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Abstract
Software startup is a unique type of company with unique characteristics. On the one hand, they must
offer innovative products appealing to customers to generate revenue and survive, but on the other hand,
they are limited in resources, time, and experience. During the new product development, it is important
to experiment with their original ideas. However, doing a meaningful experiment requires resources
and challenges. A study on failed software startups shows that, despite its importance, many software
startups skipped or did not experiment with their ideas. The study identifies 25 inhibitors spread in five
experimentation stages.

In the last few years, Large Language Models (LLMs) have become a popular technology. The
advancement of LLM has made it adopted into many parts of the software development cycle. Studies
show that LLM also has been used to generate new innovative product ideas and to manage innovation.
However, there is no investigation into the possibility of utilizing the power of LLM to help software
startups do experimentation. Interactions to an LLM are done through prompts. During the interaction or
session, a user will send one or more prompts in a zero-, one-, or few-shots to an LLM agent. Unfortunately,
learning and using prompts effectively requires time and resources, things that software startups are
scarce with.

In this project, we aim to help improve the experimentation process and address the inhibitors by
leveraging the power of LLMs. There are five initial research questions and studies planned in the project.
In the first step, we will investigate current experimentation practices, challenges, inhibitors, and the
strategies used to circumvent them. Secondly, we will investigate how AI has been used in today’s
experimentation. Then, we will investigate the set of measurements available to measure the success of
an experiment. The next step is to investigate how to support experimentation using LLMs followed
by a validation sequence. The first form of support is a prompt guidebook to help software startups
use an LLM agent to help their experimentation. The second form is an LLM-based assistant tailored
specifically to guide the experimentation process.
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1. Problem Definition

Software startups are emerging companies in the software domain that aim to present innova-
tive software solutions [1]. Software startups often face significant uncertainties in a highly
competitive environment with limited resources, experience, and tight time constraints [2, 3].
Software startups develop and introduce innovative software solutions to enhance existing
markets or establish new ones.

Studies show that experimentation is one fundamental approach to finding a successful
and sustainable business idea [4, 5, 6]. Experimentation is an iterative build-learn-measure
cycle of validating an idea and shaping it into a more mature idea. This process is crucial for
software startups since they are limited in resources to execute the idea in a full-fledged manner.
Experimentation could also help the software startups decide whether to continue the venture
or abandon the idea to minimize loss. For example, a software startup can create a minimum
viable product, make it available to the users, and ask for feedback [5]. The feedback may
lead to a slight idea adjustment to total rejection. Based on the feedback, the software startup
can decide whether to continue or abandon the idea. In the software engineering context, the
concept of experimentation itself is aligned with the agile method, which is widely adopted by
software startups [7].

Unfortunately, the adoption of experimentation in software startups is low. A study by
Melegati et al. [8] explores and models the inhibitors of why software startups failed in adopting
experimentation. The study identifies 25 inhibitors in the experimentation process. They are
categorized into (1) inhibitors related to awareness of experimentation, (2) inhibitors related to
experiment intention, (3) inhibitors related to valid experiment, (4) inhibitors related to valid
analysis, and (5) inhibitors related to considering the experiment result. The number of cases
in the second category is the highest, meaning most of the software startups had no desire to
experiment with their original ideas in the first place. Out of the 25 identified inhibitors, the
top inhibitors that happen very often are (1) over-focusing on the product and its perfection,
(2) overconfidence in the idea, and (3) some initial shreds of evidence may make the founders
believe that their ideas are valid; hence no further experiment is needed. These inhibitors are
likely to have a latent existence in software startups.

Recently, an AI-assisted approach to developing new product ideas has emerged. The combi-
nation of humans and AI generates new innovative ideas. Large Language Models (LLMs), a
subset of AI technology, have revolutionized natural language processing tasks by efficiently
learning linguistic patterns from vast text data. Popular LLMs, such as OpenAI’s GPTs1, Google’s
BERT2, Gemini3, and Meta’s Llama4 employ transformer architectures to generate or understand
human-like text across various applications, from chatbots to content generation. These models
have remarkable capabilities in capturing context, nuance, and semantics. Their pre-training
and fine-tuning methodology makes them versatile across diverse tasks without task-specific
model modifications [9, 10].

In this project, we aim to improve the experimentation process and address the inhibitors by

1https://openai.com/research
2https://blog.research.google/2018/11/open-sourcing-bert-state-of-art-pre.html
3https://deepmind.google/technologies/gemini/introduction
4https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/



leveraging the power of LLMs. There are five initial research questions and studies. We plan to
run the project using the design science approach [11].

2. Knowledge Gap

Experimentation in software startups is critical to validate ideas and create a sustainable
business. A study based on the postmortem artifacts shows that many software startups failed
to experiment with their ideas, which, to some extent, might lead them to a disastrous state [8].
Most software startups acknowledged the concept of experimentation but chose not to do it.
The study identified 25 inhibitors to experimentation spread in various experimentation stages.
Some are organizational inhibitors, some are internal, and others are environmental-related.

However, the study does not elaborate on how or what strategies the software startups tried
to overcome the inhibitors. This knowledge is important as a lesson learned for future cases.
Unfortunately, extending the study could be challenging since the main sources are postmortem
artifacts. A similar study on the surviving software startups could fill the gap. The result would
give valuable knowledge on how to address the inhibitors. This draws the first research question
(RQ1), "What are the practices, challenges, inhibitors, and solutions in experimentation in software
startups?"

In addition, further exploration of adopting AI technologies in experimentation could also be
performed to learn how AI technology has been used and how useful they are. This knowledge
will allow further investigation into what areas or aspects can be improved. This raises the
second research question (RQ2), "How do software startups incorporate AI technologies, especially
LLMs, in new product development?"

It is also important to have a clear guideline, framework, or set of measurements to quantify
whether an experiment produces a meaningful result regardless of the consequences, contin-
uation, or abandonment of the idea. This leads to the third research question (RQ3), "How to
measure whether an experiment produces a meaningful result or not?"

LLMs have gained massive attention in the last few years due to their advancement and
potential. The vast amount of training datasets makes LLMs very powerful and knowledgeable
tools. LLMs have been integrated into many aspects of software engineering, from requirement
elicitation to testing and debugging [12, 13].

The advancement of LLMs has been used in many stages in the software development cycle
[13, 14], from requirement refinement to bug fixing. In the software startup context, LLMs
have also been used to generate new product ideas [15] and manage innovation [16]. However,
little is known about studies investigating how to leverage the power of LLMs to help software
startups do experimentation. Reflecting on the capability of LLMs opens an opportunity to
leverage it to guide software startups to experiment with their ideas and simultaneously avoid
the inhibitors.

Interactions to an LLM are done through prompts. During the interaction or session, a user
will send one or more prompts in a zero-, one-, or few-shots to an LLM agent [10, 17]. Shot
refers to the number of inputs or contexts to get a desired output. LLMs are working with a
probabilistic approach. This means two exact prompts may return different outputs in two
separate sessions [18].



The zero-shot is a prompt without any prior context or example. This means the LLM agent
will try to understand the context only based on the sole prompt. In most cases, the sole prompt
lacks clear context. Hence, it is very likely the zero-shot prompt will return a generic output
that is less desirable for specific needs or cases.

The one-shot prompt is when the user communicates exactly one example or a context before
sending the intended prompt. Compared to the zero-shot, this prompt will produce outputs
closer to the expectation, a more desirable.

The few-shots prompt is when the user has supplied multiple examples or contexts before
the intended prompt. This will very likely produce a more relevant output compared to the
one-shot. This prompt is also called many-shots when the number of examples or context is
very large.

An effective prompt strategy helps the LLMs produce the most relevant output [19]. However,
writing prompts to leverage an LLM agent to guide the experiment process requires time and
resources, things that software startups do not have. This raises another research question
(RQ4), "How to effectively use prompts to guide the experimentation process?"

Moreover, the availability of previous valuable experiences from failed and survived software
startups may improve the LLMs’ responses. However, it has to be admitted that LLMs can
only give directions or suggestions and not direct solutions based on a probabilistic approach.
The final decision lies in the hands of the software startup’s leaders. These experiences can
make a better experimentation context when supplied into LLMs. In addition to that, specific
information related to a project could even make a more personalized environment for better-
guided experimentation. These lead to our latest research question (RQ5), "How to improve the
experimentation process by leveraging the power of LLMs?"

3. Research Method

To answer RQ1 and RQ2, we plan to conduct two parallel studies. The first one (S1) is an interview
study with software startups to understand the current practices, challenges, inhibitors, and
solutions for doing experiments. Furthermore, we would like to know how they manage the
effect of inhibitors. The result will then be analyzed to see patterns or strategies that can be
useful in future cases. We will also investigate how these software startups incorporate AI
technologies in their experimentation, how satisfied they are, and what could be improved. A
literature study (S2) will be executed to enrich the knowledge from previous research. We aim
to publish at least two articles from the studies.

For RQ3, we will run another literature study (S3) to see the suggested metrics or practices
to measure meaningful experiments. The result is expected to give us a mapping and better
understanding of which metrics or practices should be used at a particular stage in an experiment.
We aim to publish an article from the study.

These three studies should draw a better understanding of the challenges, inhibitors, and
solutions in experimentation from a more holistic angle and how to measure the meaningfulness
of an experiment. Based on this, we could identify which areas LLMs can be leveraged to make
a meaningful impact. An immediate output of this is a prompt guidebook containing strategies
and prompt templates (S4a). The guidebook will be tailored based on the knowledge found in



the earlier studies. Later, a formal validation, in the form of case studies, will be conducted with
selected software startups (S4b). We aim to publish at least one article from the study.

Figure 1: AI assistant, the general concept.

To address RQ5, we will further analyze the results of the earlier studies to identify which
area of experimentation LLMs can support. Once decided, we will develop an LLM-based tool
on top of one of the existing models. The tool will have the additional experiences from the
earlier studies to generate relevant results (S5a). The tool can be further customized for specific
needs through the few-shots approach. The users can also provide feedback in the form of
relevancy level. The general concept of the tool can be seen in Figure 1. A fraction of the prompt
guidebook may also be incorporated into the tool. Hence, these guides will be run automatically
based on the prompt. Finally, a thorough evaluation and validation process will be together
with selected software startups (S5b). The evaluation will be measured based on the users’
satisfaction level (identified in the first study). We expect to publish at least two articles from
the study.

In this research project, initially, we will not set clear boundaries or criteria for the software
startups we want to work with. This makes us open to any opportunity that might show up
during the research. In the future, boundaries might be introduced when necessary.

The whole project activity in the design science research is shown in Figure 2. The first three
studies aim to develop a holistic understanding of the problem, in this case, the experimentation
in the context of software startups and the use of AI, especially LLMs, in the experimentation
process. The last two studies have a different aim, which is to develop possible solutions and
validate them internally. Lastly, the solution will be brought in the real context but in a limited
scope.

4. Timeline

This research project will run for five years. The detailed plan is shown in Table 1. The project
started in early November 2023 and will run until November 2028. In the first year, we plan
to run two studies, S1 and S2, to address RQ1 and RQ2. The studies are expected to be run



Figure 2: Project activities in the design science research framework.

in parallel. In the second year, we will do S3 to address RQ3. These three first studies are
fundamental for the next two studies. Then, we will take the third year to run S4 to address
RQ4. The remainder of the time will be used to run the final study, S5, and to address the last
research question, RQ5.

Table 1
Project timeline from 2023 to 2028.

Research question Activity Period

RQ1: What are the practices, challenges, inhibitors, and
solutions in experimentation in software startups?

S1: Interview study with
software startups

2023-2024

RQ2: How do software startups incorporate AI technolo-
gies, especially LLMs, in new product development?

S1: Interview study with
software startups, S2: Lit-
erature study

2023-2024

RQ3: How to measure whether an experiment produces
a meaningful result or not?

S3: Literature study 2025

RQ4: How to effectively use prompts to guide the experi-
mentation process?

S4a: Prompt guidebook
dev. and S4b: Case study
(for validation)

2025-2026

RQ5: How to improve the experimentation process by
leveraging the power of LLMs?

S5a: AI assistant dev. and
S5b: Case study (for vali-
dation)

2027-2028

5. Expected Contribution

There are at least five contributions from this research project, namely:

• A better knowledge of how software startups tackle challenges and inhibitors during
experimentation. This knowledge will help future research on developing new strategies
to reduce, if not eliminate, the known inhibitors.



• A better understanding of how far software startups have integrated AI technology into
their experimentation pipeline. This will reveal which aspects of experimentation could
be helped using the advancement of AI.

• A guideline or a framework or a set of measurements to help software startups judge the
meaningfulness of an experiment.

• A validated prompt guidebook containing a guided walkthrough to help software startups
do their experiments. With the help of additional contexts generated during the interac-
tion, the walkthrough is expected to provide suggestions on which type of experiment
the company should do and how to run the experiment.

• An AI assistant tool personalized to the software startup and a specific project where the
company will experiment. The tool is expected to be validated together with selected
software startups.
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