
A trust model that ensures the correctness of
computing in grid computing system⋆

Pavlo Rehida1,*,†, Oleg Savenko1,†, Anatoliy Sachenko2,3,†, Andriy Drozd1,†, Petro
Vizhevski1,†

1 Khmelnytskyi National University, Institutska str., 11, Khmelnytskyi, 29016, Ukraine
2 Kazimierz Pulaski University of Technology and Humanities, Department of Informatics, Radom, Poland
3 Research Institute for Intelligent Computer Systems, West Ukrainian National Unversity, Ternopil, Ukraine

Abstract
The main objective of this article is to present model of a distributed computing system that ensures
the correctness of computations performed with connected nodes. The article analyses modern
approaches to designing systems and their functioning. It examines the advantages of chosen
computing systems and the main challenges that need to be addressed for their successful application.
The article describes a model that includes a central control unit and computing sub-systems, as well
as the challenges associated with correct computing within this system. To address this problem, the
article proposes utilizing the trust model approach, which classifies computing nodes by roles based
on their level of trust. The functions of these roles are also discussed. Additionally, the article explores
major approaches for designing the trust model, including the utilization of voting, behavioural
analysis, and machine learning. Solutions for potential conflicts arising from voting are also
presented. Special attention is paid to the process of gathering information and its further processing
to form the behavioural portrait for each computing node in the system. Furthermore, the article
covers data transformation and optimization to train models for predicting compromised nodes.
Details of the performed experiment, including the used dataset, are also considered. The experiments
performed show the dependence of prediction accuracy on the value of epochs set during model
training.

Keywords
grid computing systems, behaviour analysis, binary classification 1

1. Introduction

In today’s world the usage of distributed computing is popular across various aspects of modern
life as for personal and for scientific purposes. These systems find applications in modelling
complex physical processes, calculation of critical issues and risks, molecular modelling,
processing Big Data for IoT systems, malware detection [1], training models for artificial

IntelITSIS’2024: 5th International Workshop on Intelligent Information Technologies and Systems of Information
Security, March 27–29, 2024, Khmelnytskyi, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 pavlo.rehida@gmail.com (P. Rehida); savenko_oleg_st@ukr.net (O. Savenko) as@wunu.edu.ua (A. Sachenko);
andriydrozdit@gmail.com (A. Drozd); petro.vizhevskyi@gmail.com (P. Vizhevski);

 0000-0002-6591-7069 (P. Rehida); 0000-0002-4104-745X (O. Savenko); 0000-0002-0907-3682 (A. Sachenko); 0009-
0008-1049-1911 (A. Drozd); 0009-0009-4851-0839 (P. Vizhevski);

 © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

intelligence[2], among other tasks. Distribution systems provide a substantial amount of
computing resources by involving large number of independent computers to collectively solve
tasks. Applying these systems to diverse tasks prompted the proposal of various types and
organizational structures for distributed computing. However, these systems come with both
advantages and drawbacks. Considering the huge utilization of these systems it is necessary to
study its drawbacks and find new approaches to overcome their key issues.

The organization of the distributed computing requires solving a few important problems,
that will allow to design efficient systems. These problems are task distribution, enabling fault-
tolerant, data distribution, computing correctness checking, scalability, security [3,4] etc. This
paper focuses on designing a model that guarantees the correctness of calculations based on a
trust approach that is based on the behaviour aspects of computing elements through binary
classification.

The first part of this paper discusses the analysis of modern approaches used to organize
distributed systems. In covers cluster computing, grid computing, cloud computing and edge
computing, along with their respective advantages, disadvantages, and applications.
Subsequently, the main challenges of organizing dynamic distributed computing are
considered. In following sections, the application of trust module aimed at ensuring the
correctness of computation is presented. The analysis of the main approaches used to design
this trust model is also discussed. It is proposed to utilize behavioural analysis to resolve conflict
situations encountered during voting for the correctness of computation. The primary approach
to analysing computing nodes involves collecting data to determine if a nide is compromised.
The article outlines the dataset used and its operational process before being employed for
model training. Lastly, the article presents the results of experiments conducted using
TensorFlow for model training. The experiments showcase learning speed based on the
specified number of records and epochs, along with the accuracy of predictions.

2. Modern approaches to organizing distributed computing

The diversity of tasks that were set before distributed computing has influenced the evolution
of its various types, adapting them to specific requirements. On one hand, high-performance
computing systems were designed to address computationally intensive tasks, commonly used
for scientific simulations. On another hand, tasks that demand real-time processing and low
latency led scientists to propose edge computing. Each of these approaches has its own
advantages and specific organization. So, it is necessary to consider the most widely used types
and their issues.

Cluster systems. This concept lies at the core of organizing distributed computing, aiming to
attract substantial computing resources using the homogeneous elements. All these
interconnected elements are configured to collectively provide a unified resource for individual
tasks [5]. The elements of the system are located next to each other and utilizes special wired
data transmission interfaces, enabling rapid transfer of large data volumes. These systems are
easily scalable by adding new nodes. These additional nodes can swiftly replace those that have
failed, allowing uninterrupted calculations to proceed. All these aspects determine such systems
as leading in the processing of large and resource-intensive tasks. The planning and execution
of accurate calculations is controlled by a central server. Virtualization is often used for efficient
resource allocation. Cluster systems find applications across various domains, including

scientific research modelling, software application servers, big data processing and database
support.

Grid systems. This system can be characterized as one who involve computing elements for
future computing, which can be located at long distances from each other [6]. Unlike cluster
systems, various computing elements, both software and hardware, are often used here, so they
are also called heterogeneous [10]. To organize communication and data exchange between
these elements, traditional Internet connection technologies are most used. These systems have
great potential for scalability. Thanks to different types of computing elements, it is possible to
flexibly select the necessary resources for specific tasks, and also to provide a high level of
reliability. Managing such systems is characterized by decentralization, that’s means that they
do not have a central control module. Computing elements operate with a degree of autonomy,
allowing them to determine when and how much computing recourses to allocate for solving
specific computational tasks. Due to the system’s ability to involve a large number of elements,
such systems can potentially accumulate significant computational power. This computation
power can be used for different scientifical researches, for example in analysing potential
malware software [7-9] A special case of such systems is volunteer computing, which involves
the elements of all willing users on a voluntary basis. The dynamism of such systems sets a
number of tasks before scientists that need to be solved in order to organize efficient and safe
calculations. These tasks are: finding an effective algorithm of distributing tasks between
computing elements, organizing the correctness of performed calculations, optimizing the
overall performance of the system and it’s elements, and finding efficient methods for data
transmission inside the system.

Cloud systems. This type of systems refers to information technology solution whose
primary purpose is to provide services such as: computational power, access to web-
applications and different methods to store data. Cloud systems are characterized by their
ability to offer services to users anywhere via the Internet. In this case users don’t need to own
any necessary hardware. From the user’s point of view, cloud systems are easily scalable relative
to the needs of their task. Cloud systems can be deployed with various access types, including:
public, private, community and hybrid. In a public cloud, all services are accessible to registered
users. While private cloud deployed within a company’s infrastructure, providing resources
exclusively for the needs of the owning company. This type ensures high security for services
and data. Users are offered services through three scenarios: IaaS (Infrastructure as a Service –
providing access to control operating systems, programs and network configurations), PaaS
(Platform as a Service – includes databases and application development and deployment tools),
SaaS (Software as a Service – provides resources to transfer the functionality of some
applications to the browser, offering various advantages). To ensure the smooth and efficient
operation of such system, critical tasks, while organizing it, include securing the system and
implementing efficient algorithms for transferring large datasets.

Edge systems. Such type of system is quite new distributed system paradigm and it’s
appearance is connected with widespread use of the IoT devices in the modern world. The key
aspect of this paradigm is rethinking where is data stored, processed, and managed for
computation. The growing number of sensors increases accordingly the amount of information
generated for specific purpose. Consequently, the time required for data transmission to a
central node for processing, as well as the processing time itself, increases. In this concept,
intermediate computational resources are proposed to perform partial or complete data

processing before sending it to the central node. Such an approach offers an advantages in
systems that need to operate in real-time, because needed data can be obtained by executing a
single request addressing the control element in the corresponding area. Therefore, edge
systems finds application in complex IoT systems, health and safety, autonomous vehicles,
telecommunications systems, and energy sector. The main challenges for such systems include
ensuring stable communication between network elements, securing data transmission and
processing, and distributed control of system components.

3. Dynamic nature in grid computing systems

Grid systems are a concept that describes systems involving elements that can be located far
away from each other. Also, grid systems define how elements inside it may participate, and by
default, they have some level of autonomy. With this autonomy, elements can decide how long
and to what extent they will perform necessary tasks for a given objective. Taking these
characteristics into account, developers have utilized this concept, to implement grid computing
systems. Basic model of such a system is presented in fig. 1.

Computing Sub-system 1

Intermediate server

CN 1.1 CN 1.2 CN 1.i

Computing Sub-system 2

Intermediate server

CN 2.1 CN 2.2 CN 2.j

Computing Sub-system n

Intermediate server

CN n.1 CN n.2 CN n.k

Central Control Unit

User interface for
uploading tasks

Figure 1. General model of grid computing systems.

In contrast to the traditional cluster computing system, grid computing presents challenges
specific to its design. These challenges include the complexity of managing, security issues,
interoperability challenges, network connectivity dependency, as well as load balancing and
scheduling challenges. Additionally, scalability issues based on task and energy consumption.
Most of these challenges are relevant to grid systems designed for various computation tasks.
Despite these challenges, grid computing system are highly efficient and widely used in modern
world of distributed computing. For example, there are a lot of successful systems that utilize
the computational power of individuals who willingly contribute for scientific purposes on
volunteer basis.

The most known systems are:

 BOINC (Berkeley Open Infrastructure for Network Computing) – software platform and is
utilized by various universities worldwide. Scientific projects using this system cover
fields such as mathematics, climate studies, astrophysics, computer science, and
cryptography.

 WCG (World Community Grid) – global volunteer grid computing systems that also
utilizes the computational power of users. Its primary research focus is in the field of
health.

 EGI (European Grid Initiative) – defined as federation of computing and storage recourse
providers. This platform focuses on several tasks, including the analysis of imaging data
and the developing and common approach to implement digital twins.

 CharityEngine – this project based on BOINC technology. In contrast to participation
for scientific purposes, volunteers provide resources for business needs. Business
owners pay money, which is used for various charitable purposes.

Beside these projects involved into real-world applications, software enthusiasts collaborate
into teams to propose alternative solutions. They create teams working on developing new grid
computing applications based on different programming languages stacks. Most of these
solutions are freely available and allows users to set up private grid computing system for their
personal needs. The most known solutions are JPPF (task-based model of grid computing with
dynamic node discovery feature based on Java), NGrid (.NET grid computing model with an
efficient resource utilization approach) and Distri.js (grid computing system based on JavaScript
that uses a browser as client to perform computation).

Existence of real-life grid computing systems and frameworks for personal grid system set
up ensures that this type of computing is both popular and useful. These systems provide
significant computational power and can be defined as dynamic computing system. The
dynamic characteristic can be considered from various perspectives. From the viewpoint that
these systems are designed for performing computations for different tasks, a key aspect is that
the computing nodes are not belongs to system. Considering this fact, it is possible to define set
of tasks that must be solved to ensure the efficient and secure computing:

 Efficient resource utilization – It is necessary to use the efficient algorithms for task
distribution, taking into account that nodes connected to the system will differ from
hardware viewpoint.

 Providing scalability – The system should be able to use additional resources from newly
connected node efficiently.

 Ensuring the fault-tolerance – A high level of autonomy for each node allows them to
stop performing computations at any time. The system must be prepared for this
scenario.

 Providing computation correctness – The system should be prepared in any case node
makes a mistake while computing its part of the task.

 Network issue oriented tasks – Communication in grid system mostly organized via the
traditional Internet connections, so it is necessary to provide approaches that decrease
the impact of network issues.

For the first task various, load-balancing algorithms and heuristics are commonly used. Such
algorithms should take into account the type of the task and how well these tasks may be
performed with parallel computation and the number of currently connected nodes in the
system. These algorithms may also help in providing the scalability of the system if they are
include a proactive approach. With proactive approach of the algorithm, it will build the next
portion of computation, while nodes keep working on current one. In general, it will also
minimize time of node idling. A high level of fault-tolerance may also be achieved by good task
distribution between nodes and by including replication and redundancy approaches [11].
Computational correctness is achievable with the redundancy checks, which can be performed
for the whole task or only for a part of it, deploying trust model or voting systems, etc. Network
issues can be solved by implementing the specialized network protocols, data replications or
even implementing SDN. In this case, SDN may be used for create an isolated network for some
task with the an intermediate server, where the server and nodes will be close territorially to
each other, so the network latency won’t effect on the system’s performance.

This paper is aimed to propose a modified trust model for grid computing system based on
behavioural analysis of computational nodes with the inclusion of a binary classification tool.

4. Trust model approach

A trust model, in context of distributed computing system, refers to a software framework
designed to manage trust relationships among system elements. In grid computing systems,
trust is a critical factor that influences access control and collaboration between computing
nodes. Considered how computing nodes participate in the grid system, it becomes evident that
the central unit, responsible for all calculations, cannot trust to any of them. This limitation
arises from the fact that computational server cannot exercise full control over any individual
node due to the nature of distributed tasks performed by these nodes. The nature of task, in this
context, implies that a single large task distributed across all elements depends on correctness
of each individual node. Even a small part of the task calculated incorrectly can impact the
overall result. Thus, on the one hand, the system cannot inherently trust any of the computing
elements, and on the other hand, it must ensure the correct computation. A trust emerges as a
viable solution to navigate this challenge.

Trust model are used in different areas, such as computer networks, IoT systems, social
networks, multi-agent systems, healthcare systems and cloud computing. Trust models operate
using various approaches, the most well-known are:

 Reputation-based – every computing node has its own reputation. Correctness of
calculations may be achieved by considering the current level of reputation [12], which
is based on successfully completed past tasks.

 Voting-based – voting, as a concept, is widely used in IoT systems [13] for making
decisions based on collected data. Nodes in the system vote to establish a level of trust
in processing events within the system.

 Blockchain-based – blockchain technology may be used in a trust model from different
perspectives, including identification and secure data transmission. In distributed
systems, it finds application [14] in resource management, security ensuring, network
delays.

 Game theory-based – defines a set of rules for node how to collaborate and communicate
with other nodes. It may be applied for establish secure message transmission between
an intermediate processing unit and an edge element [15].

 Behaviour-based – this approach uses the concept of node’s behavioural trust that based
on analysis of past actions while processing tasks inside system [16]. This method is
commonly used for cybersecurity in decentralised systems.

 Machine learning-based – trust systems also can utilize the AI concept that can be based
on decision trees, K-nearest neighbour, naïve Bayes or random forests. Such trust model
can be used as part of intrusion detection system [17]

Many modern trust models used in distributed systems do not rely solely on one of the
aspects considered earlier. In most cases, they incorporate multiple aspects to achieve a higher
level of efficiency. Developers take into account the main purpose of the system and the way if
functions when designing the trust module for it.

This paper introduces the concept of trust module for a grid computing system, with the
primary goal of ensuring the correctness of computations. The proposed module based on
combination of several approaches. The primary approach is based on the voting mechanisms,
and to address potential conflicts during the voting, elements of machine learning and
behavioural approaches are integrated. Conflicts that may arise during the voting are possible
only if certain computing elements, responsible for computing the same tasks or even portion
of them, return different results. In such cases, the system should utilize a rating system
calculated based on the history of previous calculations for each element and its behaviour. It
is proposed to access behaviour from two perspectives: node identification and node
computation. Node identification refers to the physical information that can be obtained about
host hardware and software via the client application. In most cases, users who wished to
participate in computing do not frequently alter the characteristics of their hosts (including
hardware and installed software). Considering this, when a user connects with uncommon
characteristics, the system can identify this node as compromised. From the computational
viewpoint, the system may verify the results of the calculation. Incorrect calculations may be
associated with the presentence of malware on computing node. By combining these two
approaches, the system can make a more accurate decision regarding the correctness of the
computation. The system should also record successful calculations in terms of characteristics.
This type of obtained data will be used to train the neural network.

5. Trust module for grid distributed system based on node
behavioural analysis

For the proposed trust module, the system continuously obtains data from all connected
computation nodes. Given that grid computing system are naturally designed to work with a
large number of computation nodes, the main central control unit will have to create a set of
computing groups, each with a leading intermediate server.

The whole grid computing system may be described as 𝐺𝐶𝑆 = {𝑐𝑐𝑢, 𝑐𝑠𝑠ଵ, … , 𝑐𝑠𝑠},
where 𝑐𝑐𝑢 stands for central control unit, and 𝑐𝑠𝑠 represents a computing sub-system. In context
of communication, the 𝑐𝑐𝑢 performs it with the intermediate server, which is part of 𝑐𝑠𝑠. Each
𝑐𝑠𝑠 uses a trust module to ensure the correctness of performed computations and a set of
computing nodes that differ in their usage perspective.

So, each sub-system can be defined as 𝐶𝑆𝑆 = {𝑖𝑠, 𝑡𝑚, 𝐶𝐸}, where 𝑖𝑠 stands for
intermediate server, 𝑡𝑚 for trust module, and 𝐶𝐸 is a set of different computing nodes. The
model of such sub-system is shown on fig. 2.

Figure 2: Computing sub-system based with trust module

The trust system utilizes information about how different computing nodes perform
computations, evaluate the returned result and gathers other relevant parameters, such as time
taken to complete tasks, the correctness of task execution, and behavioural information. For
each computing node, the trust system sets a trust value, which can be referred to as the trust
level of computing element.

Trusted computing
node 1

Trusted computing
node i

...

Common
computing node 1

Common
computing node j

...

New computing
node 1

New computing
node k

...

Untrusted
computing node 1

Untrusted
computing node l

...

C
om

m
un

ic
at

io
n

m
od

ul
e

w
ith

 c
lie

nt
s

Communication module
with main server

Task
queue

module
Task distribution

module

Ensuring
correctness in

computation trust
module

This value ranges from 0 to 1, and the trust module assigns different roles to each computing
node, based on this value:

 Trusted computing node – system will never perform additional checks to the results that
they have returned.

 Common computing node – system will never trust these elements, so it will send the
parts of their tasks to the other computing nodes, to be sure that their calculations are
correct.

 New computing node – these nodes start with some value of trust, and system will send
them test tasks to evaluate their computation power and regular tasks to reached needed
level of trust to become the common computing nodes.

 Untrusted computing node – node of this type made a lot of mistakes while computing
tasks, that were defined while voting. System defines them as compromised and requires
a lot of checks before they become as common computing node.

So, we can define 𝐶𝑁 = {𝑡𝑐𝑛ଵ, … , 𝑡𝑐𝑛, 𝑐𝑐𝑛ଵ, … , 𝑐𝑐𝑛, 𝑛𝑐𝑛ଵ, … , 𝑛𝑐𝑛, 𝑢𝑐𝑛ଵ, … 𝑢𝑐𝑛},
where 𝑡𝑐𝑛 is a trusted computing node;
 𝑐𝑐𝑛 – common computing node;
 𝑛𝑐𝑛 – new computing node;
 𝑢𝑐𝑛 – untrusted computing node.
As, it was described earlier, 𝑐𝑐𝑢 should ensure that each 𝑐𝑠𝑠 consists of no fewer than three

trusted computing nodes. The system will assess the effectiveness of the computations
performed and adjust the resulting rating for each computing node.

When a computing node completes its current task correctly, its rating will increase, while
a computation with an incorrect result will decrease rating. It is suggested that the rating will
change according to formula (1).

𝑐𝑛𝑟 = 𝑐𝑛𝑟 + 𝑐 ∗ 𝑐𝑘 (1)

where 𝑐𝑛 stands for current trust level of 𝑖 computing node, 𝑐 describes the correctness of
performed computing, 𝑐𝑘 is a coefficient set by the administrator that influences how the level
of trust will change after the computing task is completed.

It is suggested that the system administrator will set the basic values to help the system the
role of each node, that takes part in task computing. For example, untrusted nodes have rating
between 0 and 0.5, a common node has rating between 0.5 and 0.8, and a rating between 0.8 and
1 is assigned to trusted nodes. This rating will be updated based on the voting results, which
are performed after each computing iteration in sub-system. To enable voting, the 𝑖𝑠 in formed
sub-system will distribute tasks among common computing nodes and include a portion of a
task designed for another node. Depending on the load of trusted nodes, these portions may
also be sent to them. After obtaining the results, the 𝑖𝑠 will determine whether these tasks were
computed correctly.

Working with nodes that have status ‘new’ in computing sub-system presents two
challenges: the 𝑐𝑐𝑢 lacks information about the computational power they can provide, making
impossible to distribute tasks accurately, and it lacks information about the trust level of these
nodes. It is proposed to use some test data to set up primary parameters for the new element,

which may be equivalent to the least powerful client in the system, in terms of computing
capability. Then, the system will adjust the portion of the task based on how quickly the
previous task was computed. This evaluation is crucial for organizing the synchronous
computing for all tasks. The formula for determining the trust level of new nodes may vary and
can be adjusted by the administrator.

6. Behaviour analysis tool for resolving conflicts in trust module

Behaviour analysis is common approach that used in various fields of science for identification
tasks of. In field of informational technology, it finds it application in several important tasks,
including security monitoring to detect anomalies, analysing network traffic [18] to identify
anomalous patterns, user authentication and authorization based on the analysis of typical
behaviour patterns [19], optimization of distributed edge computing system [20], and predictive
maintenance based on real-time equipment monitoring [21,22].

As mentioned earlier, the proposed trust model works with two sets of data to form the trust
level of computing elements. The first set of data represents characteristics that can be collected
using installed client node software, including information about the hardware and software
being used.

The term “node software” refers to the application responsible for communicating with the
sub-server and executing tasks assigned to the node. This application allows node to receive
new tasks for computation. The information that can be obtained depends on the programming
language used for its development. However, for most languages, it is possible to obtain the
following information: os (operation system), cpu_a (CPU architecture), cpu_m (CPU model),
cpu_s (CPU base speed), cpu_n (number of CPU cores), ram (total RAM), home_dir (home
directory location on disk), mac (MAC address). Examples of this data are shown in Table 1.

Table 1
Node characteristics that describe software and hardware.

Computing
node

identifier
os cpu_a cpu_m cpu_s cpu_n ram home_d mac

client1 win. x64
Amd

ryzen 5
3600 12 16 C://usr1

9c:b5:3c:
9f:f1:4f

client1 lin. x64
Intel

core i5
3700 6 16 /home/usr2

0b:c0:21:
87:58:57

client1 darv. x64
Intel

core i5
2000 8 16 /Users/usr3

78:7d:49:
07:1d:b3

The second set of parameters describes how the computing client performs its computations

for each task.
This data will include the following information: 𝑡𝑎𝑠𝑘_𝑐 (task complexity), 𝑡𝑎𝑠𝑘_𝑝 (time

taken to perform the task), 𝑡𝑎𝑠𝑘_𝑠 (time required to send the task), 𝑡𝑎𝑠𝑘_𝑟 (time required to
send results back), 𝑡𝑎𝑠𝑘_𝑝𝑟𝑜𝑑(coefficient that describes the productivity of performed task).
Examples of this data are shown in Table 2.

Table 2
Node characteristics that describe task computing.

Computing
node identifier

task_ c task_p task_s task_r task_prod

client1 2000 6100 22 33 3.05
client1 1500 4400 19 32 2.93
client1 2000 6200 21 33 3.1

During operation, the intermediate server collects data for each task performed by every

computing node. This data is proposed to be used for training a neural network, which will help
to identify if a computing node was compromised. It was mentioned earlier that each sub-
system requires at least three trusted nodes to ensure the correctness of computation. If two
trusted nodes return the same results while a third one returns different result, the voting
approach will resolve this situation. However, if all trusted nodes return different values, the
system must decide which computation was correct. In such cases, the trained model will assist
in determining if any of the trusted nodes were compromised.

7. Experiments

Before the collected data can be used for training the model, it is necessary to format it in a
suitable way that can be utilized by most of the developed solutions for training. Each row in
Table 1 and Table 2 represents the data characterizing one computed task on a client. Therefore,
the system will generate one set of characteristics for each computed task on each computing
node and store them until this data is used for training the personalized model. The data stored
in the first table is not suitable for deep learning approaches because models do not support
working with text information. To address this issue, it was decided to use one-hot encoding
[23]. This approach was applied to the following characteristics: operating system, architecture,
CPU model, home directory location and MAC address. However, one-hot encoding approach
should be used correctly based on needs of the model being trained. If the system trains one
model for all computing nodes, the text data should be classified and represented with IDs. In
this case, it is necessary to use an algorithm to prepare the data, such as data modification
approaches [24], which help retain critical data for learning and even select the informative
features to better represent the patterns [25].

To train the model, it is also necessary to provide information about whether the
computation was correct. This information can be obtained through voting. If the voting results
are positive, the system will assign the value of 1; otherwise, it will assign a value of 0. By
combining both of these datasets, it will be sufficient to train the model for binary classification.
With the trained model, it will be possible to predict if the current node is compromised.

For this research, the scenario involves training the model for only one computing node. Our
dataset for training includes 3000 records about its computation. To emulate a compromised
node, a feature was added to the client application that deliberately changes its behaviour. This
modification alters various characteristics, employing three major strategies: changing the
hardware of the node, modifying the performance of computing, and adjusting the time for
sending and receiving tasks and results, respectively. The first scenario describes a situation
where a user account was stolen and someone attempts to compromise all calculations being

performed by the sub-system. The second scenario may indicate that the node is infected with
malware, and the third scenario refers to situations where the results may be distorted during
transmission over the network. In general, this modifier had to create at least 20% of records
indicating that the node was compromised. Subsequently, the obtained data was prepared for
training the model. TensorFlow.js was chosen for training the model, as all client and server
software is based on Node.js. Using this information, several models were generated with
different numbers of training epochs.

After training models another set of records was defined that describes the node behaviour.
This dataset was used to predict whether each node has normal or compromised activity inside
system. Figure 3 illustrates the accuracy results of these models."

Figure 3: Graph that shows the accuracy of trained model depending on epochs

These results demonstrate that the number of epochs during model training influences
prediction accuracy. Generally, as the number of epochs increases, the accuracy of the model
improves. If we compare the results of training with 1000 epochs to achieve an additional 4%
accuracy, it generally requires more than half of the additional time to train.

8. Conclusions

The main objective of this article is to present a trust model for grid computing systems that
ensures the correctness of computation. After analysing the dynamic nature of grid computing,
the primary challenges from the computing perspective were identified. Based on this, a
modified trust module with behavioural analysis was proposed.

The results of experiments and the methodology used are presented graphically. While
the obtained results shows a decent level of prediction accuracy, it may not be sufficient for safe
distributed computing processes. Therefore, further research in this field is necessary. And the
primary way for it is to adjust the data used to train the model. Since deep learning approach
has shown better results in models trained on large datasets, it is important to focus on training
a single module for all computing nodes. This will help to determine if the limited amount of
data prevented creation of an accurate model.

70

72

74

76

78

80

82

84

86

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

The dependence of prediction accuracy on
the number of epochs.

Another way for future research involves to collecting more data for each node. However,
collecting data for each node will require significantly more time, which may not be usable for
newly launched systems.

References

[1] H. Kim, K. Lee, IIoT Malware Detection Using Edge Computing and Deep Learning for
Cybersecurity in Smart Factories, Applied Sciences 12(15) (2022) 7679. doi:
10.3390/app12157679.

[2] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, J.S. Rellermeyer, A survey
on distributed machine learning, Acm computing surveys 53(2) (2020) 1-33. doi:
10.1145/3377454

[3] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, A. Nicheporuk, A Technique for
Detection of Bots Which Are Using Polymorphic Code, Computer Networks: 21st
International Conference (2014) 265-276.

[4] A.F. Abate, A. Castiglione, L. Cimmino, D. De Angelis, S. Flauto, A. Volpe, On the
(in)Security and Weaknesses of Commonly Used Applications on Large-Scale Distributed
Systems, 24th International Conference On Control Systems And Computer Science (2023)
572-579. doi: 10.1109/CSCS59211.2023.00096

[5] H. Yviquel, M. Pereira, E. Francesquini, G. Valarini, G. Leite, P. Rosso, R. Ceccato, C.
Cusihualpa, V. Dias, S. Rigo, A. Souza, The OpenMP cluster programming model,
Workshop Proceedings of the 51st International Conference on Parallel Processing (2022)
1-11. doi: 10.1145/3547276.3548444

[6] M.K. Mishra, Y.S. Patel, M. Ghosh, G.B. Mund, A Review and Classification of Grid
Computing Systems, International Journal of Computational Intelligence Research 13(3)
(2017) 369-402.

[7] O. Savenko, S. Lysenko, A. Nicheporuk, B. Savenko, Approach for the Unknown
Metamorphic Virus Detection, 9th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications 1 (2017) 71-
76. doi: 10.1109/IDAACS.2017.8095052

[8] P. Rehida, O. Savenko, A. . Kashtalian, A. Sachenko, Malware Detection Tool Based on
Emulator State Analysis, IEEE 12th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) 1
(2023) 135-140. doi: 10.1109/IDAACS58523.2023.10348678

[9] G. Markowsky, O. Savenko, S. Lysenko, A. Nicheporuk, The Technique for Metamorphic
Viruses’ Detection Based on its Obfuscation Features Analysis, ICTERI workshops (2014)
680-687.

[10] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research, IEEE access 8
(2020) 85714-85728. doi: 10.1109/ACCESS.2020.2991734

[11] M. Stetsiuk, A. Kashtalian. The methods of ensuring fault tolerance, survivability and
protection of information of specialized information technologies under the influence of
malicious software, Computer Systems and Information Technologies, 1 (2022), 36–44. doi:
10.31891/CSIT-2022-1-5

[12] M. Al-khafajiy, T. Baker, M. Asim, Z. Guo, R. Ranjan, A. Longo, D. Puthal, M. Tylor,
COMITMENT: A fog computing trust management approach, Journal of Parallel and
Distributed Computing (2020) 1-16. doi: 10.1016/j.jpdc.2019.10.006

[13] Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, X. Du, M. Guizani, A blockchain-based self-tallying
voting protocol in decentralized IoT, IEEE Transactions on Dependable and Secure
Computing 19(1) (2020) 119-130. doi: 10.1109/TDSC.2020.2979856

[14] W. Li, J. Wu, J. Cao, N. Chan, Q. Zhang, R. Buyya, Blockchain-based trust management in
cloud computing systems: a taxonomy, review and future directions, Journal of Cloud
Computing, 10(1) (2021) 1-34. doi: 10.1186/s13677-021-00247-5

[15] C. Esposito, O. Tamburis, X. Su, C. Choi, Robust Decentralised Trust Management for the
Internet of Things by Using Game Theory, Information Processing & Management, 57(6)
(2020) 102308. doi: 10.1016/j.ipm.2020.102308

[16] P. Schmidt, F. Biessmann, T. Teubner. Transparency and trust in artificial intelligence
systems, Journal of Decision Systems, 29(4) (2020) 1-19. doi: 10.1080/12460125.2020.1819094

[17] B. Mahbooba, R. Sahal, M. Serrano, W. Alosaimi, Trust in intrusion detection systems: An
investigation of performance analysis for machine learning and deep learning models,
Complexity (2021) 1-23. doi: 10.1155/2021/5538896

[18] M. Abbasi, A. Shahraki, A. Taherkordi, Deep Learning for Network Traffic Monitoring and
Analysis (NTMA): A Survey, Computer Computation, 170 (2021) 19-41. doi:
10.1016/j.comcom.2021.01.021.

[19] H. Lu, Y. Zhang, Y. Li, C. Jiang, H. Abbas, User-Oriented Virtual Mobile Network Resource
Management for Vehicle Communications, IEEE Transactions on Intelligent
Transportation Systems, 22(6) (2020) 3521-3532. doi: 10.1109/TITS.2020.2991766

[20] P. Krishnan, S. Duttagupta, K. Achuthan, SDN/NFV security framework for fog-to-things
computing infrastructure, Software: Practice and Experience 50(5) (2020) 757-800. doi:
10.1002/spe.2761

[21] O. Serradilla, E. Zugasti, J. Rodriguez, U. Zurutuza, Deep learning models for predictive
maintenance: a survey, comparison, challenges and prospects, Applied Intelligence 52(10)
(2022) 10934-10964. doi: 10.1007/s10489-021-03004-y

[22] A. Ucar, M. Karakose, N. Kırımça, Artificial Intelligence for Predictive Maintenance
Applications: Key Components, Trustworthiness, and Future Trends, Applied Sciences
14(2) (2024) 898. doi: 10.3390/app14020898

[23] L. Yu, R. Rongtian, R. Chen, K.K. Lai, Missing Data Preprocessing in Credit Classification:
One-Hot Encoding or Imputation?, Emerging Markets Finance and Trade 58(2) (2022) 472-
482. doi: 10.1080/1540496X.2020.1825935

[24] P. Dhal, C. Azad, A comprehensive survey on feature selection in the various fields of
machine learning, Applied Intelligence 52(4) (2022) 4543-4581. doi: 10.1007/s10489-021-
02550-9

[25] S.R. Tiwari, K.K. Rana, Feature Selection in Big Data: Trends and Challenges, Data Science
and Intelligent Applications: Proceedings of ICDSIA (2020) 83-98. doi: 10.1007/978-981-15-
4474-3_9

