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Abstract
Multivariate time series are a very common non-tabular type of data. In many practical cases, multivariate
time series encode real-world situations that include temporal information, and, recently, machine
learning from datasets of multivariate time series has become a very active area of research. Modal
symbolic learning has shown itself to be a serious alternative to sub-symbolic methods such as neural
networks for non-tabular data; when applied to multivariate time series, modal symbolic learning makes
use propositional temporal logic such as interval temporal logic. In special cases, however, multivariate
time series display an internal structure that propositional modal logics are unable to capture. In this
paper, we propose a first-order extension of propositional interval temporal logic, we describe its syntax
and semantics, and we study its expressive power in relationship with such special cases of multivariate
time series.
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1. Introduction

LetD = ⟨{1, 2, . . . , 𝑁}, <𝑡,=𝑡⟩ be a finite linear order (the domain) of size𝑁 , and let 𝑉 : D → R
be a temporal variable or time series; also, let 𝒱 be a vocabulary of temporal variables. A
multivariate time series 𝑇 is a collection 𝑇 = {𝑉1, . . . , 𝑉𝑛 | 𝑉𝑖 ∈ 𝒱, 1 ≤ 𝑖 ≤ 𝑛} of time series.
A temporal dataset 𝒯 is a collection 𝒯 = {𝑇1, . . . , 𝑇𝑚} of multivariate time series. Multivariate
time series occur naturally in several real-world situations, from industrial data of devices and
machines whose behaviour is monitored via sensors of various kinds, to position data of moving
objects, to medical data of patients under observation, among many others.

In the machine learning realm, one important distinction is that among symbolic and sub-
symbolic learning. The latter, in particular, encompasses the plethora of algorithms and methods
that learn from datasets using functional representation of knowledge, from simple regressions,
to support vector machines, to neural networks in different flavours. Symbolic learning, on
the contrary, is characterized by learning explicit knowledge in logical form, and models for
symbolic learning range from decision trees to set of rules, in several variants [1, 2, 3, 4, 5, 6, 7].
Since symbolic methods are logic-based, the logic that is used in a particular learning exercise
can be seen as a parameter of the method. Until very recently, symbolic learning has been
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essentially based on propositional logic, with very few exceptions, and consequently limited to
tabular data. In the past few years, however, modal symbolic learning has been proposed as
a generalization of symbolic learning to modal logic, and applied to non-tabular data. Modal
logics have the ability of capturing a greater fraction of the internal structure of the instances
of a non-tabular dataset, and by enriching intelligent symbolic models, such as decision trees,
with the possibility of learning modal logic rules, one is able to extract such structure, as well as
to learn and express interesting and complex patterns. In the temporal case, for example, modal
symbolic learning is instantiated to temporal symbolic learning, and learning from temporal
datasets is accomplished with, for instance, temporal decision trees [8], which are able to extract
temporal patterns and express them using a suitable modal temporal logic. Among all possible
modal temporal logics, interval temporal logic (of which several versions exist) revealed itself to
be a a very useful tool in this regard. In a nutshell, one first sets up a set of feature extraction
functions (e.g., the mean of a set of real numbers); then one builds a set of propositional letters,
each resulting from the comparison between the result of applying one feature extraction
function on an interval of values of one temporal variable (e.g., the mean of the fever during an
interval of days is greater than a value 𝑣); finally, one is able to express a property of a (set) of
multivariate time series as an interval temporal logic formula (e.g., it is always true that during
an interval in which the mean of the fever is greater than 𝑣 there exists an interval in which the
headache reaches a maximum value of pain of 𝑣′.

In [8, 9], among others, a model for temporal decision trees with Halpern and Shoham’s
Modal Logic for Time Intervals (HS) [10] has been designed and used to learn patterns from
datasets of multivariate time series. The logic HS is an unary propositional modal logic whose
syntax encompasses all Boolean connectives plus one unary modal operator for each Allen’s
relation between two intervals, such as during or later.

In special cases, multivariate time series may display a richer internal structure than the
one that can be captured with propositional HS. Two prominent examples of this situation are
audio and electroencephalogram signals. In both cases, pre-processing of the original signal
(in the first case, the single sound power expressed in 𝑑𝐵, in the second case the electric
power of each electrode expressed in 𝑚𝑉 ) produces several temporal variables (in the first case
audio frequencies, in the second one electric frequencies) which are naturally ordered and not
mutually independent; we call such temporal variables adjacent. In this paper, we propose a
simple first-order extension of HS that allows us to capture patterns of temporal datasets of
multivariate time series with adjacent variables, by encompassing the possibility of comparing
the natural order between temporal variables as well as the possibility of relating the behaviour
of two variables in an interval of time.

2. First-Order Interval Temporal Logic for Adjacent Variables

The language of the First-Order Modal Logic for Time Intervals for Adjacent Variables (FOHSa, for
short) encompasses a numerable set of first-order variables 𝑋1, 𝑋2, . . ., a set of unary function
symbols 𝑓1, 𝑓2, . . ., arbitrary real constants, the set of comparison operators <,≤,=,≥, and >,
standard Boolean operators, and unary interval temporal logic operators, one for each Allen’s
relation between any two intervals on a linear order, namely ⟨𝐴⟩ (meets), ⟨𝐿⟩ (later), ⟨𝑂⟩



Modality Definition Example

𝑥 𝑦

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

⟨𝐴⟩ (after) [𝑥, 𝑦]𝑅𝐴[𝑤, 𝑧] ⇔ 𝑦 = 𝑤

⟨𝐿⟩ (later) [𝑥, 𝑦]𝑅𝐿[𝑤, 𝑧] ⇔ 𝑦 < 𝑤

⟨𝐵⟩ (begins) [𝑥, 𝑦]𝑅𝐵 [𝑤, 𝑧] ⇔ 𝑥 = 𝑤 ∧ 𝑧 < 𝑦

⟨𝐸⟩ (ends) [𝑥, 𝑦]𝑅𝐸 [𝑤, 𝑧] ⇔ 𝑦 = 𝑧 ∧ 𝑥 < 𝑤

⟨𝐷⟩ (during) [𝑥, 𝑦]𝑅𝐷[𝑤, 𝑧] ⇔ 𝑥 < 𝑤 ∧ 𝑧 < 𝑦

⟨𝑂⟩ (overlaps) [𝑥, 𝑦]𝑅𝑂[𝑤, 𝑧] ⇔ 𝑥 < 𝑤 < 𝑦 < 𝑧

Table 1
Allen’s interval relations and (FO)HS modalities.

(overlaps), ⟨𝐷⟩ (during), ⟨𝐵⟩ (begins), ⟨𝐸⟩ (ends), and their inverse ones (if ⟨𝑂𝑝⟩ is an interval
operator, ⟨𝑂𝑝⟩ denotes its inverse one). Formulas of FOHSa are built using the following
grammar:

𝑡𝑓 ::= 𝑓(𝑉 ) | 𝑓(𝑋) | 𝑣
𝐴𝑡 ::= 𝑡𝑓 ◁▷ 𝑡 | 𝑉 ◁▷ 𝑉
𝜙 ::= 𝐴𝑡 | ¬𝜙 | 𝜙 ∨ 𝜙 | ⟨𝑂𝑝⟩𝜙 | ∀𝑋𝜙,

where 𝑉 is a temporal variable, 𝑋 is a first-order variable, 𝑓 is a function, ◁▷∈ {<,≤,=,≥, >},
𝑣 ∈ R, and 𝑂𝑝 ∈ {𝐴,𝐿,𝐵,𝐸,𝐷,𝑂,𝐴,𝐿,𝐵,𝐸,𝐷,𝑂}.

Intuitively, a FOHSa formula is interpreted on a multivariate time series; towards a precise
definition of the truth relation, though, a few definitions are necessary. First, a multivariate time
series 𝑇 = {𝑉1, . . . , 𝑉𝑛} is said to be adjacent variables if the set of time series {𝑉1, . . . , 𝑉𝑛}
is linearly ordered by a relation <𝑣; the equality relation =𝑣 is defined in the standard way.
Now, given the set D (the domain of all time series in 𝑇 ), we say that I(D) is the set of all
intervals that can be built on D, that is I(D) = {[𝑥, 𝑦] | 𝑥, 𝑦 ∈ D, 𝑥 <𝑡 𝑦}. Moreover, let
ℱ = {𝐹1, . . . , 𝐹𝑘} be a set of feature extraction function templates, where each template 𝐹𝑖 is, in
turn, a set 𝐹𝑖 = {𝑓 𝑗𝑖 | 𝑗 ∈ N+}, and each element of a set 𝑓 𝑗𝑖 ∈ 𝐹𝑖 is a function 𝑓 𝑗𝑖 : R𝑗 → R. A
set 𝐹 represents the interpretation of a function symbol 𝑓 ; since the value 𝑓(𝑉 ) is computed on
an interval [𝑥, 𝑦], the specific function that must be used to compute it depends on the quantity
𝑦− 𝑥+1; for example, if 𝑓 is the (generalized) mean of a set of reals, computing the mean of 𝑉
on the interval [3, 7] entails collecting the values 𝑉 (3), . . . , 𝑉 (7) and using the function mean
of 8 values. Observe that we intentionally overload function symbols and their interpretation, as
well as variable symbols and their interpretation, to ease the reading. A FOHSa model is a pair
⟨𝑇,ℱ⟩, and the truth of a FOHSa formula 𝜙 on a model ⟨𝑇,ℱ⟩ and an interval [𝑥, 𝑦] is given by
the following clauses (see Tab. 1 for the semantics of the interval relations):



⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ 𝑓𝑖(𝑉𝑝) ◁▷ 𝑓𝑗(𝑉𝑞) iff 𝑓𝑦−𝑥+1
𝑖 ([𝑉𝑝(𝑥), 𝑉𝑝(𝑥+ 1), . . . , 𝑉𝑝(𝑦)]) ◁▷

𝑓𝑦−𝑥+1
𝑗 ([𝑉𝑝(𝑥), 𝑉𝑝(𝑥+ 1), . . . , 𝑉𝑝(𝑦)])

⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ 𝑉𝑝 ◁▷ 𝑉𝑞 iff 𝑉𝑝 ◁▷ 𝑉𝑞
⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ ¬𝜙 iff ⟨𝑇,ℱ⟩, [𝑥, 𝑦] ̸⊩ 𝜙
⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ 𝜙 ∨ 𝜓 iff ⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ 𝜙 or ⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ 𝜓
⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ ⟨𝑂𝑝⟩𝜙 iff there exists[𝑤, 𝑧] s.t. [𝑥, 𝑦]𝑅𝑂𝑝[𝑤, 𝑥] and

⟨𝑇,ℱ⟩, [𝑤, 𝑧] ⊩ 𝜙
⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ ∀𝑋𝜙 iff for every variable 𝑉 it is the case that

⟨𝑇,ℱ⟩, [𝑥, 𝑦] ⊩ 𝜙[𝑋/𝑉 ],

where ◁▷∈ {<,≤,=,≥, >}.
A typical audio signal presents a spectrum of frequencies that range roughly from 20𝐻𝑧

to 20,000𝐻𝑧. In audio signal processing of a sample, it is customary to extract its spectral
representation, facilitating their interpretation in terms of audio frequencies. To this end,
the most widespread adopted technique is known as extracting the Mel-Frequency Cepstral
Coefficients (MFCC) [11]; obviously, MFCC includes a Fast Fourier Transform (FFT) step. As a
result of several MFCC processing steps, a single sample is finally represented as a multivariate
time series whose variables contain the value, at each time point, of the power of the signal
at a specific frequency; frequencies are naturally ordered from the lowest one to the highest
one. As another example, consider the signal recorded from an electroencephalogram executed
on a (human) brain. In the most typical presentation, such a signal is the collection of the
recording of several electrodes in a period of time. Again, each signal from an electrode present
a spectrum of frequencies, usually from 0.5𝐻𝑧 to 50𝐻𝑧. Again, a single sample is processed
via FFT, applied to each signal of each electrode, resulting in the sample being represented as a
multivariate time series whose variables contain the value of the electric power of the signal of
a specific electrode at a specific frequency, and in this case as well frequencies are ordered from
the lowest one to the highest one.

In time series processing, a set of feature extraction functions can be identified from the current
literature (in most cases features have been presented as specific to a problem, but they often
re-occur in different application areas). Among many others, examples of properties that can be
expressed in FOHSa in the above domains include: there exists a frequency for which it is always
true that, during every interval when its mean value is lower than 𝑣 there is an interval in which
its maximum value is greater than 𝑣′ and for every frequency it is true that if in an interval its
mean value is lower than 𝑣 then in some future interval there is a higher frequency whose mean
value is greater than 𝑣′.

3. Conclusions

We presented FOHSa, a novel logical system specifically designed to express non-propositional
temporal interval properties that could be of interest in several applicative areas and different
contexts including, for example, symbolic machine learning.
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