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Abstract
Service robots need common-sense knowledge to help humans in everyday situations as it enables them
to understand the context of their actions. However, approaches that use ontologies face a challenge
because common-sense knowledge is often implicit, i.e., it is obvious to humans but not explicitly stated.
This paper investigates if Large Language Models (LLMs) can fill this gap. Our experiments reveal limited
effectiveness in the selective extraction of contextual action knowledge, suggesting that LLMs may not
be sufficient on their own. However, the large-scale extraction of general, actionable knowledge shows
potential, indicating that LLMs can be a suitable tool for efficiently creating ontologies for robots. This
paper shows that the technique used for knowledge extraction can be applied to populate a minimalist
ontology, showcasing the potential of LLMs in synergy with formal knowledge representation.
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1. Introduction

To assist humans effectively in everyday life, service robots need a sound foundation of common-
sense knowledge to guide their actions. While there has been significant research on Knowledge-
Based Systems (KBSs) for robotics [1], creating the underlying knowledge bases remains a
considerable challenge [2]. This is due to the fact that common-sense knowledge is inherently
implicit, i.e., it is naturally understood by humans but remains mostly unexpressed. However,
the recent advances in LLMs have opened up a potential source of such knowledge. This
paper explores state-of-the-art LLMs as a source of common-sense knowledge for robots, and
investigates if they could even replace KBSs.

2. Related Work

Common-sense knowledge for robots involves actions necessary to reach a desired state, defined
by an action verb, an actor, an object, and a tool, forming an action pattern [3]. Existing
community efforts, e.g., ConceptNet [4], offer valuable information but face scalability challenges
and heterogeneity due to the variety of contributors. LLMs such as OpenAI’s ChatGPT and
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BigScience’s BLOOMZ seem like a promising alternative due to the large amounts of common-
sense knowledge they incorporate. As the usability of LLMs increases, knowledge extraction
methods have evolved from demasking [5] to zero-shot prompts [6].

The application of LLMs to robotics leads to the emergence of embodied Artificial Intelligence
(AI). However, success rates of such systems are still limited, for instance, up to 85 % for tidying
up [7] and 48 % for task planning [8], posing challenges for robotics applications. Until the
performance of LLMs improves further, a synergistic use with KBSs seems reasonable.

3. Extracting Action Patterns from Large Language Models

3.1. Formalizing Action Patterns

This work focuses on common-sense knowledge in the form of action patterns. An action
pattern 𝐴𝑃 is represented by an action 𝑎, which is executed by a set of Agents 𝒜 using a set of
Tools 𝒯 to modify a set of Objects 𝒪, cp. Equation (1). These patterns capture various scenarios
a robot might encounter and how it can act to change these situations. This knowledge allows
the robot to infer appropriate actions to fulfill its goals, such as serving bread. Note that
the knowledge should be grounded in real-world settings and continuously tested, possibly
resulting in the robot confirming, discarding, or refining its knowledge. Note that the states
of all elements before and after the action can be described via a set of attributes 𝒮𝑏𝑒𝑓 𝑜𝑟𝑒 and
𝒮𝑎𝑓 𝑡𝑒𝑟, respectively. In addition, the spatial relations ℛ𝑠𝑝𝑎𝑡𝑖𝑎𝑙 between the elements involved
may change.

𝐴𝑃 = (𝑎, 𝒜 , 𝒪, 𝒯 , 𝒮𝑏𝑒𝑓 𝑜𝑟𝑒, 𝒮𝑎𝑓 𝑡𝑒𝑟, 𝑅𝑠𝑝𝑎𝑡𝑖𝑎𝑙) (1)

The set 𝒜𝒫 comprises all valid action patterns in the sense that they are meaningful in
real-world applications. For instance, when tasked with baking bread, a robot has to identify
suitable tools, as illustrated by the incomplete action pattern in Equation (2).

𝐴𝑃𝑏𝑎𝑘𝑒 = (𝑏𝑎𝑘𝑒, {𝑟𝑜𝑏𝑜𝑡}, {𝑏𝑟𝑒𝑎𝑑}, {$tool}, {𝑐𝑜𝑙𝑑}, {ℎ𝑜𝑡}, {𝑜𝑢𝑡𝑠𝑖𝑑𝑒}) (2)

Action patterns can be expressed using Web Ontology Language (OWL) 2 Description Logic
(DL), a subset of predicate logic. Here, Actions are defined by their relations to the notions
Object, State, Location, and Time, forming action patterns. These notions, rooted in previous
work, cp. Section 2, can be aligned with top-level ontologies such as Basic Formal Ontology. An
Object can also take the role of an Agent or a Tool, and spatial relations can be expressed using
existing ontologies. Equation (3) shows the DL representation of the notions Action and Object.

𝐴𝑐𝑡𝑖𝑜𝑛 ⊑ ∃ ⩾ 1.ℎ𝑎𝑠_𝑎𝑔𝑒𝑛𝑡.𝑂𝑏𝑗𝑒𝑐𝑡 ⊓ ∃ ⩾ 1.ℎ𝑎𝑠_𝑜𝑏𝑗𝑒𝑐𝑡 .𝑂𝑏𝑗𝑒𝑐𝑡 ⊓ ∃ ⩾ 0.ℎ𝑎𝑠_𝑡𝑜𝑜𝑙.𝑂𝑏𝑗𝑒𝑐𝑡 ⊓
∃ = 1.ℎ𝑎𝑠_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊓ ∃ = 1.ℎ𝑎𝑠_𝑡 𝑖𝑚𝑒.𝑇 𝑖𝑚𝑒

𝑂𝑏𝑗𝑒𝑐𝑡 ⊑ ∃ ⩾ 1.ℎ𝑎𝑠_𝑠𝑡𝑎𝑡𝑒.𝑆𝑡𝑎𝑡𝑒
(3)



3.2. Extracting Parts of Action Patterns

In order to replace KBSs, LLMs would need to be capable of consistently answering queries such
as “Which tool can I use to bake bread?”. This task can be posed generically using Prompt 1.
Note that specifying candidates corresponds to a simple grounding in reality. Further, we
modified Prompt 1 to extract the state of an object before and after a given action has been
applied to it. The prompt can also be adapted to extract details about the spatial relationships
between the object and the tool used.

Prompt 1. In the following, I will ask you a question. In your response, I want you to answer with
nothing but a list of suitable comma-separated words sorted by relevance. Which tool can I use to
$action $object? Choose only from the following candidates: $candidates.

Example: ... Which tool can I use to bake bread? Choose only from the following candidates:
bowl, oven, knife, ...

3.3. Extracting Entire Action Patterns

The large-scale extraction of action patterns to incorporate into a knowledge base can be
achieved using Prompt 2. Compared to Prompt 1, this prompt specifies the domain of interest
and permits constraints within the action pattern, offering additional flexibility. The information
extracted by Prompt 2 may not be directly applicable, but it is well-suited for populating an
ontology with broad common-sense knowledge on a large scale.

Prompt 2. Please respond with nothing but lists of the form ’(action, agent, object, tool)’. An
action pattern is defined by an action, i.e., a verb, an agent who executes the action, an object,
which is modified, and optionally a tool. Generate $number action patterns for the domain of
interest ’$domain_of_interest’.

Example: ... Generate 100 action patterns for the domain of interest ’kitchen’.

4. Experiments

To evaluate the LLMs’ suitability as a source of common-sense knowledge, we used a ground
truth consisting of 97 action patterns. The data set was created in a study with 20 participants,
who completed the action patterns by determining the states of each object before and after the
action, identifying the tools used, and outlining the spatial relationships between the objects
and tools. An excerpt of this ground truth for the action “cut bread” is shown in Listing 1.

Listing 1: Excerpt from the ground truth for action patterns.
1 {
2 "action": "cut",
3 "object": "bread",
4 "tools": ["knife", "fork", "key"],
5 "object_states_before": ["fresh", "uncut", "whole", "unsliced", ...],
6 "object_states_after": ["fresh", "cut", "crusty", "sliced", ...],
7 "spatial_relations": ["bread near knife", ...]
8 },



4.1. Architecture and Models

We conducted preliminary experiments for choosing suitable LLMs, including oneswith Vicuña’s
7B and 13B models and OpenAssistant. Despite performing well in chat-like scenarios, these
models had difficulty returning structured results. OpenAI’s models appeared particularly
promising, so we included them along with BLOOMZ as an open-source alternative and BERT
as a baseline. For BERT, we rephrased the prompts as demasking tasks. We accessed gpt-3.5-
turbo and gpt-4 via the OpenAI API and BLOOMZ via the Hugging Face API, and deployed
BERT locally using a Hugging Face transformers pipeline. While we experimented with various
temperatures, we ended up using a temperature of 0 to ensure reproducability. Providing
candidates leads to significantly better results when comparing the responses to the ground
truth. However, it is valid to assume that candidates are available, as this corresponds to a
grounding in the robot’s environment, which can be achieved using an appropriate perception
module. The architecture we developed for the evaluation is shown in Figure 1. We also adapted
this architecture to populate an ontology revolving around the notions described in Section 3.1
with the action patterns extracted to demonstrate the use of the information extracted, see
Figure 1 bottom right.

BERT
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ChatGPT

LLM Wrapper
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Evaluation
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Ground truth: action 
patterns

Figure 1: Architecture for assessing the LLMs and populating an ontology.

4.2. Results

Figure 2 summarizes the results. It shows F1@n-scores, i.e., the harmonic mean of precision
and recall considering the first n elements from the ground truth. The left plot shows that the
OpenAI models outperform others, including a ConceptNet-based baseline, in extracting tools
𝒯. For extracting spatial relations ℛ𝑠𝑝𝑎𝑡𝑖𝑎𝑙, demasking was particularly effective. Extracting
object states before 𝒮𝑏𝑒𝑓 𝑜𝑟𝑒 and after 𝒮𝑎𝑓 𝑡𝑒𝑟 the action yielded worse results. Changes in model
temperature had little impact. These results are in line with success rates in LLM applications
[7, 8]. To also evaluate the general usefulness of LLMs for common-sense knowledge extraction,
we extracted 100 action patterns for the “kitchen” domain. Upon manual review, all 100 action
patterns retrieved were found to be valid.

5. Conclusion and Outlook

Our experiments indicate that LLMs are a scalable source for general common-sense knowledge
in the form of action patterns, which is a valuable basis for an ontology usable by robots.
However, LLMs are still insufficiently reliable for providing actionable knowledge for robotics
applications by themselves. Thus, we suggest pursuing the combination of LLMs and knowledge



Figure 2: F1@n-scores, with n on the x-axis, for the extraction tasks compared to the ground truth
(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0, candidates provided).

graphs for robotics, especially in the form of an integrated pipeline for ontology population
from LLMs, and validation and reasoning using symbolic AI. Future work should also address
the validation of newly extracted information using the existing knowledge graph in the spirit
of Pan et al. [9], and the continuous evolution of the knowledge base using all sources available,
ranging from databases created in community efforts to LLMs.

Supplementary Material: The ground truth dataset, the prompts, and a Python script for
creating an OWL ontology from the action patterns extracted are available via GitHub1.
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