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Abstract
The paper presents the participation of the CAU_KU team in the ADD 2023 Challenge, specifically in track 1.2 (audio fake
game - detection track) and track 3 (deepfake algorithm recognition track). Various deep learning models were explored
using features from the pretrained wav2vec2 network, as well as CQT, mel-spectrogram, etc. We modified the representation
extraction component of the AASIST model to incorporate 2D spectrograms (wav2vec2 or CQT) and attempted different deep
learning models, with model ensembling employed to create the final model. For track 1.2, our submitted ensemble model for
round 1 utilized the CQT-LCNN and CQT-AASIST models. For round 2, our model used the CQT-LCNN, CQT-AASIST, and
W2V2-GMM models. For track 3, we ensembled the CQT-LCNN, CQT-OFD and AASIST models. Additionally, we applied the
openmax algorithm to detect unknown deepfake attacks. Our best submission achieved 23.44% and 21.26% on round 1 and 2
of track 1.2, respectively, and ranked 3rd in track 1.2.
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1. Introduction
This paper describes the model developed by the Chung-
Ang University and Korea University (CAU_KU) team for
the second Audio Deep synthesis Detection Challenge
(ADD 2023) [1] in two tracks: Track 1.2 (audio fake game
- detection task) and Track 3 (deepfake algorithm recog-
nition). Our team competed in Track 1.2, which focuses
on detecting fake audio in a given dataset. Participants
in this track were asked to detect counterfeit audio, es-
pecially the fake samples generated from Track 1.1, in
the evaluation dataset provided by the organizers. The
task was evaluated by two rounds, with the second round
involving a released deepfake detection model that con-
testants were tasked with deceiving. Track 3, which is
known as Deepfake Algorithm Recognition (AR), aimed
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to recognize the algorithms used to generate deepfake
audio utterances. The dataset provided both known and
unknown algorithms associated with the fake audio. Par-
ticipants were tasked with developing algorithms capa-
ble of accurately classifying the deepfake utterances into
their respective categories.

In this study, we aimed to develop an advanced
model by leveraging the strengths of current state-of-the-
art methods, such as the Vicomtech ADD system that
achieved the first-place in the previous ADD 2022 chal-
lenge [2], and the AASIST model [3] that achieved the
state-of-the-art performance on the ASVspoof 2019 LA
data. To incorporate the effectiveness of the Wav2Vec2
(W2V2) feature utilized in the Vicomtech ADD system,
we integrated it into the representation extraction part
for the AASIST model. This approach proved successful
on the ASVspoof 2019 LA data, where the W2V2-AASIST
model achieved a state-of-the-art performance of 0.21%
EER. However, when evaluated on the ADD 2023 data,
this model did not yield satisfactory results, with a 40%
test EER. Thus, we considered ensemble modeling by
combining multiple well-performing models for the ADD
2023 challenge.

• Modified representation extraction part of the
AASIST model utilizing W2V2 and CQT.

• Experimented with models that ranked 3rd in the
previous ADD 2022 challenge [4] such as LCNN,
ResMax, and OFD.

• Conducted experiments using the Gaussian mix-
ture model (GMM) with the W2V2 feature, as well
as traditional features such as MFCC and CQT.
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• Applied OpenMax algorithm for track 3

For the first round of Track 1.2, the ensemble model
submitted by our team comprised the CQT-LCNN and
CQT-AASIST models. For the second round, the ensem-
ble model consisted of the CQT-LCNN, CQT-AASIST,
and W2V2-GMM models. These submissions achieved
EERs of 23.44% and 21.26% on round 1 and 2 of Track 1.2,
respectively, and ranked 3rd in this track.

In Track 3, we considered an ensemble of three models:
CQT-LCNN, CQT-OFD, and AASIST. To detect new attack
types, the OpenMax algorithm was applied. Our system
achieved an F1-score of 0.7205 for Track 3.

2. Methods

2.1. Feature engineering
In this study, we conducted experiments utilizing four
widely used audio feature extraction methods: CQT, Mel-
spectrogram, MFCC, and W2V2 [5]. Each method pos-
sesses distict advantages and limitations, rendering them
suitable for specific applications. CQT uses a constant Q
factor to ensure higher frequency resolution at low fre-
quencies and lower resolution at high frequencies, and
has demonstrated effectiveness in deepfake detection
tasks. Mel-spectrogram is obtained by applying Mel-
filterbanks to the power spectrum of the audio signal.
MFCC is another popular feature extraction method used
in speech processing and music analysis. W2V2 is a
state-of-the-art speech recognition method that learns
powerful representations from speech audio alone and
achieves impressive results with significantly less labeled
data compared to previous methods. The first-placed
team in the ADD 2022 challenge at track 1 (deepfake de-
tection track) demonstrated the usefulness of the W2V2
pretrained network [2]. By applying the discrete cosine
transform (DCT) to the CQT or mel-spectrogram features,
we obtain more compressed representations: Constant Q
Cepstral Coefficients (CQCC) or MFCC. In deep learning
scenarios, raw data such as mel-spectrogram and CQT of-
ten lead to higher accuracy. Thus, for our deep-learning
models, we opted for mel-spectrogram and CQT features
rather than CQCC and MFCC features.

2.2. Data augmentation
We explored several augmentation techniques such as
mixup [6], SpecAugment [7], FFM [4], FilterAugment [8]
and cutout [9]. These techniques have previously shown
promise in improving performance in the ADD 2022 chal-
lenge [10]. However, in the context of the ADD 2023
challenge, incorporating these augmentation techniques
did not yield substantial improvements in performance.

2.3. Models

(a) LCNN block (b) LCNN model

Figure 1: LCNN Model Architectures

2.3.1. LCNN model

The efficacy of the LCNN model has been demonstrated
in previous research through its notable performance in
the ASVspoof 2017, 2019, and 2021 challenges [11, 12, 13].
Our implementation of the LCNN model as depicted in
Figure 1(b) [14], consists of 9 layers, akin to the Light
CNN-9 model. However, we made modifications to the
architecture by substituting the fully connected layer
defined in the original Light CNN-9 model [14] with a
global average pooling layer, batch normalization, and
dropout layer. In Track 1.2, the final dense layer of our
LCNN model outputs two values, representing the labels
“spoofing” and “genuine.” In Track 3, the output dense
layer had a size of 7, representing the seven known deep-
fake algorithms, and it was activated using the softmax
activation function. Figure 1(a) describes the LCNN block,
where 𝑓 denotes the filter size, 𝑘 denotes the kernel size,
and 𝑏 indicates the use of batch normalization. The LCNN
block performs MFM (Max-Feature-Map) operation using
two convolution layers and optionally applies a batch
normalization layer indicated by the dashed block when
𝑏 = 1.

2.3.2. AASIST model and our proposed AASIST
variant

AASIST is an extended version of the RawGAT-ST[15]
that is based on a graph neural network [16]. AASIST
has achieved state-of-the-art performance on ASVSpoof
2019 challenge dataset for logical access (LA) scenario.

We propose modifications to the representation extrac-
tion part of the AASIST model. We conducted experi-
ments by replacing this extraction part by either a W2V2
pretrained model or CQT features, as shown in Figure
2. In the figure, the upper component of the representa-
tion extraction part depicts the original AASIST model.
The middle component represents the model utilizing
W2V2, with fine-tuning of the last transformer layers
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Figure 2: Our proposed AASIST variants, which are modified models in the representation extraction part, utilizing either the
W2V2 pretrained model or CQT features.

in the W2V2 pretrained model. The lower component
represents the model considering CQT features.

2.3.3. GMMmodel

The Gaussian Mixture Model (GMM) is a probabilistic
model that represents data as a combination of multi-
ple Gaussian distributions [17]. During the ADD 2023
challenge, it was observed that the performance of deep
learning models on the test set did not meet the antici-
pated level of success. This led us to consider using the
traditional machine learning-based GMM model, which
has been widely employed in ASVspoof 2015 [18] and
ASVspoof 2017 [19]. In addition, considering the neces-
sity for simpler models to prevent overfitting, we rec-
ognized GMM as a suitable method to effectively model
features extracted through W2V2 pretrained networks in
a straightforward yet effective manner. We considered
using various features such as MFCC, CQT, and W2V2
as input features for the GMM model.

2.3.4. OFD model

The Overlapped frequency-distributed (OFD) network
[20] is a spoofing detection model designed to detect
distinct features within different frequency ranges by di-
viding spectrograms along the frequency axis. There are
two types of models: OFD model and Non-OFD model.

In OFD model, each block divides the feature map
into multiple parts along the frequency axis allowing for
overlap. In contrast, Non-OFD model partitions the fea-
ture map along the frequency axis without any overlap.
Both models consist of six blocks, each characterized by
three hyperparameters: the number of splits, the pres-
ence or absence of overlap, and the activation function.
In OFD model, all six blocks are split with overlap, while
in Non-OFD model, no overlaps occur between blocks.
The activation function can be either ReLU or MFM. For
instance, “OFD with (𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6)-ReLU” refers

to OFD model with 𝑠𝑖 number of splits in the 𝑖th block,
using ReLU. If 𝑠𝑖 = 0, then it implies that the 𝑖th block
does not split the input feature map.

2.3.5. Other models

Additionally, we conducted experiments with several
alternative methods, including ResMax [21, 22], BC-
ResMax, and DDWS [23]. However, these methods ex-
hibited comparable accuracy to the LCNN model, and
due to limited time, we were unable to dedicate further
investigation to these models.

2.4. OpenMax for unknown attack
detection

OpenMax [24] is an algorithm designed for open set
recognition, specifically targeting the identification of ut-
terances belonging to the unknown class. The algorithm
consists of two steps: preparation and inference.

During the preparation step, a model is trained using
known classes from the training set. Following the train-
ing phase, final-layer logit vectors (seven-dimensional)
are computed for correctly classified training data sam-
ples. The mean vector 𝜇𝑗 of the logit vectors correspond-
ing to each class 𝑗 = 0, 1, . . . , 6 is computed. The dis-
tance between the logit vector of each correctly classified
training sample and the mean vector of its class is deter-
mined. Weibull distributions are fitted using the libMR
[25] FitHigh function for each class, using the 𝜂 number
of samples with the largest distance to the mean vector.

In the inference step, the final-layer logit vectors are
obtained for all test samples. For each logit vector 𝑣𝑖 =
(𝑣𝑖,0, . . . , 𝑣𝑖,6), the probability 𝑤𝑗 of not belonging to
class 𝑗 is calculated for all 𝑗 = 0, 1, . . . , 6. The logit
vector is then updated as

𝑣𝑖 =

(︃
(1− 𝑤0)𝑣𝑖,0, . . . , (1− 𝑤6)𝑣𝑖,6,

6∑︁
𝑗=0

𝑤𝑗𝑣𝑖,𝑗

)︃
,
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and the softmax of 𝑣 serves as the output of the OpenMax
algorithm.

To handle uncertain predictions a threshold 𝜃 is set.
For each 𝑖, if max𝑗∈{0,...,7} 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑖)𝑗 ≤ 𝜃 or the
unknown class (j = 7) has the largest probability, then its
predicted class is considered to be 7.

3. Experiments

3.1. Datasets
3.1.1. ADD 2023 challenge datasets

The ADD 2023 challenge consists of three tracks, and we
describe the datasets for Track 1.2 and Track 3 [1]. Track
1.2 aims to detect fake audio, which refers to realistic
and natural-sounding fake voice audio that can deceive
deepfake detection models. This track is divided into two
rounds, both featuring nearly identical detection tasks.
Table 1 shows the number of samples in the training,
development, and test sets (round 1 and 2). Track 3 aims
to recognize deepfake speech algorithms. The training
and development sets have seven categories (0, 1, 2, ...,
6) with labels, one of which is real and the other six are
fake speech algorithms. Notably, the label for real speech
is unknown. The test set has eight categories, but no
label information is provided. Seven of them align with
the “known” classes in the training and development sets,
while the remaining category represents the unknown
fake class labeled as 7. Table 2 shows the number of
samples in the training, development, and test sets.

Table 1
The number of samples in the training, development, test sets
(round 1 and 2) of the ADD 2023 track 1.2 dataset.

Training Dev. R1. Test R2. Test

Genuine 3,012 2,307 Unknown Unknown
Fake 24,072 26,107 Unknown Unknown
Total 27,084 28,324 111,976 118,477

3.1.2. ASVspoof 2019 challenge LA dataset

The ASVspoof 2019 challenge [26] focuses on TTS, VC,
and replay spoofing attacks, and the dataset consists of
logical access (LA) and physical access (PA) scenarios
derived from the VCTK basic corpus [27]. Our focus
primarily lies on the LA data, which uses 17 TTS and
VC systems to produce both genuine and fake speech
samples. The dataset is partitioned into three subsets:
training, development, and evaluation. Here, the evalu-
ation data contains approximately 71K utterances with
unknown attacks.

Table 2
The number of samples in the training, development, and test
sets of the ADD 2023 track 3 dataset.

Labels Training Dev. Test

0 3,200 1,200 Unknown
1 3,200 1,200 Unknown
2 3,200 1,200 Unknown
3 3,200 1,200 Unknown
4 3,200 1,200 Unknown
5 3,200 1,200 Unknown
6 3,200 1,200 Unknown
7 0 0 Unknown

Total 22,400 8,400 79,490

3.2. Experimental setup
To assess the performance of our experimental models,
we conducted evaluation on two databases: the ADD
2023 challenge dataset and the ASVspoof 2019 LA dataset.
The model’s performance was evaluated using the equal
error rate (EER), which indicates the point at which the
false acceptance rate (FAR) and false rejection rate (FRR)
are equal. A lower EER value generally indicates better
performance.

The CQT-LCNN model was trained using 9-second
samples, a batch size of 16, and 10 epochs. To fit the 9-
second signal, audio signals longer than 9 seconds were
trimmed, and signals shorter than 9 seconds were re-
peated from the beginning to match the desired length.
In the case of training the GMM model, the entire length
of audio signals was used for extracting MFCC and CQT
features, while 13.67 seconds of audio signals were used
for W2V2 feature extraction to match the fixed input
length of the pretrained network, which is set at 246,000.
To simplify the structure of the GMM model, we assumed
a diagonal covariance matrix.

In order to stabilize the convergence of model param-
eters, the learning rate is initially set to 1e-3 and subse-
quently reduced to 1e-5 using a sigmoidal decay function.
For the ASVspoof 2019 dataset, we trained the models
using only the training data. However, for the models
submitted in the challenge, we trained using both the
training and development sets for some sub-models.

3.3. Experimental results on ADD 2023
dataset for track 1.2

Many of the models exhibited favorable performance on
the training and development data. However notable
declines in performance were observed when evaluating
the models on the actual test data. This indicates that
the models suffer from overfiting for both training and
development data. To address this issue, techniques such
as data augmentation and reducing model size can be
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considered.

3.3.1. Use of data augmentation techniques

We utilized various data augmentation techniques such as
mixup, FFM (LF, HF and RF), FilterAugment (FA) [8] and
cutout. However, the application of data augmentation
did not yield substantial improvement when evaluated on
the test data. Table 3 shows the results of applying data
augmentation to the CQT-LCNN and BC-ResMax models.
It was difficult to draw conclusions about the effective-
ness of data augmentation based on the experimental
results.

Table 3
Model performance comparison according to data augmenta-
tion.

Model Data aug. Dev. EER Test EER (R1)

CQT-LCNN None 0.14% 29.75%
CQT-LCNN Mixup 0.18% 37.12%
BC-ResMax None 0.12% 35.86%
BC-ResMax Mixup 0.16% 44.63%
BC-ResMax Mixup, FA 2.51% 42.07%
BC-ResMax FFM (LF) 0.10% 34.00%
BC-ResMax FFM (RF) 0.09% 39.01%
BC-ResMax FFM (HF) 0.09% 35.44%

3.3.2. GMM based models

Deep learning-based models have been observed to suffer
from serious overfitting issues in terms of test set accu-
racy. In order to address this concern, we experimented
with GMM-based models, which had demonstrated suc-
cess in prior ASVspoof challenges (2015 and 2017), and
were known for their ability to handle overfitting. We
created a deepfake detection model using GMM models
with W2V2, CQT, and MFCC features. For W2V2 features,
we experimented with two W2V2 pretrained models: one
trained on the Librispeech corpus’s 960 hours of audio
(LS-960) and the other trained on the LibriVox 60k hours
of data (LV-60k). We varied the number of components
parameter for the W2V2-LV60k-GMM, exploring values
of 16, 32, 64, and 128. Table 4 presents the experimental
results. W2V2-LV60k-GMM demonstrated better perfor-
mance than W2V2-LS960-GMM based on test EER and
Dev EER. Although W2V2-LV60k-GMM models exhib-
ited higher Dev EER compared to other deep learning-
based methods, it yielded better results in terms of test
EER. The simpler structure of the GMM-based model ap-
peared to mitigate the overfitting issue to some extent.
Additionally, we conducted experiments with CQT-GMM
and MFCC-GMM models, but W2V2-LV60k-GMM exhib-
ited the best performance.

Table 4
Model performance comparison for GMM-based models.

Features N. comp. Dev. EER Test EER (R2)

W2V2-LV60k 16 3.81% 30.55%
W2V2-LV60k 32 3.18% 27.40%
W2V2-LV60k 64 2.58% 25.91%
W2V2-LV60k 128 2.56% 24.61%
W2V2-LS960 64 14.55% 39.23%

CQT 128 15.32% 43.02%
MFCC 16 3.28% 35.32%

3.3.3. AASIST based models

As in RawNet2, the Raw-AASIST model uses Fixed Sinc
Filters to extract features from raw audio and compares
them across different epochs. On the other hand, the
W2V2-AASIST and CQT-AASIST models substitute Fixed
Sinc Filters with W2V2 and CQT, respectively. We used
the XLS-R (1B) version as the pretrained model for W2V2-
AASIST [28]. Table 5 presents the performance for three
AASIST-based models. It was observed that training the
models for multiple epochs led to overfitting on the test
data, resulting in a decrease in the dev EER but an in-
crease in the test EER. The CQT-AASIST (10ep) model
refers to the model trained for 10 epochs. Although mod-
els trained for more epochs exhibited lower dev EER,
overfitting was evident in the test EER. Therefore, de-
spite having a higher dev EER, we chose to use models
trained with a small number of epochs, specifically be-
tween 5 and 10 for the AASIST based models.

Table 5
Model performance comparison for AASIST-based models.

Models Dev. EER Test EER (R1) Test EER (R2)

Raw-AASIST 0.79% 37.36% -
W2V2-AASIST 0.12% 39.83% -

CQT-AASIST (10ep) 4.97% 30.54% 29.72%
CQT-AASIST (20ep) 1.18% - 31.22%

3.4. Experimental results on ASVspoof
2019 LA dataset

Table 6 presents the performance of the models (devel-
oped for the ADD 2023 challenge) on the ASVspoof 2019
LA dataset (ASV2019). The EER (ASV) indicates the per-
formance evaluated on the evaluation data after training
on the training data of ASV2019. The EER (ADD-R1)
and EER (ADD-R2) columns indicate the performance on
the test data of round 1 and round 2 of the ADD 2023
challenge, respectively. Among our experimental models,
the W2V2-GMM model showed the best performance on
ADD-R2 with a 26.28% EER. However, it exhibited poor

Proceedings of IJCAI 2023 Workshop on Deepfake Audio Detection and Analysis

DADA 2023 27 19 August 2023, Macau



performance on ASV2019, achieving a 9.8% EER. The
CQT-LCNN and CQT-AASIST models, which performed
well on ADD-R1 and ADD-R2 achieved EERs of 1.93%
and 2.36%, respectively, on ASV2019. The W2V2-AASIST
model showed exceptional performance with a 0.21%
EER on ASV2019, but performed poorly on ADD-R1. Re-
garding the MFCC-LCNN model, it demonstrated good
performance on ADD-R2, but showed poor performance
on ASV2019.

Table 6
Model performance comparison on ASVspoof 2019 LA dataset
and ADD 2023 test data (round 1 and round 2).

Models EER (ASV) EER (ADD-R1) EER (ADD-R2)

CQT-LCNN 1.93% 29.75% 35.4%
W2V2-GMM 9.8% - 26.28%
AASIST [3] 0.83% 37.36% -
CQT-AASIST 2.36% 30.54% 29.72%
W2V2-AASIST 0.21% 39.83% -
CQT-OFD 1.82% 35.84% 46.3%

MFCC-LCNN 10.05% - 29.00%

3.5. Submitted ensemble system for track
1.2

Table 7 describes the details of the three top-performing
single systems, including their EERs on the final eval-
uation data (R1 and R2) in track 1.2 of the ADD 2023
challenge as well as the EERs of our two ensemble sys-
tems. In Round 1, our final model consisted of an en-
semble of CQT-LCNN and CQT-AASIST models in a 1:1
ratio, achieving 23.44% EER. In Round 2, we submitted
an ensemble of CQT-LCNN, CQT-AASIST, and W2V2-
GMM models, considering their respective accuracies,
achieving 21.26% EER.

Table 7
EER on the final evaluation data for track 1.2.

Model Feature EER (R1) EER (R2)

LCNN CQT 29.75% 35.40%
AASIST CQT 30.54% 29.72%
GMM W2V2-LV60k - 26.28%

Ensemble 1 - 23.44% -
Ensemble 2 - - 21.26%

3.6. Submitted ensemble system for track
3

Table 8 describes the three single models used in track
3. After training all the models, the OpenMax algorithm,
with 𝜂 = 20 and 𝜃 = 0.25, is applied to the sum of their
final logit vectors from the train and development sets,

with the ratios specified in Table 8. The models were
slightly modified to adapt them from spoofing detection
to algorithm recognition tasks. The CQT-LCNN model
remains unchanged, with an output dense layer of size 7
with softmax activation. For the OFD model, (2,2,0,0,0,0)-
ReLU configuration is used, and two additional dense
layers with 128 and 64 nodes are added just before the
final layer to use the features from CNN backbone for
classifying algorithms. Lastly, the AASIST model [3] was
used with modified output dense layer of size 7 with
softmax activation. The ensemble of these three models
achieved a 0.7205 test F1-Score.

Table 8
F1-score on the final evaluation data for track 3.

Model Feature Ratio Test F1-Score

LCNN CQT 1.5 0.7005
OFD CQT 1.2 0.6947
AASIST Raw Audio 1 0.6745

Ensemble - - 0.7205

4. Conclusion
This paper presents the models employed by our
CAU_KU team participating in Track 1.2 and Track 3
of the ADD 2023 challenge. We utilized various deep-
fake models, including the W2V2 pretrained model and a
modified AASIST architecture. In Track 1.2, Round 1, our
submission consisted of an ensemble model comprising
the CQT-LCNN and CQT-AASIST models, achieving a
23.44% EER. In Round 2, our submission involved an en-
semble model combining the CQT-LCNN, CQT-AASIST,
and W2V2-GMM models, achieving a 21.26% EER. For
Track 3, we developed an ensemble model using the CQT-
LCNN, CQT-OFD, and AASIST models, achieving a 0.7205
F1-score.

Acknowledgments
This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the
Ministry of Science and ICT (RS-2023-00208284,
2020R1C1C1A01013020) and Institute for Information
& communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT)
(No.2019-0-00033, 50%, Study on Quantum Security
Evaluation of Cryptography based on Computational
Quantum Complexity).

Proceedings of IJCAI 2023 Workshop on Deepfake Audio Detection and Analysis

DADA 2023 28 19 August 2023, Macau



References
[1] J. Yi, J. Tao, R. Fu, X. Yan, C. Wang, T. Wang, C. Y.

Zhang, X. Zhang, Y. Zhao, Y. Ren, L. Xu, J. Zhou,
H. Gu, Z. Wen, S. Liang, Z. Lian, H. Li, Add 2023:
the second audio deepfake detection challenge, in:
IJCAI 2023 Workshop on Deepfake Audio Detection
and Analysis (DADA 2023), volume 0, 2023, pp. 0–0.

[2] J. M. Martín-Doñas, A. Álvarez, The vicomtech au-
dio deepfake detection system based on wav2vec2
for the 2022 add challenge, in: ICASSP 2022
- 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP),
2022, pp. 9241–9245. doi:10.1109/ICASSP43922.
2022.9747768.

[3] J.-w. Jung, H.-S. Heo, H. Tak, H.-j. Shim, J. S.
Chung, B.-J. Lee, H.-J. Yu, N. Evans, Aasist: Au-
dio anti-spoofing using integrated spectro-temporal
graph attention networks, in: ICASSP 2022 -
2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, Brno,
2022, pp. 6367–6371. doi:10.1109/ICASSP43922.
2022.9747766.

[4] I.-Y. Kwak, S. Choi, J. Yang, Y. Lee, S. Han, S. Oh,
Low-quality fake audio detection through fre-
quency feature masking, in: Proceedings of the
1st International Workshop on Deepfake Detection
for Audio Multimedia, DDAM ’22, Association for
Computing Machinery, New York, NY, USA, 2022, p.
9–17. URL: https://doi.org/10.1145/3552466.3556533.
doi:10.1145/3552466.3556533.

[5] A. Baevski, Y. Zhou, A. Mohamed, M. Auli, wav2vec
2.0: A framework for self-supervised learning
of speech representations, in: H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, H. Lin (Eds.),
Advances in Neural Information Processing
Systems, volume 33, Curran Associates, Inc., 2020,
pp. 12449–12460. URL: https://proceedings.
neurips.cc/paper_files/paper/2020/file/
92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf.

[6] H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz,
mixup: Beyond empirical risk minimization, 2017.

[7] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,
E. D. Cubuk, Q. V. Le, Specaugment: A simple
augmentation method for automatic speech recog-
nition, in: Proc. Interspeech 2019, ISCA, Graz, 2019,
pp. 2613–2617.

[8] H. Nam, S.-H. Kim, Y.-H. Park, Filteraugment: An
acoustic environmental data augmentation method,
in: ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2022, pp. 4308–4312.

[9] T. DeVries, G. W. Taylor, Improved regularization of
convolutional neural networks with cutout, 2017.

[10] J. Yi, R. Fu, J. Tao, S. Nie, H. Ma, C. Wang, T. Wang,

Z. Tian, Y. Bai, C. Fan, S. Liang, S. Wang, S. Zhang,
X. Yan, L. Xu, Z. Wen, H. Li, Add 2022: the first audio
deep synthesis detection challenge, in: 2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, IEEE, Singapore,
2022, pp. 9216–9220.

[11] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov,
O. Kudashev, V. Shchemelinin, Audio replay attack
detection with deep learning frameworks, in: Proc.
Interspeech 2017, ISCA, Stockholm, 2017, pp. 82–86.

[12] G. Lavrentyeva, S. Novoselov, A. Tseren,
M. Volkova, A. Gorlanov, A. Kozlov, STC
Antispoofing Systems for the ASVspoof2019
Challenge, in: Proc. Interspeech 2019,
ISCA, Graz, 2019, pp. 1033–1037. URL:
http://dx.doi.org/10.21437/Interspeech.2019-1768.
doi:10.21437/Interspeech.2019-1768.

[13] A. Tomilov, A. Svishchev, M. Volkova,
A. Chirkovskiy, A. Kondratev, G. Lavrentyeva,
STC Antispoofing Systems for the ASVspoof2021
Challenge, in: Proc. 2021 Edition of the Automatic
Speaker Verification and Spoofing Countermea-
sures Challenge, ISCA, Brno, 2021, pp. 61–67.
doi:10.21437/ASVSPOOF.2021-10.

[14] X. Wu, R. He, Z. Sun, T. Tan, A light cnn for
deep face representation with noisy labels, IEEE
Transactions on Information Forensics and Security
13 (2018) 2884–2896. doi:10.1109/TIFS.2018.
2833032.

[15] H. Tak, J. Patino, M. Todisco, A. Nautsch, N. Evans,
A. Larcher, End-to-end anti-spoofing with rawnet2,
in: ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2021, pp. 6369–6373.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, Y. Bengio, Graph attention networks, arXiv
preprint arXiv:1710.10903 (2017).

[17] C. M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics),
Springer-Verlag, Berlin, Heidelberg, 2006.

[18] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi,
C. Hanilci, M. Sahidullah, A. Sizov, Asvspoof 2015:
The first automatic speaker verification spoofing
and countermeasures challenge, in: Proc. Inter-
speech 2015, ISCA, Dresden, 2015, pp. 2037–2041.

[19] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco,
N. Evans, J. Yamagishi, K. A. Lee, The asvspoof 2017
challenge: Assessing the limits of replay spoofing
attack detection, in: Proc. Interspeech 2017, ISCA,
Stockholm, 2017, pp. 2–6.

[20] S. Choi, I.-Y. Kwak, S. Oh, Overlapped frequency-
distributed network: Frequency-aware voice spoof-
ing countermeasure, in: Proc. Interspeech 2022,
ISCA, Incheon, 2022, pp. 3558–3562.

[21] I.-Y. Kwak, S. Kwag, J. Lee, J. H. Huh, C.-H. Lee,

Proceedings of IJCAI 2023 Workshop on Deepfake Audio Detection and Analysis

DADA 2023 29 19 August 2023, Macau

http://dx.doi.org/10.1109/ICASSP43922.2022.9747768
http://dx.doi.org/10.1109/ICASSP43922.2022.9747768
http://dx.doi.org/10.1109/ICASSP43922.2022.9747766
http://dx.doi.org/10.1109/ICASSP43922.2022.9747766
https://doi.org/10.1145/3552466.3556533
http://dx.doi.org/10.1145/3552466.3556533
https://proceedings.neurips.cc/paper_files/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
http://dx.doi.org/10.21437/Interspeech.2019-1768
http://dx.doi.org/10.21437/Interspeech.2019-1768
http://dx.doi.org/10.21437/ASVSPOOF.2021-10
http://dx.doi.org/10.1109/TIFS.2018.2833032
http://dx.doi.org/10.1109/TIFS.2018.2833032


Y. Jeon, J. Hwang, J. W. Yoon, ResMax: Detecting
Voice Spoofing Attacks with Residual Network and
Max Feature Map, in: 25th International Confer-
ence on Pattern Recognition (ICPR), IEEE Computer
Society, Milan, 2021, pp. 4837–4844.

[22] I.-Y. Kwak, S. Kwag, J. Lee, Y. Jeon, J. Hwang, H.-J.
Choi, J.-H. Yang, S.-Y. Han, J. H. Huh, C.-H. Lee, J. W.
Yoon, Voice spoofing detection through residual
network, max feature map, and depthwise separable
convolution, IEEE Access (2023) 1–1. doi:10.1109/
ACCESS.2023.3275790.

[23] S. Choi, S. Oh, J. Yang, Y. Lee, I.-Y. Kwak, Light-
weight frequency information aware neural net-
work architecture for voice spoofing detection, in:
26th International Conference on Pattern Recog-
nition (ICPR), IEEE Computer Society, Montreal
Quebec, 2022, pp. 477–483.

[24] A. Bendale, T. E. Boult, Towards open set deep net-
works, 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2015) 1563–1572.

[25] W. J. Scheirer, A. Rocha, R. J. Micheals, T. E. Boult,
Meta-recognition: The theory and practice of recog-
nition score analysis, IEEE Transactions on Pattern
Analysis and Machine Intelligence 33 (2011) 1689–
1695. doi:10.1109/TPAMI.2011.54.

[26] M. Todisco, X. Wang, V. Vestman, M. Sahidul-
lah, H. Delgado, A. Nautsch, J. Yamagishi,
N. Evans, T. H. Kinnunen, K. A. Lee, ASVspoof
2019: Future Horizons in Spoofed and Fake
Audio Detection, in: Proc. Interspeech 2019,
ISCA, Graz, 2019, pp. 1008–1012. URL: http://
dx.doi.org/10.21437/Interspeech.2019-2249. doi:10.
21437/Interspeech.2019-2249.

[27] C. Veaux, J. Yamagishi, K. MacDonald, et al., Cstr
vctk corpus: English multi-speaker corpus for cstr
voice cloning toolkit, 2017. URL: https://datashare.
ed.ac.uk/handle/10283/2651.

[28] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu,
N. Goyal, K. Singh, P. von Platen, Y. Saraf, J. Pino,
et al., Xls-r: Self-supervised cross-lingual speech
representation learning at scale, arXiv preprint
arXiv:2111.09296 (2021).

Proceedings of IJCAI 2023 Workshop on Deepfake Audio Detection and Analysis

DADA 2023 30 19 August 2023, Macau

http://dx.doi.org/10.1109/ACCESS.2023.3275790
http://dx.doi.org/10.1109/ACCESS.2023.3275790
http://dx.doi.org/10.1109/TPAMI.2011.54
http://dx.doi.org/10.21437/Interspeech.2019-2249
http://dx.doi.org/10.21437/Interspeech.2019-2249
http://dx.doi.org/10.21437/Interspeech.2019-2249
http://dx.doi.org/10.21437/Interspeech.2019-2249
https://datashare.ed.ac.uk/handle/10283/2651
https://datashare.ed.ac.uk/handle/10283/2651

