏, 𝜙2, ℓ,𝑁)

15: with 𝜙1 𝒰 [𝑎,𝑏] 𝜙2 :

16: 𝑟𝑒𝑠← 0.0
17: for 𝑖 ∈ [𝜏 + 𝑎, 𝜏 + 𝑏] do
18: 𝑟𝑒𝑠1 ← 0.0
19: for 𝑗 ∈ [𝜏 + 𝑎, 𝑖] do
20: 𝑟𝑒𝑠1 ← min{𝑟𝑒𝑠1, Eval(𝐸, 𝑗, 𝜙1, ℓ,𝑁)}
21: end for
22: 𝑟𝑒𝑠← max{𝑟𝑒𝑠,min{𝑟𝑒𝑠1, Eval(𝐸, 𝑖, 𝜙2, ℓ,𝑁)}}
23: end for
24: return 𝑟𝑒𝑠
25: end function

Figure 2: Evaluation of robustness.

Example 3. The procedure outlined above can be used for the evaluation of the requirements

on the vehicle scenario presented in Example 2. Let 𝒱 be the evolution sequence of the system

obtained from the following initial parameters: p_dist = 10000; p_speed = 25.0; MAX_SPEED =
40.0; A = 0.25; B = 2.0; TIMER = 1.0. In Figure 3a we report the evaluations, in 𝒱 and

time step 0, of various instances of the formula 𝜙1. We consider a different instance for each

𝜏1 ∈ [250, 280], while we fix the other parameters: 𝜏2 = 350; 𝑁 = 100 and ℓ = 10. For

each instance, we consider three variations, according to the threshold of the atomic formula:

𝜀 ∈ {0.1, 0.3, 0.5}.
Finally, we remark that J𝜙2K𝒱,𝜏 = 0.0 for all 𝜏 ∈ [0, 350], as shown in Figure 3b. In terms

of robustness semantics, an evaluation to 0.0 is usually considered as non-informative, as it

gives us no information on how much the behaviour of the system can be modified in order

to validate (or invalidate) the considered property. However, in this specific case, 0.0 is the

best value that we can obtain. In fact, the formula 𝜙2 contains a strict requirement on the

speed, which is required to be exactly 0.0. Hence, J𝜙2K𝒱,𝜏 = 0.0 means that this requirement is

actually met and, at the same time, even the tiniest modification in the behaviour might cause

the formula to be invalidated.

(a) Evaluations of 𝜙1. (b) Evaluations of 𝜙2.

Figure 3: Evaluations of various instances of formulae 𝜙1 and 𝜙2.

5. Concluding Remarks

Differently from the other probabilistic temporal logics usually considered in the literature,

DisTL can be used to express the properties of the distributions expressing the transient and

expected behaviour of the system. Up to our knowledge, [26] is the only other paper proposing

to substitute probabilistic guarantees on the temporal properties with a richer description

of the probabilistic events. In detail, [26] introduces ProbSTL, a stochastic variant of STL

tailored to the incremental runtime verification of safe behaviour of robotic systems under

uncertainties, based on a predictive stream reasoning tool: their stochastic signal is given by

the prediction on the possible future trajectories of a system, taking uncertainties into account.

Yet, ProbSTL specifications are tested only on the current trajectory of the system. This is the

main difference with our work, since our logic has been built to express the overall uncertain

behaviour of the system. This disparity is also a consequence of the different application

context: off-line verification for us, runtime verification in [26]. However, as future work,

we plan to develop a predictive model for the runtime monitoring of DisTL specifications. In

particular, inspired by [27, 28] where deep neural networks are used as reachability predictors

for predictive monitoring, we intend to integrate our work with learning techniques, to favour

the computation and evaluation of the predictions.

In Markov processes as transformers of distributions [29, 30], state-to-state transition probabil-

ities are interpreted as a single distribution over the state space. We remark that the state space

in [29, 30] is finite and discrete, whereas our evolution sequences are defined in the continuous

setting, which means that we are not introducing any limiting assumption on the behaviour of

the environment. Moreover, the temporal logics used to model check properties of transformers

of distributions, respectively iLTL in [29] and the almost acyclic Büchi automata in [30], have a

boolean semantics, and are thus not comparable to DisTL, in which formulae are interpreted in

terms of robustness.

A statistical model checking algorithm for PCTL specifications over Markov chains has

been proposed in [31], using stratified sampling. This allows for the generation of negatively

correlated samples, thus reducing the number of samples needed to obtain confident results at

the price of restricting the form of the PCTL formulae to be checked. We plan to study the use

of stratified sampling in our model checking algorithm.

We also plan to investigate the application of our framework to the analysis of biological

systems. Some quantitative extensions of temporal logics have already been proposed in that

setting (e.g. [32, 33, 34]) to capture the notion of robustness from [35] or similar proposals [36].

It would be interesting to see whether the use of DisTL and evolution sequences can lead to

new results in this setting.

Acknowledgments

This work has been partially supported by the project Programs in the wild: uncertainties,

adaptability and verification (ULTRON) of the Icelandic Research Fund (grant No. 228376-051).

This publication is part of the project NODES which has received funding from the MUR –

M4C2 1.5 of PNRR with grant agreement no. ECS00000036.

References

[1] R. Rajkumar, I. Lee, L. Sha, J. A. Stankovic, Cyber-physical systems: the next computing

revolution, in: DAC, ACM, 2010, pp. 731–736.

[2] V. Castiglioni, M. Loreti, S. Tini, How adaptive and reliable is your program?, in: Proceed-

ings of FORTE 2021, volume 12719 of Lecture Notes in Computer Science, 2021, pp. 60–79.

doi:10.1007/978-3-030-78089-0_4.

[3] V. Castiglioni, M. Loreti, S. Tini, A framework to measure the robustness of programs

in the unpredictable environment, Log. Methods Comput. Sci. 19 (2023). doi:10.46298/
lmcs-19(3:2)2023.

[4] L. de Alfaro, T. A. Henzinger, R. Majumdar, Discounting the Future in Systems Theory,

in: Proceedings of ICALP’03, ICALP ’03, Springer, 2003, pp. 1022–1037. doi:10.1007/
3-540-45061-0_79.

[5] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden, Metrics for labelled Markov

processes, Theor. Comput. Sci. 318 (2004) 323–354. doi:10.1016/j.tcs.2003.09.013.

[6] V. Castiglioni, M. Loreti, S. Tini, The metric linear-time branching-time spectrum on

nondeterministic probabilistic processes, Theor. Comput. Sci. 813 (2020) 20–69. doi:10.
1016/j.tcs.2019.09.019.

[7] V. Castiglioni, M. Loreti, S. Tini, RobTL: A temporal logic for the robustness of cyber-

physical systems, CoRR abs/2212.11158 (2022). doi:10.48550/arXiv.2212.11158.

arXiv:2212.11158.

[8] M. Fränzle, J. Kapinski, P. Prabhakar, Robustness in cyber-physical systems, Dagstuhl

Reports 6 (2016) 29–45. doi:10.4230/DagRep.6.9.29.

[9] M. Rungger, P. Tabuada, A notion of robustness for cyber-physical systems, IEEE Trans.

Autom. Control. 61 (2016) 2108–2123. doi:10.1109/TAC.2015.2492438.

[10] A. Shahrokni, R. Feldt, A systematic review of software robustness, Information and Soft-

ware Technology 55 (2013) 1–17. doi:https://doi.org/10.1016/j.infsof.2012.
06.002.

[11] E. D. Sontag, Input to State Stability: Basic Concepts and Results, Springer Berlin Heidel-

berg, 2008, pp. 163–220. doi:10.1007/978-3-540-77653-6_3.

[12] V. Castiglioni, M. Loreti, S. Tini, Stark: A software tool for the analysis of robustness in the

http://dx.doi.org/10.1007/978-3-030-78089-0_4
http://dx.doi.org/10.46298/lmcs-19(3:2)2023
http://dx.doi.org/10.46298/lmcs-19(3:2)2023
http://dx.doi.org/10.1007/3-540-45061-0_79
http://dx.doi.org/10.1007/3-540-45061-0_79
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.tcs.2019.09.019
http://dx.doi.org/10.1016/j.tcs.2019.09.019
http://dx.doi.org/10.48550/arXiv.2212.11158
http://arxiv.org/abs/2212.11158
http://dx.doi.org/10.4230/DagRep.6.9.29
http://dx.doi.org/10.1109/TAC.2015.2492438
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2012.06.002
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2012.06.002
http://dx.doi.org/10.1007/978-3-540-77653-6_3

unknown environment, in: Proceedings of COORDINATION 2023, volume 13908 of Lecture

Notes in Computer Science, 2023, pp. 115–132. doi:10.1007/978-3-031-35361-1_6.

[13] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Formal Asp.

Comput. 6 (1994) 512–535. doi:10.1007/BF01211866.

[14] A. Aziz, K. Sanwal, V. Singhal, R. K. Brayton, Model-checking continous-time Markov

chains, ACM Trans. Comput. Log. 1 (2000) 162–170. doi:10.1145/343369.343402.

[15] A. Aziz, K. Sanwal, V. Singhal, R. K. Brayton, Verifying continuous time Markov chains,

in: Proceedings of CAV ’96, volume 1102 of Lecture Notes in Computer Science, 1996, pp.

269–276. doi:10.1007/3-540-61474-5_75.

[16] A. Pnueli, The temporal logic of programs, in: Proceedings of FOCS 1977, IEEE Computer

Society, 1977, pp. 46–57. doi:10.1109/SFCS.1977.32.

[17] M. Tiger, F. Heintz, Stream reasoning using temporal logic and predictive probabilistic state

models, in: Proceedings of TIME 2016, 2016, pp. 196–205. doi:10.1109/TIME.2016.28.

[18] D. Sadigh, A. Kapoor, Safe control under uncertainty with probabilistic signal temporal

logic, in: Proceedings of Robotics: Science and Systems XII 2016, 2016. doi:10.15607/
RSS.2016.XII.017.

[19] R. Koymans, Specifying real-time properties with metric temporal logic, Real Time Syst. 2

(1990) 255–299. doi:10.1007/BF01995674.

[20] O. Maler, D. Nickovic, Monitoring temporal properties of continuous signals, in: Proceed-

ings of FORMATS and FTRTFT 2004, volume 3253 of Lecture Notes in Computer Science,

2004, pp. 152–166. doi:10.1007/978-3-540-30206-3_12.

[21] L. N. Vaserstein, Markovian processes on countable space product describing large systems

of automata., Probl. Peredachi Inf. 5 (1969) 64–72.

[22] V. I. Bogachev, Measure Theory, number v. 1 in Measure Theory, Springer-Verlag,

Berlin/Heidelberg, 2007. doi:10.1007/978-3-540-34514-5.

[23] O. P. Faugeras, L. Rüschendorf, Risk excess measures induced by hemi-metrics, Probability,

Uncertainty and Quantitative Risk 3:6 (2018). doi:10.1186/s41546-018-0032-0.

[24] A. Donzé, O. Maler, Robust satisfaction of temporal logic over real-valued signals, in:

Proceedings of FORMATS 2010, volume 6246 of Lecture Notes in Computer Science, 2010,

pp. 92–106. doi:10.1007/978-3-642-15297-9_9.

[25] D. Thorsley, E. Klavins, Approximating stochastic biochemical processes with Wasserstein

pseudometrics, IET Syst. Biol. 4 (2010) 193–211. doi:10.1049/iet-syb.2009.0039.

[26] M. Tiger, F. Heintz, Incremental reasoning in probabilistic signal temporal logic, Int. J.

Approx. Reason. 119 (2020) 325–352. doi:10.1016/j.ijar.2020.01.009.

[27] D. Phan, N. Paoletti, T. Zhang, R. Grosu, S. A. Smolka, S. D. Stoller, Neural state classification

for hybrid systems, in: Proceedings of ATVA 2018, volume 11138 of Lecture Notes in

Computer Science, 2018, pp. 422–440. doi:10.1007/978-3-030-01090-4_25.

[28] L. Bortolussi, F. Cairoli, N. Paoletti, S. A. Smolka, S. D. Stoller, Neural predictive monitoring,

in: Proceedings of RV 2019, volume 11757 of Lecture Notes in Computer Science, 2019, pp.

129–147. doi:10.1007/978-3-030-32079-9_8.

[29] Y. Kwon, G. Agha, Linear inequality LTL (iltl): A model checker for discrete time markov

chains, in: Proceedings of ICFEM 2004, volume 3308 of Lecture Notes in Computer Science,

2004, pp. 194–208. doi:10.1007/978-3-540-30482-1_21.

[30] V. A. Korthikanti, M. Viswanathan, G. Agha, Y. Kwon, Reasoning about mdps as transform-

http://dx.doi.org/10.1007/978-3-031-35361-1_6
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1145/343369.343402
http://dx.doi.org/10.1007/3-540-61474-5_75
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/TIME.2016.28
http://dx.doi.org/10.15607/RSS.2016.XII.017
http://dx.doi.org/10.15607/RSS.2016.XII.017
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1007/978-3-540-34514-5
http://dx.doi.org/10.1186/s41546-018-0032-0
http://dx.doi.org/10.1007/978-3-642-15297-9_9
http://dx.doi.org/10.1049/iet-syb.2009.0039
http://dx.doi.org/10.1016/j.ijar.2020.01.009
http://dx.doi.org/10.1007/978-3-030-01090-4_25
http://dx.doi.org/10.1007/978-3-030-32079-9_8
http://dx.doi.org/10.1007/978-3-540-30482-1_21

ers of probability distributions, in: Proceedings of QEST 2010, IEEE Computer Society,

2010, pp. 199–208. doi:10.1109/QEST.2010.35.

[31] Y. Wang, N. Roohi, M. West, M. Viswanathan, G. E. Dullerud, Statistical verification of

PCTL using antithetic and stratified samples, Formal Methods Syst. Des. 54 (2019) 145–163.

doi:10.1007/s10703-019-00339-8.

[32] F. Fages, A. Rizk, On temporal logic constraint solving for analyzing numerical data time

series, Theor. Comput. Sci. 408 (2008) 55–65. doi:10.1016/j.tcs.2008.07.004.

[33] A. Rizk, G. Batt, F. Fages, S. Soliman, A general computational method for robustness

analysis with applications to synthetic gene networks, Bioinform. 25 (2009). doi:10.1093/
bioinformatics/btp200.

[34] A. Rizk, G. Batt, F. Fages, S. Soliman, Continuous valuations of temporal logic specifications

with applications to parameter optimization and robustness measures, Theor. Comput. Sci.

412 (2011) 2827–2839. doi:10.1016/j.tcs.2010.05.008.

[35] H. Kitano, Towards a theory of biological robustness, Molecular Sys-

tems Biology 3 (2007) 137. doi:https://doi.org/10.1038/msb4100179.

arXiv:https://www.embopress.org/doi/pdf/10.1038/msb4100179.

[36] L. Nasti, R. Gori, P. Milazzo, Formalizing a notion of concentration robustness for biochem-

ical networks, in: Proceedings of STAF 2018, volume 11176 of Lecture Notes in Computer

Science, 2018, pp. 81–97. doi:10.1007/978-3-030-04771-9_8.

http://dx.doi.org/10.1109/QEST.2010.35
http://dx.doi.org/10.1007/s10703-019-00339-8
http://dx.doi.org/10.1016/j.tcs.2008.07.004
http://dx.doi.org/10.1093/bioinformatics/btp200
http://dx.doi.org/10.1093/bioinformatics/btp200
http://dx.doi.org/10.1016/j.tcs.2010.05.008
http://dx.doi.org/https://doi.org/10.1038/msb4100179
http://arxiv.org/abs/https://www.embopress.org/doi/pdf/10.1038/msb4100179
http://dx.doi.org/10.1007/978-3-030-04771-9_8

	1 Introduction
	2 The Evolution Sequence Model
	3 The Distribution Temporal Logic
	4 Statistical Model Checking
	5 Concluding Remarks

