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Abstract
This paper presents our learned lessons from the ADD2023 track3, Deepfake Algorithm Recognition (AR). In recent years,
speech synthesis has made remarkable progress, where it has become increasingly difficult for human listeners to differentiate
between synthesized speech and genuine human speech. Previous research has demonstrated that improving the recognition
of deepfake algorithms can significantly enhance spoofing detection. Therefore, the primary focus of this paper is to investigate
deepfake algorithm recognition, with experiments conducted based on the ADD2023 challenge. Inspired by speaker verification,
we approach deepfake algorithm recognition as an open-set task. We propose a center-based similarity maximum method for
determining the category of deepfake algorithms. Finally, by combining the scores from multiple models at the score level, we
achieve an impressive F1 score of 0.8312 on the evaluation set.
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1. Introduction
Text-to-speech (TTS) and voice conversion (VC) systems
have made significant progress in recent years, thanks
to the progress made in deep learning techniques and
the availability of large-scale corpora [1]. These advance-
ments have enabled the generation of audio that is almost
virtually indistinguishable from human speech, posing
serious threats to human users and Automatic Speaker Ver-
ification (ASV) systems in terms of potential attacks and se-
curity vulnerabilities. To protect the integrity of ASV sys-
tems, audio anti-spoofing countermeasure (CM) systems
are commonly employed to detect spoofing audios [2].

In recent years, significant efforts have been devoted
to the audio anti-spoofing task, with notable challenges
such as ASVSpoof [3, 4] gaining prominence. However,
most of these endeavors have primarily focused on binary
classification tasks, distinguishing between bona fide
and spoof audios, while neglecting the recognition of
deepfake algorithms. Recognizing deepfake algorithms
presents a more challenging multi-classification problem,
with the presence of unseen categories, compared to fake
audio detection.

In this paper, we evaluate the performance of deep-
fake algorithm recognition, focusing on the ADD2023
track3 [5], which aims to recognize the specific deepfake

IJCAI 2023Workshop onDeepfakeAudioDetectionandAnalysis (DADA
2023), August 19, 2023, Macao, S.A.R
*Corresponding author.
†

These authors contributed equally.
$ xiaoyi.qin@dukekunshan.edu.cn (X. Qin);
xingming.wang@dukekunshan.edu.cn (X. Wang);
yanli.chen@msxf.com (Y. Chen); qinglin.meng@msxf.com
(Q. Meng); ming.li369@duke.edu (M. Li)

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License 
Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

algorithm that a fake utterance is generated from. The
evaluation set consists of both known and unknown deep-
fake algorithms, making the task an open-set recognition
problem. To address this challenge, we propose a center-
based maximum similarity evaluation method inspired by
speaker verification. In our approach, we adopt an 1D and
2D convolution-based backbone to extract highly discrim-
inative embedding. And then, each test embedding is com-
puted the similarity with each known class centroid em-
bedding. Finally, by fusing scores from multiple models at
the score level, we achieve an impressive F1 score of 0.8312.

2. RelatedWork

2.1. Anti-spoofing
Synthesized audio spoofing is generally considered a logi-
cal access (LA) attack [6]. In recent years, mainstream CM
systems for synthetic speech detection usually comprise
two modules: feature extraction and binary classification.
The feature extraction module extracts applicable features
suitable for synthetic speech detection tasks. The classi-
fier module determines whether the test audio is bonafide
or spoofed based on the extracted features. Therefore, the
performance of the classification module heavily relies on
feature extractors that can provide highly discriminative
features. Features based on audio self-supervised learning
models have been shown to be effective [7]. On the other
hand, various models and network architectures have
been used for back-end classifiers, some of them takes
frequency acoustic features as input, including ResNet
[8], SE-Net [9], LCNN [10], etc., while some take original
waveform as input, such as RawNet2 [11], AASIST
[12], etc. Additionally, there are also some angle-based
loss functions used for audio anti-spoofing, such as
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Figure 1: The implement pipeline of our proposed Center-
based Maximum Similarity Method

AM-softmax [13] and Arcface [14], which are designed
to increase the inter-class distance while reducing the
intra-class distance. The OC-softmax is also adopted
to customizes metric parameters for the different class
distributions of bonafide and spoof audios [15].

The second Audio Deepfake Detection challenge (ADD
2023)[5] first sets up a track for deepfake algorithm recog-
nition. Prior to that, only few researches focused on this
task. M. Muller et al. presents several methods for creating
attacker signatures using low-level acoustic descriptors
and machine-learning embeddings for attacker attribution
[16]. Zhu et al. uses separate module classifying attributes
for the spoofing attack, which can also be helpful for bi-
nary spoof detection [17]. Li et al. used a multi-task learn-
ing approach to algorithm recognition as an auxiliary task
for binary classification, which is proved effective [18].

2.2. Speaker verification
Automatic Speaker Verification (ASV) is a voice identity
technology that determines whether two speech segments
belong to the same person. To evaluate the performance
of an ASV system, a trial list is provided, where each trial
consists of an enrollment segment and a test segment. In
the deep learning stage, we usually extract the speaker
embedding, a fixed 𝑑-dimensional vector, from variable-
length waveform. Then, we calculate the similarity
between the enrollment embedding and the test embed-
ding, which represents the probability that they belong to
the same person. ASV is an open-set task, meaning that all
test speakers are unseen during the training stage. On the
other hand, deepfake algorithm recognition is a semi-open
task, where both seen and unseen classes exist during the
evaluation stage.In this case, we can adopt the method of
speaker verification for deepfake algorithm recognition.

In this paper, we regard the deepfake algorithms
recognition as a speaker verification task. Accordingly,
we propose a center-based maximum similarity method
to determine the category of test audio.

3. Center-based
Maximum SimilarityMethod

The pipeline of our proposed method is illustrated in
Figure 1. We employ a supervised learning approach
to train a closed-set classification model on the training
dataset. Subsequently, we feed all variable-length audio
samples from the training set into the encoder of trained
model, obtaining fixed-length 𝑑-dimensional embeddings
z∈R𝑑. These embeddings correspond to the final linear
outputs before the classifier. The classifier output can
be seen as the result of inner product between the test
embedding and the linear weight w𝑖∈R𝑑, where w𝑖 can
be consider the centroid 𝑖. When z andw𝑖 are normalized,
the classifier output is the cosine similarity between z and
w𝑖. However, the training process is not always stable,
which may make center shifting. To overcome this, we
calculate the average embedding for each class, obtaining
stable intra-class centroids:

c𝑘=
1

𝑁

𝑁∑︁
𝑖=0

z𝑘,𝑖 (1)

where c𝑘 represents the embedding centroid of class 𝑘,
and z𝑘,𝑖 corresponds to the embedding of the 𝑖-th sample
from class 𝑘. Next, we evaluate the test embedding z𝑡𝑒𝑠𝑡

by scoring it against all intra-class centroids. The scores
are denoted as 𝑣𝑖∈𝑉 and 𝑖∈{0,1,2,3,4,5,6}.

𝑣𝑖=cos(z𝑡𝑒𝑠𝑡,c𝑖) (2)
where cos(·) indicates the cosine similarity between

test embedding and various intra-class centroids. During
the training process, we employ a loss function with
angular margin, specifically ArcFace [14], to optimize
the embeddings. ArcFace not only incorporates cosine
similarity during optimization, but also increases the
inter-class margin while reducing intra-class variance.

Finally, if any score 𝑣𝑖 surpasses the predefined
centroid threshold, the test audio is assigned to the
class with the highest score. Conversely, if all scores 𝑣𝑖
fall below the threshold, the test audio is considered as
belonging to an unknown class 7.{︃

argmax𝑣𝑖∈𝑉 (𝑣𝑖), max(𝑣𝑖)>0.75,

7, max(𝑣𝑖)≤0.75.
(3)

The value 0.75 is a hyperparameter that has been
obtained through tuning on the development set.

4. Implement Details

4.1. Network
In our deepfake algorithm recognition system, we employ
a two-stage training approach: pre-training and large
margin fine-tuning (LMFT). During the first stage, we set
the scalar and margin of the angle softmax to 32 and 0.2,
respectively. In the LMFT stage, we increase the margin to
0.4. To capture the distinctive features of deepfake audio,
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we leverage various network architectures. Below are the
specific details of each network utilized in our system:
ResNet34SimAM-ASP: We adopt the ResNet34SimAM-
ASP [19] as our baseline system. This network utilizes
the residual modules of ResNet and is equipped with the
SimAM (Simple attention module). We use a thin ResNet
structure with a backbone width of {32,64,128,256}
to prevent overfitting on small-scale training data. The
output feature maps are then processed using attentive
statistics pooling (ASP) [20]. The output embedding has
a dimension of 256.
ResNet34-GSP: ResNet34-GSP is based on the standard
ResNet backbone, which is a well-known framework
for 2D Convolutional Neural Networks (2D-CNNs) in
image recognition tasks. We use the same backbone
width as ResNet34SimAM-ASP. The encoding layer of
ResNet34-GSP is based on global statistic pooling (GSP),
and the embedding has a dimension of 256.
ResNet34SE-ASP: ResNet34SE-ASP is similar to
ResNet34SimAM-ASP in terms of architecture but
replaces the SimAM attention module with a squeeze-
and-excitation (SE) module. The SE module aggregates
global channel information as attention weights for all
feature maps. The embedding dimension is also 256.
ECAPATDNN-ASP: ECAPA-TDNN [21] is a 1D-CNN
model that has achieved great success in speaker verifica-
tion. The SE-Res2Block is used to capture speaker features,
and Multi-layer Feature Aggregation (MFA) is employed
to process concatenated information before feeding it to
the ASP. The resulting embedding has a dimension of 256.
LCNN: LCNN is a network commonly used for audio
anti-spoofing, particularly in the ASVSpoof 2021 chal-
lenge [4]. The Max-Feature-Map (MFM) operation, based
on the Max-Out activation function, is a key component
in LCNN. The Bi-LSTM layer is used for pooling to
aggregate utterance-level embeddings in LCNN. The
resulting embedding has a dimension of 256.
AASIST-SAP: AASIST [12] is a waveform-level deep-
fake detection model. It includes a RawNet2-based [11]
encoder and an attention network-based graph module.
AASIST operates on raw waveforms to extract meaningful
high-dimensional spectro-temporal feature maps. It then
extracts graph nodes from the feature maps in both the
temporal and frequency domains [12]. The final embed-
ding is obtained by concatenating the mean and maximum
values of various nodes. AASIST-SAP is an improved ar-
chitecture where the max pooling layer of the encoded fea-
ture maps is replaced by a 2D self-attentive pooling (SAP)
[22]. The resulting embedding has a dimension of 256.
wav2vec-ECAPA and wavlm-ECAPA: We adopt the
Wav2vec 2.0 [23] and WavLM [24] models for front-end
acoustic feature extraction in our system, respectively.
Both models are large-scale self-supervised learning (SSL)
pre-trained models widely used in the speech field. The
effectiveness of Wav2vec in extracting acoustic features
has been demonstrated in anti-spoofing scenarios [25].
By utilizing Wav2vec 2.0 and WavLM, we extract acoustic

features from the input audio. These features are then
fed into the ECAPA-TDNN model for further processing
and embedding extraction. The resulting embedding has
a dimension of 256.

4.2. Data processing and augmentation
For our input features, we adopt the log Mel-filterbank,
log-spectrum, and waveform. The log Mel-filterbank
energies have a dimension of 80, and the log-spectrum
has a dimension of 257. The frame length is set to 25ms,
and the hop size is set to 10ms.

To diversify the training samples, we apply on-the-fly
data augmentation techniques [26]. We employ two types
of augmentation methods: 1) Adding noise: We use the
MUSAN dataset [27], specifically the non-speech parts, to
add noise to the audio samples during training; 2) Adding
convolutional reverberation: We utilize the RIR Noise
datasets [28] to simulate convolutional reverberation
effects and apply them to the training data.

4.3. Dataset analysis
4.3.1. Statistic Analysis

Figure 2: Distribution of audio durations in the train, devel-
opment and evaluation set. The evaluation set is focusing on
audio samples that are 20 seconds or less for ease of compari-
son.

TheexperimentsareperformedontheADD2023Track3
dataset. We start by performing a statistical analysis of
the train set and development set. The train set consists of
22,400 audio samples, while the development set contains
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Figure 3: Distribution of log-likelihoods for all embeddings of
the three sets. The higher the score, the higher the likelihood
that the sample is from the same distribution as the training
set.

8,400 samples. The average duration of the audio samples
in the train set is 6.58 seconds, and in the development set,
it is 6.84 seconds. Therefore, we randomly divide the sam-
ples into 6-second segments during training to ensure con-
sistency in the input size. The duration distribution of the
training and development sets can be observed in Figure 2.

Additionally, we observe that while the sampling
rate of the training set is uniformly set to 16kHz, the
development set contains audio samples with both 24kHz
and 16kHz sampling rates. The sample rate of the 3rd and
4th classes in the development set is 24kHz. Some audio
samples in the development set were originally at an 8kHz
sampling rate but were upsampled to 16kHz. We notice
that these upsampled samples may lack high-frequency
information. To maintain consistency, we downsample
or upsample all audio samples to a 16kHz sampling rate
during training and testing.

However, the evaluation set exhibits some statistical
differences compared to the training set. The evaluation
set includes audio samples with sampling rates of 16kHz,
24kHz, and 44.1kHz. On the other hand, the duration
distribution of the evaluation set can be seen in Figure
2. Although there are certain statistical inferences
present in the evaluation set, we choose not to exploit
these statistical inference in decision to ensure the
generalizability of our method.

4.3.2. Visualization Analysis

In order to assess the similarity between the training
and test data distributions, we utilized a trained embed-
ding extractor to extract embeddings from the train,
development, and evaluation sets. Subsequently, we
employed a Gaussian Mixture Model (GMM) with 512
components to perform one-class modeling on the train
set. By calculating the log-likelihood for all embeddings
on the one-class GMM, we obtained score distributions
of three sets as shown in Figure 3.

Upon analyzing the results, we observe that the score
distributions of the evaluation set and development set
are relatively similar. However, there is a significant

disparity between the score distribution of the evaluation
set and the training sets. This observation highlights the
considerable challenge presented by the evaluation set
in terms of testing the generalization performance of our
proposed method.

In addition, we also present the t-SNE visualization of
the training set and the evaluation set in Figure 4. The
embeddings t-SNE used are extracted by ResNet34SimAM-
ASP model. The label of evaluation set is marked by
center-based maximum similarity method. We have ob-
served that, except for the samples at the margins, most of
the known classes can be recognized effectively. However,
the unknown class does not exhibit a clear intra-class cen-
ter and is not easily detected. Therefore, we speculate that
the unknown class may not consist of a single category
but rather a collection of multiple unknown classes.

(a) t-SNE of embeddings in the
training set

(b) t-SNE of embeddings in the
evaluation set

Figure 4: Visualization analysis of t-SNE

5. Results
Table 1 presents the final performance of various systems
using center-based maximum similarity method. Firstly,
by comparing different models with the addition of the
development set (e.g., ID 1&2, ID 4&5, and ID 8&9), no
clear improvement or decrease in performance was
observed. This could potentially be attributed to the
limited amount of data, which makes the models prone
to overfitting and results in unstable performance. Based
on the score distribution depicted in Figure 3, the score
trends of evaluation set and development set are similar.
Therefore, in order to select the best model of each system,
many models are not trained using the development set.

Secondly, we analyze the impact of acoustic features
on the recognition performance. Since different models
exhibited similar performance trends with different
features, the focus is mainly on comparing model ID 4 and
model ID 6 in terms of different features. It was found that
the spectrum feature tended to overfit on the development
set, indicating that the performance on the development
set alone might not fully reflect the generalization
performance of the models. In addition, performance of
the SSL-based models are also not satisfactorily.
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Table 1
The performances of various systems with center-based maximum similarity method in the development and evaluation sets. ID
0 indicates that we only adopt 7 known centroids without unknown category.

ID Model Train data Feature Dev Eval
Acc F1

0 ResNet34SimAM-ASP (7 categories) Train set Mel 96.536 0.965 0.7150
1 ResNet34SimAM-ASP Train set Mel 96.536 0.965 0.7838
2 ResNet34SimAM-ASP Train + Dev Mel - - 0.7880
3 ResNet34GSP Train Mel 94.238 0.942 0.7650
4 ResNet34SE-ASP Train Mel 93.107 0.930 0.7693
5 ResNet34SE-ASP Train + Dev Mel - - 0.7398
6 ResNet34SE-ASP Train Spectrum 98.798 0.988 0.6006
7 ECAPA-ASP Train Mel 92.107 0.920 0.6402
8 LCNN Train Mel 96.27 0.9626 0.7628
9 LCNN Train+Dev Mel - - 0.7825
10 AASIST-SAP Train Waveform 95 0.9476 0.7422
11 Wav2vec(fixed)-ECAPA Train Waveform 97.75 0.9773 0.7075
12 Wav2vec(finetune)-ECAPA Train Waveform 91.17 0.9122 0.4493
13 WavLM(fixed)-ECAPA Train Waveform 93.04 0.93 0.6401

fus(0.5×ID 1+ 0.5×ID 4) 0.7943
fus(0.3×ID 1+ 0.25×ID 4+ 0.3×ID 9+ 0.25×ID 10) 0.8312

Figure 5: Inter-class similarity matrix for different system

(a) Inter-class similarity ma-
trix of ResNet34SimAM-ASP
with Mel feature

(b) Inter-class similarity ma-
trix of ResNet34SE-ASP with
Mel feature

(c) Inter-class similarity ma-
trix of ResNet34SE-ASP with
Spectrum

Considering the utilization of the center-based max-
imum similarity method, the inter-class similarity matrix
is computed for different models, as shown in Figure 5.
By combining Table 1 and Figure 5, it is observed that
better results are achieved when the inter-class similarity
distances are larger. Therefore, the best single model of
each system is selected by considering both the inter-class
similarity matrix and the results on the development set.

Model fusion is performed at the score level to achieve
complementary performance between models. Several
optimal models with different modeling approaches are
selected. Finally, an F1 score of 0.8312 is achieved on the
evaluation set.

6. Conclusion
In this paper, we regard the deepfake algorithm recogni-
tion as speaker verification and propose the center-based
maximum similarity method to determine the test audio
category. We select the best single model according to the
intra-class similarity matrix and result of development

set. Finally, by model fusion under the score level, we
achieved the 0.8312 F1-score in the evaluation set of
ADD2023 Track3.
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