
Increased frame rate for Crowd Counting in Enclosed
Spaces using GANs
Adriano Puglisi1, Francesca Fiani1 and Giorgio De Magistris1

1Sapienza University of Rome, via Ariosto 25, Rome, Italy

Abstract
An efficient computer system for regulating and monitoring the density of people in confined areas is very helpful. It becomes
imperative to implement a solution that takes into account the processing power and pre-installed hardware in these places.
Using computer vision, in particular, to make use of regular CCTV cameras that have been augmented by neural networks,
solves the problem of precisely counting individuals in enclosed spaces. We describe a control system specifically designed for
this goal, maximizing the capabilities of current infrastructure and enhancing neural networks to achieve higher frame rates.
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1. Introduction
In many enclosed spaces, crowd capacity management
is a common challenge due to strict occupancy limits.
These limits are critical for safety and regulatory compli-
ance. To address this issue, we propose to leverage CCTV
cameras as a solution to more accurately count people
within a confined area. Leveraging advanced video ana-
lytics, our system aims to provide real-time monitoring,
helping companies and institutions maintain optimal au-
dience density and ensure a safe environment [1, 2]. The
main solutions proposed in recent years for indoor hu-
man tracking use cameras with depths for the acquisition
of the position, however, this technology is in some cases
expensive or in any case not available. The use of modern
algorithms in computer vision allows the development
of systems capable of using a simple two-dimensional
camera also to calculate the depth and therefore the posi-
tion of some objects, or people, in space [3]. These types
of cameras usually have poor FPS values to save stor-
age space, this tool is combined with a neural network
based on the GAN framework, to increase the frame rate
of such cameras. The interpolation of frames through
the use of neural networks is an important and complex
problem to solve, the datasets used are often very large
and the networks very deep. These networks, even if
they achieve remarkable results, have a very high compu-
tational cost and can often be trained only on expensive
or unavailable hardware. For this reason, we choose to
bias the neural network using a specific dataset for the
task, that contains only working pedestrians, to obtain a
faster convergence of our network. In the last few years,
the GAN framework [4, 5, 6] brought a little revolution
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in the neural networks field. It’s possible to adapt such
a framework to a series of different tasks, in particu-
lar, it’s broadly used in the Super-Resolution of signals,
such as images, videos, and audio and, generally speak-
ing, in recreating or reconstructing parts of lost signals.
Given the potential of this framework, we decided to
implement a GAN regarding the frame-rate increase of
CCTV. The whole project tries to exploit the best tech-
niques that require a saving of hardware resources, thus
allowing it to be used in as many environments as pos-
sible and with a medium-low computing power. The
security in closed spaces and the tracking of people are
having an ever greater impact on the management of
common spaces and crowded places, the use of advanced
IT systems can allow greater, more effective, and efficient
control. Maintaining a significant trade-off between the
necessary hardware resources and the results obtained
was an important point in developing our work.

2. Related Works

2.1. Human tracking
The problem of human tracking and positioning is a well-
known subject in computer vision. It can be useful in
different situations, such as crowd control, monitoring
public areas, security, and so on [7, 8, 9, 10, 11]. We want
to focus on the usage in an indoor environment mainly.
Some research [12] uses top-view depth cameras, sub-
tracting the average obtained image, consisting of the
floor and the furniture, segmenting the moving objects,
and trying to match them with a top-view model of a
person. After that the projection distortion is corrected,
obtaining the position on the plane. Similarly in [13] fish-
eye top-view cameras segment the moving object from
the static background using adaptive GMM and correct-
ing the projective distortion to find the position. Even
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though those approaches could be effective, we want to
use cameras that are usually positioned on the wall in-
stead of the ceiling. Other papers [14] use 3D cameras to
obtain an ortho-image to find objects in a scene; while
this approach could be extended to our needs, it requires
more sophisticated cameras with depth vision, which
CCTV cameras are not equipped with.

2.2. Frame-rate increase
The computer vision community has given significant
attention to the necessity of increasing the frame rate
and, consequently, the video frame interpolation. Many
uses for this issue exist, including the creation of slow
motion and frame recovery for video streaming and gam-
ing. High-frame rate videos are visually more pleasing to
watch because they may avoid typical glitches like tem-
poral jittering and motion blurriness. Several techniques
have been used to overcome the issue of getting interme-
diate frames from a limited collection, including frame
interpolation and, more recently, DNNs. In Frame Inter-
polation techniques, intermediate frames are generated
between the present frames using interpolation, as in the
methods proposed by Choi et al. [15], based on Bilateral
Motion Estimation and Adaptive Overlapped Block Mo-
tion Compensation. Also, a wide variety of DNN methods
were proposed; recently Flow-Agnostic Video Represen-
tations for Fast Frame Interpolation [FLAVR [16]] solved
the problem using an autoencoder based on 3D space-
time convolutions, to enable end-to-end learning and in-
ference. With no extra inputs needed in the form of depth
maps or optical flow, this technique effectively learns to
reason about non-linear movements, complicated occlu-
sions, and temporal abstractions, leading to enhanced
performance. Depth-Aware Video Frame Interpolation
[17] is another notable DNN technique that synthesizes
intermediate flows that sample items closer to the viewer
preferentially by introducing a depth-aware flow projec-
tion layer. To synthesize the output frame, this approach
uses the optical flow and local interpolation kernels to
warp input frames, depth maps, and contextual features.
Hierarchical features are utilized to extract contextual
information from nearby pixels.

3. Proposed method
In this section, we describe the methods and the algo-
rithms used to analyze the images and detect people
inside the scene, and after that increase the frame rate.

3.1. Detection
YOLO [18] is the neural network framework we used for
detecting persons in the scene, it is extremely popular and

widely used in computer vision for its speed and accuracy
in the detection. We tested a set of YOLO pre-trained
models, to pick up the most suitable one for our goal. Our
goal was to achieve good accuracy while maintaining a
reasonable number of FPS to work with in real time. The
models we tested are trained on a custom public dataset
specific for crowded human places [19]. The models we
tested are:

• YOLOv8n trained with 416× 416 images
• YOLOv8s trained with 416× 416 images
• YOLOv8m trained with 416× 416 images

3.2. Tracking
To track people in the scene as reliably as possible, it’s
needed a good balance between accuracy and speed;
while the chosen model offers a good speed in the detec-
tion, it lacks accuracy. To make up for this lack, we cor-
rected and smoothed the predictions made by YOLO us-
ing the SORT algorithm [20], which corrects and smooths
the position of the bounding boxes using a Kalman filter
[21].
The Hungarian algorithm is utilized to monitor every
detection inside a scene. A list of detections is stored,
the positions of the detections are predicted using the
Kalman filter for each iteration, the Intersection over
Union (IOU) is calculated using an updated set of detec-
tions, the Hungarian algorithm is used to find the best
matches, and the detections are categorized as matched
or unmatched. For every bounding box, a new Kalman
filter is created in case of mismatched detections. The
algorithm updates the Kalman filter for matching detec-
tions. Ultimately, a list of tagged detections is produced.
The state used for the Kalman filter is defined as:

𝑥 = [𝑢, 𝑣, 𝑠, 𝑟, �̇�, �̇�, �̇�]

where 𝑢 and 𝑣 represent the horizontal and vertical po-
sitions in pixels, and 𝑠 and 𝑟 denote the scale (area) and
aspect ratio of the bounding box. Notably, the aspect
ratio lacks a corresponding velocity in the state, as it is
assumed to be constant.

3.3. Spatial Localization
This section outlines the approach for obtaining the cam-
era matrix and the algorithm employed to determine the
2D position of a person in the scene.

3.3.1. Camera Model

The finite projective camera, denoted as 𝑃 , is charac-
terized by its intrinsic and extrinsic parameters, given
by:

𝑃 = [𝑀 | −𝑀�̃�] = 𝐾[𝑅| −𝑅�̃�]
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Here, 𝑅 describes the orientation of the camera and �̃�
is the world position of the camera center. 𝐾 is the
calibration matrix and since the resolution is the same in
both the x and y directions, the calibration matrix can be
defined as:

𝐾 =

⎡⎣𝑓 𝑠 𝑥0

0 𝑓 𝑦0
0 0 1

⎤⎦
with 𝑓 being the focal length andcan be obtained using
the formula:

𝑓 =
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

2 * 𝑎𝑡𝑎𝑛2(𝐴𝐹𝑂𝑉
2

)

Where 𝐴𝐹𝑂𝑉 is the field of view. Typically, obtain-
ing these parameters requires camera calibration using
methods like Zhang’s method [22]. However, in a simu-
lator environment, all parameters can be derived from
the properties of the involved objects.

3.3.2. Inverting Projective Transformation

Summarizing, the 3 × 4 camera matrix 𝑃 trans-
forms image coordinates (𝑢, 𝑣, 1)𝑇 to scene coordinates
(𝑋,𝑌, 𝑍, 1)𝑇 . To obtain the scene coordinates from im-
age coordinates, we aim to invert 𝑃 , considering that per-
spective projection is not injective. Assuming knowledge
of the distance from the ground (height of the person),
we utilize the pseudo-inverse 𝑃+ of 𝑃 . Two points on
the back-projected ray are identified: the camera center
𝐶 and the point 𝑃+𝑥. The ray is expressed as:

𝑋(𝜆) = 𝑃+𝑥+ 𝜆𝐶

For a finite camera with 𝑃 = [𝑀 |𝑝4], the camera
center is �̃� = −𝑀−1𝑝4. Back-projection of an image
point 𝑥 intersects the plane at infinity at the point 𝐷 =
((𝑀−1𝑥)𝑇 , 0)𝑇 , providing a second point on the ray.
The line is represented as:

𝑋(𝜇) =

(︂
𝑀−1(𝜇𝑥− 𝑝4)

1

)︂
Solving for 𝜇, considering the 𝑍 coordinate as the

detected height, allows computation of the 𝑋 and 𝑌
coordinates in the scene.

3.4. Enhancing Frame Rate
We decided to implement a GAN solution for our frame-
work, based on the Image2Image work [23]. The frame-
work is composed of two models: a generator and a dis-
criminator; the generator takes as input the frames 𝑥𝑡 and
𝑥𝑡+1 and tries to infer the missing frame 𝑦𝑔𝑒𝑛, while the
discriminator takes the same input concatenated either
with the real missing frame 𝑦𝑔𝑜𝑙𝑑 or with the generated
one, to classify them as generated or real. The goal is

to train them at the same time, improving their perfor-
mances to obtain a good model that generates the missing
frames.

3.4.1. Network architecture

The generator takes as input two pictures of size (𝑅𝐸𝑆×
𝑅𝐸𝑆 × 3). To minimize its dimensions, the encoder em-
ploys two-dimensional convolutional layers with a stride
of two using a UNet [24]. LeakyReLU is the activation
function, and its slope is 0.2. On the other hand, the
decoder uses the LeakyReLU activation function with a
slope of 0.2 and consists of several 2-dimensional con-
volutional layers with a stride of 2. The 𝑡𝑎𝑛ℎ activation
function is used in the final output layer to make sure that
the outputs are inside the [−1, 1] range. The same input
as the generator, concatenated with the produced output
𝑦𝑔𝑒𝑛 or the genuine frame 𝑦𝑔𝑜𝑙𝑑, is fed into the discrimi-
nator, which is built like a CNN. Table 1 summarizes the
architecture.

3.4.2. Loss function

Within our generative adversarial network (GAN), an
adversarial discriminator D seeks to maximize the objec-
tive function, while the generator G strives to decrease
it, resulting in a zero-sum game. The definition of the
objective function is:

ℒ𝑐𝐺𝐴𝑁 (𝐺,𝐷) =

= E𝑥,𝑦[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] + E𝑥,𝑧[𝑙𝑜𝑔(1−𝐷(𝑥,𝐺(𝑥, 𝑧)))]

The optimal generator denoted as 𝐺* is determined by:

𝐺* = argmin
𝐺

max
𝐷

ℒ𝑐𝐺𝐴𝑁 (𝐺,𝐷)

We enhance the GAN objective function by adding the L1
loss function, which is a conventional loss. The genera-
tor’s job is now to provide nearly optimum outputs using
this conventional loss function, in addition to tricking
the discriminator, without changing the discriminator’s
duty. The L1 loss, denoted as ℒ1 is defined as:

ℒ1(𝐺) = E𝑥,𝑦,𝑧[||𝑦 −𝐺(𝑥, 𝑧)||]

And now our final objective function is:

𝐺* = argmin
𝐺

max
𝐷

ℒ𝑐𝐺𝐴𝑁 (𝐺,𝐷) + 𝜆ℒ1(𝐺)

Here 𝜆 serves as a weighting parameter for the ℒ1 loss.

4. Implementation
In this section we will describe the implementation de-
tails of our work, starting with the setup and the prepa-
ration of the simulator, the training phase of the neural
network, and the whole system architecture.
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Table 1
GAN Network architecture

Layer Activation Filters Filter Size Stride Batch Norm
Generator

Input - - - - -
Conv LeakyReLU 128 (4,4) (2,1) No
Conv LeakyReLU 64 (4,4) (2,1) Yes
... ... ... ... ... ...
Conv Tanh 3 (4,4) (2,1) Yes

Discriminator
Input - - - - -
Conv LeakyReLU 16 (4,4) (2,1) No
Conv LeakyReLU 32 (4,4) (2,1) Yes
... ... ... ... ... ...
FC - 1 - - -

4.1. Language and Libraries
The whole project was developed using Python v3.8.10.
For the detection and tracking part the following libraries
were used:

• OpenCV v4.5.2 compiled from source, to activate
the ability to use CUDA drivers and CUDNN, ob-
taining faster results with YOLO.

• Numpy v1.21.4

For the neural network creation, training, and testing we
used:

• TensorFlow v2
• Keras for the creation of the layers
• OpenCV for the pre-processing of the dataset and

the data augmentation
• Matplotlib to visualize our results

4.2. Net training and testing
For training our network, we used the EPFL [25] dataset,
which includes multiple scenes of moving pedestrians.
The training data were extracted by taking 3 frames at a
time and adding noise to increase the number available.
Next, each triplet was saved in a file, with the first and last
frames as input to the generator and the middle frame
as reference. The dataset was divided into validation,
training, and testing. The GAN network was trained
using the early stopping technique thus preventing the
network from overfitting the data. The loss graph is
shown in Figure 1 for the Generator and Figure 2 for the
Discriminator.

To study the results of our neural network, we com-
puted the SSIM and PSNR values which are used to mea-
sure the similarity between two images and are defined
as:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1)(𝜎2
𝑥 + 𝜎2

𝑦 + 𝑐2)

Where 𝜇𝑥 the average of x; 𝜇𝑦 the average of y; 𝜎2
𝑥

the variance of x; 𝜎2
𝑦 the variance of y; 𝜎𝑥𝑦 the covari-

ance of x and y; 𝑐1 = (𝑘1𝐿)
2, 𝑐2 = (𝑘2𝐿)

2 two vari-
ables to stabilize the division with weak denominator; L
the dynamic range of the pixel-values (typically this is
2#𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 − 1); 𝑘1 = 0.01, 𝑘2 = 0.03 by default.

𝑃𝑆𝑁𝑅 = 20 · log10
(︂
MAX {𝐼}√

MSE

)︂
Where MAX {𝐼} is the maximum possible pixel value of
the image and with the mean square error (MSE) defined
as:

𝑀𝑆𝐸 =
1

𝑀𝑁

𝑀−1∑︁
𝑖=0

𝑁−1∑︁
𝑗=0

‖I (i , j )−K (i , j )‖2

Let I represent the original image and K denote the
generated image, both of dimensions MxN. The results
of our network, in comparison with other methodologies,
are presented in Table 2.

Table 2
Results compared with S.O.T.A networks

Net SSIM PSNR

EpicFlow[26] 0.93 31.6
BeyondMSE[27] 0.92 32
MCnet+RES[28] 0.91 31
Our Network 0.92 33.2

4.3. System architecture
This system can also be used with multiple cameras;
when working with multiple cameras, each camera re-
ceives an image and elaborates that using YOLO and
SORT, to extract the bounding boxes positions. Each
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Figure 1: Generator Loss

Figure 2: Discriminator Loss

frame is passed to the detection thread and can be stored,
to be processed later by the Neural Network. The points
centered in the top part of the bounding boxes generated
by the detection threads are passed to the camera mod-
els, to obtain the position of the persons on the plane.
Those positions are then merged by searching for each
camera the nearest neighbor and in case of a mismatch
between the number of people in the cluster, the bigger
one is chosen; after matching is found, for each person, a
dot is drawn on the map having the average position be-
tween the matched one. The whole system architecture
is represented in the Figure 3.

5. Results
In this section, we will show the results obtained.

5.1. Frame Rate and Crowd Counting
As we can see in figure 4, the first and the last frame are
the input, while the middle one was generated by the
Generator of the GAN network.

After a series of comprehensive tests, our technol-
ogy performed smoothly when properly identifying and
counting people in enclosed spaces. With the addition
of computer vision algorithms and the advances made
possible by our improved neural network, accurate peo-
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Figure 3: System architecture when working with multiple
cameras

Figure 4: Example of Frame Rate Increase using our GAN

ple counting and identification are guaranteed. The out-
comes demonstrate the system’s capacity to monitor and
control crowd density in confined areas efficiently. For a
visual depiction, Figure 5 shows how our model could be
used in a real-case scenario using only one camera.

6. Conclusions
In summary, our methodology offers a dependable and
precise means of detecting and measuring human be-
ings in enclosed spaces. By utilizing the creative fu-
sion of GAN-based networks and the effectiveness of
lightweight YOLO models, our system not only ensures
robustness but also demonstrates flexibility to operate
on systems with limited technological resources. This
clever approach strengthens security protocols and ex-

Figure 5: Visual representation of the system’s performance
in counting people within an enclosed space. The number of
people detected is on the left top corner.

pedites operational workflows in addition to offering a
financially sensible way to implement occupancy restric-
tions in a variety of scenarios. Our method, which makes
use of cutting-edge AI technologies, is a big step toward
improving space management and guaranteeing adher-
ence to safety laws, making all people’s surroundings
safer and more effective. Moreover, it is a useful tool in
circumstances where precisely counting people is neces-
sary to avoid crowding, making the environment safer
and more effective for everyone. Our method, which
makes use of cutting-edge AI technologies, is a big step
toward improving space management and guaranteeing
adherence to safety rules, which will eventually improve
the general standard of public areas and facilities.
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