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Abstract 
Conceptual identification of fuzzy knowledge is one of the important knowledge-processing 
methods, which can be used for such tasks as concept matching, computation of concept 
similarity, re-engineering of conceptual hierarchies, etc. Since wildly used approaches to 
conceptual identification, which are based on the formal concept analysis and fuzzy formal 
concept analysis, do not consider the internal semantic dependencies among the attributes, it 
may lead to the construction of semantically inconsistent concepts. Therefore, in this paper, we 
propose a new approach to the conceptual identification of fuzzy knowledge within the 
decomposition of nodes of fuzzy object-oriented dynamic networks. The decomposition of fuzzy 
homogeneous classes of objects is considered the space for the identifying their fuzzy sub-
concepts within the corresponding identification lattice. To implement the proposed approach, 
we developed the algorithm for identifying semantically consistent subclasses of fuzzy 
homogeneous classes of objects. The algorithm constructs a semantically consistent lattice of 
fuzzy class subclasses and discovers all subclasses and superclasses for a selected fuzzy class 
subclass, creating a corresponding identification lattice. In addition, we introduce a notion of a 
subclass neighborhood within its identification lattice, which allows the consideration of a 
conceptual locus of the subclass instead of the subclass itself. It makes it possible to operate with 
subclasses of a fuzzy class in a broader sense, calculating their similarities and differences. To 
explain the proposed approach, we have provided a detailed example of the conceptual 
identification of a particular fuzzy homogeneous class of objects, demonstrating the application 
of the developed algorithm. 

Keywords  
Fuzzy knowledge identification, fuzzy class identification, fuzzy concept identification, fuzzy 
class decomposition 1 

1. Introduction 

Nowadays, conceptual (class) hierarchies are the most common complex knowledge 

representation structure within modern object-oriented knowledge-based systems and 

programming languages. It provides an opportunity to formalize a particular domain via 

constructing a corresponding hierarchy of concepts that encapsulates the representation of 

concepts themselves and the relations among them. The knowledge-based systems can use 

such hierarchies for conceptual knowledge processing, including representation, analysis, 
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classification, integration, identification, retrieval, inferring, and transferring. Concept 

identification is one of the important tasks related to knowledge analysis, integration, 

retrieval, and inferring since it allows the system to detect a place of particular concepts and 

how they are connected with other concepts in the hierarchy. Consequently, a concept can 

be considered not only as a single node from the hierarchy but also as its neighborhood or 

sub-hierarchy, which includes some number of adjacent nodes and relations among them. 

Using such a representation, the system can operate by concepts in the broader meaning, 

for example, for computation of similarity or difference of certain concepts from the same 

hierarchy or a few different hierarchies. In addition, a hierarchical neighborhood of a 

concept can be used to reduce a hierarchy representation and consequently the search 

space during the concept retrieval or inferring, as well as for detecting the best place for 

integrating a new concept into a hierarchy. 

Conceptual identification has a few interpretations depending on the specifics of a 

certain hierarchy, the nature of the concepts, and the relations among them. Since 

sometimes concepts themselves, as well as the relations among them, can be vague and 

imprecise, knowledge-based systems should be able to perform the identification of fuzzy 

concepts. Therefore, in this paper, we study the identification of fuzzy concepts in fuzzy 

object-oriented dynamic networks, considering the decomposition of fuzzy homogeneous 

classes of objects, which are nodes of the networks, as spaces for the identification of fuzzy 

sub-concepts. As a result, we propose a new approach to identifying semantically consistent 

fuzzy sub-concepts of fuzzy homogeneous classes of objects. 

The paper has the following structure. Section 2 contains the analysis of the main 

approaches to the conceptual identification of fuzzy knowledge. Section 3 presents a 

morphological analysis of a particular fuzzy homogeneous class of objects. Section 4 

provides an approach to reducing the space for identifying fuzzy subclasses via the 

semantically consistent decomposition of the fuzzy homogeneous class of objects. Section 5 

presents the algorithm for identifying fuzzy sub-concepts and an example of its application 

to identifying semantically consistent subclasses of the fuzzy homogeneous class of objects. 

The conclusions and acknowledgments sections finish the paper. 

2. Conceptual Identification 

Nowadays, one of the most common approaches to formal representation of concept 

hierarchies is a formal concept analysis (FCA) proposed by Ganter and Wille in [5]. It is a 

powerful framework that focuses on representing concept hierarchies in terms of so-called, 

concept lattices. Such representation of the essences from a chosen domain consists of three 

main stages. Firstly, to define a formal context for the domain by constructing the cross-

table with a set of attributes of domain entities as columns and the set of objects, which 

model their particular instances, as rows. The cells of such a table usually contain a Boolean 

value meaning that a particular object has or does not have a corresponding attribute. 

Secondly, to define formal concepts within the formal context by constructing a collection of 

pairs of appropriate extents and intents, where the extent is a set of common attributes for 

the particular set of objects, while the intent is a set of objects with common attributes. And 

finally, to build a corresponding concept lattice by constructing a complete lattice of objects 



and a complete lattice of attributes, which are isomorphic to each other. The lattice 

structure assumes that a set of formal concepts is a partially ordered set with defined sub-

concept-super-concept relations. Later, the FCA framework was extended for the 

representation of fuzzy domains (FFCA), consequently, notions of fuzzy formal context, fuzzy 

formal concepts, and fuzzy concept lattice were introduced [3, 11]. In contrast to the crisp 

formal concepts, the fuzzy ones are defined using the confidence threshold, which allows 

modeling the membership measure of a particular attribute for a certain object, and a 

certain object for the set of objects. Constructing a concept lattice or fuzzy concept lattice 

for a particular domain creates its lattice-based formal model that can be used for 

conceptual identification. 

According to [20], conceptual identification is the detection of the taxonomic position of 

a particular object within a certain classification. In the case of FCA/FFCA, the concept 

lattice is used as such classification, therefore identification of a concept transforms into the 

detection of sub-concepts and super-concepts within the lattice. One of the commonly used 

approaches to conceptual identification is rule-based identification. The main idea of the 

approach is to define a system of implication rules extracting them from the defined formal 

context and corresponding concept lattice. In general, an implication rule can be defined in 

the form P Q→ , where P  and Q  are subsets of attributes of the set of all tributes used to 

determine a formal context or a fuzzy formal context. In the case of FCA, an implication rule 

can be interpreted in the following way – if an object has all attributes from the set P , it 

also has all attributes from the set Q . This approach was used to identify: a set of 

professional competencies that can help people successfully take a new position when 

professional retraining or changing jobs [15]; conservative access patterns, minimum 

behavior patterns, and canonical access patterns in two-mode social networks [13]. In the 

case of FFCA, an implication rule can be interpreted as follows – if a fuzzy object has all fuzzy 

attributes from the set P  to the corresponding degree, then it also has all fuzzy attributes 

from the set Q  to the corresponding degree. This version of the approach was used to 

identify: differential diagnoses for patients by a conversational recommender system [2]; 

causes and consequences of customer complaints within customer relationship 

management in financial services helping managers to accommodate the required dynamic 

changes according to customer expectations [14]; exceptional or suspicious cases specific 

to the event logs, NTFS file system, the Windows operating system, or a type of anomaly, to 

provide warnings for the security analysts [16-17]. However, the approach assumes the 

rules extraction from the formal context and corresponding concept lattice analyzing sub-

concept and super-concept relations. In the case of big formal contexts, this task becomes 

more complicated from the computational perspective. Moreover, to identify specific 

concepts within a concept lattice, the system must discover in the set of rules those rules 

that are associated with these concepts, including all transitive rules. 

Another approach to conceptual identification is the multi-stage intersection 

identification of formal concepts. The approach involves extracting new concepts via the 

sequence-based intersection of formal concepts within a constructed formal context. The 

discovered hidden concepts are identified and then integrated into the classification, where 

identification of the concepts means retrieval of their sub-concepts and super-concepts. 



Such integration extends the initial formal context enriching it with previously non-obvious 

or hidden concepts. The approach was used to detect missing or hidden concepts and 

improve the completeness of concept coverage in biomedical terminologies NCI Thesaurus 

and SNOMED CT [23-24]. However, the larger the size of the formal context, the more 

difficult identification becomes due to the increasing number of intersections being 

calculated. 

One more approach to conceptual identification is the criterion-based identification of a 

group of concepts. The main idea of the approach is to identify a group of concepts within a 

formal context or fuzzy formal context, which satisfies particular identification criteria. The 

FCA-version of the approach was used to identify: key nodes in massive networks using 

cross-face scalable centrality measure [9]; key nodes in a two-mode network, using bi-face 

bipartite centrality measure [10]; diversified top- k  maximal clique in a social Internet of 

things [8]; dynamic maximal clique in online social networks [21]; user-friendly 

communities in signed social networks and  -quasi-cliques for closely related users within 

them [22]; key structures from social networks [6]. The FFCA-version of the approach was 

used for the identification of location-based and content-based communities of users in 

social networks [4]; skyline ( ), k -cliques in a fuzzy attributed social network [7]; cloud 

services in collaborative filtering-based recommendation system [12]. 

Each of the considered approaches implements a specific strategy for solving the 

problem of conceptual identification based on FCA/FFCA. In all the mentioned FCA/FFCA 

applications, the formal context and the fuzzy formal context were constructed using a set 

of objects and a set of attributes. However, this approach has one major drawback: if we 

consider objects as instances of a particular class of objects, this means, that they are 

encapsulated containers for storing data, and we do not see how their attributes are defined 

relative to each other. It is known that the attributes of all class objects are defined at the 

class level, and, as was shown in [18-19], some attributes (properties and methods) of a 

class may have internal semantic dependencies on other attributes. It is crucial for the 

semantic consistency of formal concepts within the constructed concept lattice or fuzzy 

concept lattice because the construction of new formal concepts is based on the set-

theoretical intersection of extents ignoring internal semantic dependencies among the 

attributes [19]. Consequently, some constructed formal concepts may be semantically 

inconsistent and, therefore, physically impossible or unrealistic in a modeled domain. 

Another feature of FCA/FFCA is the fact that attributes are treated only as properties of 

objects, not as methods defined within an object class, and can be executed on all objects to 

change their state and attribute values. Therefore, we propose an alternative lattice-based 

approach to the conceptual identification of fuzzy knowledge, based on the analysis of 

internal semantic dependencies between the attributes (fuzzy properties and fuzzy 

methods) of fuzzy homogeneous classes of objects. In addition, we introduce the notion of 

concept' neighborhood, which allows the consideration of some subclass and superclass 

locus within a concept lattice instead of the single concept. 



3. Fuzzy Concepts Morphology 

To explain our approach to conceptual identification of fuzzy knowledge, we use the fuzzy 

homogeneous classes of objects which are nodes of fuzzy object-oriented dynamic 

networks. The formalization of internal semantic dependencies among the attributes 

(properties and methods) of fuzzy homogeneous classes of objects was introduced in [18]. 

For this purpose, the abstract model of chemical atoms and molecules was used, according 

to which, atoms are indivisible particles and molecules are the union of atoms and (or) 

smaller molecules. This model can be interpreted by attributes defined independently of 

other fuzzy class attributes (fuzzy atoms) and attributes defined based on them (fuzzy 

molecules). 

Definition 1. A fuzzy atom of a fuzzy homogeneous class of objects ( )/T M T  is a singleton 

collection 

( )( ) ( ) / . / .i i iA T M T T x T x= , 

where ( ) ( ) ( )( ) ( ) ( )( ). / . / /i iT x T x P T M P T F T M F T    is a crisp or fuzzy property or 

a method defined without using any other properties and (or) methods of the fuzzy class 

( )/T M T , where ( ) ( )( )/P T M P T  and ( ) ( )( )/F T M F T  are collections of its properties 

and methods, respectively. 

Definition 2. A fuzzy molecule of a fuzzy homogeneous class of objects )(/ TMT  is a 

collection  

( )( ) ( ) ( ) ( ) 
1 1

/ . / . , . / . ,..., . / .
n ni i i j j j jM T M T T x T x T y T y T y T y  = , 

where ( ) ( ) ( )( ) ( ) ( )( ). / . / /i iT x T x P T M P T F T M F T   , and ( )1 /i T M T  is a 

crisp or fuzzy property or a method defined based on the other methods and (or) properties 

( ) ( ) ( ) ( )( ) ( ) ( )( )
1 1

. / . ,..., . / . / /
n nj j j jT y T y T y T y P T M P T F T M F T     which are 

crisp or fuzzy atoms and (or) parts of smaller fuzzy molecules of the fuzzy class ( )/T M T , 

where ( )11 ... /nj j T M T    , where ( ) ( )( )/P T M P T  and ( ) ( )( )/F T M F T  are 

collections of properties and methods of the fuzzy class ( )/T M T , respectively. 

Fuzzy atoms and fuzzy molecules of a fuzzy homogeneous class of objects, together 

determine its internal semantic dependencies. 

Definition 3. Internal semantic dependencies of a fuzzy homogeneous class of objects 

( )/T M T  is a set of its atoms and molecules, i.e. 



( )( ) ( )( ) ( )( )

( )( ) ( )( )

1

1

/ / ,..., / ,

/ ,..., /

n

m

ISD T M T A T M T A T M T

M T M T M T M T

=
 

where ( )( )/iA T M T , ni ,1=  are fuzzy atoms of the fuzzy class ( )/T M T , while 

( )( )/jM T M T , mj ,1=  are its fuzzy molecules, respectively. 

Now, let us consider an example of a fuzzy homogeneous class of objects / 0.9Gp , which 

defines the concept of a geographic place and has the following structure: 

( )( )( ( )( )

( )( ) ( )( )

( ) ( )

( ) ( ) )

1 2

3 4

1 2

3 4

, , / 0.91, , , / 0.91,

, , / 0.71, , , / 0.78,

_ , / 0.95, _ , / 0.95,

_ , /1, _ , /1 / 0.9

n r

Gp p latitude p longitude

p name n V str p region r V str

f get latitude gp f get longitude gp

f get name gp str f get region gp str

 = =

=  = 

= =

= =

 

where 1. / 0.91Gp p  and 2. / 0.91Gp p  are fuzzy quantitative properties, which mean the 

latitude and longitude of the geographic place ( )/gp gp  defined in degrees, i.e. 

( ) ( ). / , . / ;gp latitude gp longitude     = =  

3. / 0.71Gp p  is a fuzzy quantitative property which means the name of the geographic place 

( )/gp gp , and is defined by the following fuzzy set 





_ / 0.95, _ / 0.74, _ / 0.62,

_ / 0.55 ,

nV official name historical name regional name

local name

=
 

where elements of the fuzzy set nV  are corresponding names of the geographic place 

( )/gp gp , i.e. 

( ). / ngp name n n V=  ; 

4. / 0.78Gp p  is a fuzzy quantitative property, which means the region name where the 

geographic place ( )/gp gp  is located, and is defined by the following fuzzy set 

 _ / 0.95, _ / 0.73, _ / 0.56rV official name historical name local name= , 

where elements of the fuzzy set rV  are corresponding names of the region where the 

geographic place ( )/gp gp  is located, i.e. 

( ). / rgp region r r V=  ; 



1. / 0.95Gp f , 2. / 0.95Gp f , 3. /1Gp f , and 4. /1Gp f  are fuzzy methods, which return values 

of corresponding properties of the geographic place ( )/gp gp , i.e. 

( )

( )

. _ () . , 1 ,

. _ () . , 1 ,

. _ () . ,

. _ () . .

gp get latitude round gp latitude

gp get longitude round gp longitude

gp get name gp name

gp get region gp region

→

→

→

→

 

Let us use the fuzzy homogeneous class of objects / 0.9Gp  to define another fuzzy 

homogeneous class of objects / 0.95Tr , which determines the concept of transfer from one 

geographic place to another and has the following structure: 

( )( )( ( )( )

( )( ) ( )( )

( )( ) ( )( )
( ) ( )

( )

1 1 1 2 2 2

3 4

5 6

1 1 2 2

3

, , /1, , , /1,

, , / 0.94, , , / 0.81,

, , / 0.87, , , / 0.91,

_ , /1, _ , /1,

_ , / 0

t

p

Tr p place gp Gp p place gp Gp

p distance dst km p transport t V str

p duration dr h p price p V UAH

f get place tr GP f get place tr GP

f get distance tr km

= =

= = 

= = 

= =

= ( )

( ) ( ) )
4

5 6

.98, _ , /1,

_ , / 0.94, _ , / 0.96 / 0.95

f get transport tr str

f get duration tr h f get price tr UAH

=

= =

 

where 1. /1Tr p  and 2. /1Tr p  are fuzzy quantitative properties, which define two different 

geographic places for the transfer ( )/tr tr  between them, i.e. 

( ) ( )1 1 1 2 2 2. / , . /tr place gp gp tr place gp gp = = ; 

3. / 0.94Tr p  is a fuzzy quantitative property, which means a distance between two 

geographic places 1. /1Tr p  and 2. /1Tr p , and is defined in the following way 

( )

( )

1 2

2

1 1 2

2

1 1 2

. ,

. . _ () . . _ () ,

. . _ () . . _ () ;

tr distance d d

d tr place get latitude tr place get latitude

d tr place get longitude tr place get longitude

= +

= −

= −

 

4. / 0.81Tr p  is a fuzzy quantitative property, which means a kind of transport for a transfer 

between two geographic places and is defined as the following fuzzy set 

 / 0.82, / 0.67, / 0.93 ,tV bus train plane=  

where elements of the fuzzy set tV  are possible kinds of transport for a transfer, i.e.  

( ). / ttr transport t t V=  ; 



5. / 0.87Tr p  is a fuzzy quantitative property, which means duration of the transfer between 

two geographic places and is defined in the following way 

, . / 0.82,

. , . / 0.67,

, . / 0.93,

b

t

p

D if tr transport bus

tr duration D if tr transport train

D if tr transport plane

 =


= =
 =

 

where ( ) ( ) / , /1, /b i i b i iD x x duration x x − − + += , 1,...i =  is a fuzzy set, such that  

( ) ( ) ( ) ( ) ( )

.
,

120 80

.
4 , 4 ,

120

120 .
, 1 , 1 ,

120 .

4 ,

b

i b b b

i
i i i i i i i

b

i b

tr distance tr.distance
duration

tr distance
x duration i duration i duration

x tr distance
x x x x x

duration tr distance

x duration i dura

      

−

−
− − − − − − −

+

 

= −   −  

 −
= − = − − = −

 −

= + 

( ) ( ) ( ) ( ) ( )

4 ,
80

80
, 1 , 1 ,

80

b b

i
i i i i i i i

b

tr.distance
tion duration i

tr.distance x
x x x x x

tr.distance duration
      

+
+ + + + + + +

 +  

− 
= − = − − = −

− 

 

( ) ( ) / , /1, /t i i t i iD x x duration x x − − + += , 1,...i =  is a fuzzy set, such that 

.
,

80 50
t

tr distance tr.distance
duration   

( ) ( ) ( ) ( ) ( )

( )

.
3 , 3 ,

80

80 .
, 1 , 1 ,

80 .

3 , 3 ,
50

.

i t t t

i
i i i i i i i

t

i t t t

i

tr distance
x duration i duration i duration

x tr distance
x x x x x

duration tr distance

tr.distance
x duration i duration duration i

tr
x

      



−

−
− − − − − − −

+

+

= −   −  

 −
= − = − − = −

 −

= +   +  

= ( ) ( ) ( ) ( )
50

, 1 , 1 ,
. 50

i
i i i i i i

t

distance x
x x x x

tr distance duration
     

+
+ + + + + +− 

− = − − = −
− 

 

and ( ) ( ) / , /1, /p i i p i iD x x duration x x − − + += , 1,...i =  is a fuzzy set, such that 

.
,

500 450

.
5 , 5 ,

500

p

i p p p

tr distance tr.distance
duration

tr distance
x duration i duration i duration−

 

= −   −  

 



( ) ( ) ( ) ( ) ( )

( )

500 .
, 1 , 1 ,

500 .

5 , 5 ,
450

. 450
, 1

. 450

i
i i i i i i i

p

i p p p

i
i i i

p

x tr distance
x x x x x

duration tr distance

tr.distance
x duration i duration duration i

tr distance x
x

tr distance duration

      

   

−
− − − − − − −

+

+
+ + +

 −
= − = − − = −

 −

= +   +  

− 
= − = −

− 
( ) ( ) ( ) ( ), 1 ;i i i ix x x x  + + + +− = −

 

6. / 0.91Tr p  is a fuzzy quantitative property, which means a price of a transfer between two 

geographic places and is defined as follows 

, . / 0.82,

. , . / 0.67,

, . / 0.93;

b

t

p

P if tr transport bus

tr price P if tr transport train

P if tr transport plane

 =


= =
 =

 

where ( ) ( ) / , /1, /b i i b i iP x x price x x − − + += , 1,...i =  is a fuzzy set, such that  

( ) ( ) ( ) ( ) ( )

. 20 . 60,

4 , . 20 4 ,

. 20
, 1 , 1 ,

. 20

4 , 4 .

b

i b b b

i
i i i i i i i

b

i b b b

tr distance price tr distance

x price i tr distance price i price

x tr distance
x x x x x

price tr distance

x price i price price i tr di

      

−

−
− − − − − − −

+

   

= −    −  

− 
= − = − − = −

− 

= +   +  

( ) ( ) ( ) ( ) ( )

60,

. 60
, 1 , 1 ,

. 60

i
i i i i i i i

b

stance

tr distance x
x x x x x

tr distance price
      

+
+ + + + + + +



 −
= − = − − = −

 −

 

( ) ( ) / , /1, /t i i t i iP x x price x x − − + += , 1,...i =  is a fuzzy set, such that 

. 15 . 35,ttr distance price tr distance     

( ) ( ) ( ) ( ) ( )

( )

2 , . 15 2 ,

. 15
, 1 , 1 ,

. 15

2 , 2 . 35,

. 35

.

i t t t

i
i i i i i i i

t

i t t t

i
i

x price i tr distance price i price

x tr distance
x x x x x

price tr distance

x price i price price i tr distance

tr distance x
x

tr d

      



−

−
− − − − − − −

+

+
+

= −    −  

− 
= − = − − = −

− 

= +   +   

 −
= ( ) ( ) ( ) ( ), 1 , 1 ,

35
i i i i i i

t

x x x x
istance price

     + + + + + +− = − − = −
 −

 

and ( ) ( ) / , /1, /p i i p i iP x x price x x − − + += , 1,...i =  is a fuzzy set, such that 

. 55 . 85,ptr distance price tr distance     



( ) ( ) ( ) ( ) ( )

( )

3 , . 55 3 ,

. 55
, 1 , 1 ,

. 55

3 , 3 . 85,

. 85

.

i p p p

i
i i i i i i i

p

i p p p

i
i

x price i tr distance price i price

x tr distance
x x x x x

price tr distance

x price i price price i tr distance

tr distance x
x

tr d

      



−

−
− − − − − − −

+

+
+

= −    −  

− 
= − = − − = −

− 

= +   +   

 −
= ( ) ( ) ( ) ( ), 1 , 1 ;

85
i i i i i i

p

x x x x
istance price

     + + + + + +− = − − = −
 −

 

1. /1Tr f , 2. /1Tr f , 3. / 0.98Tr f , 4. /1Tr f , 5. / 0.94Tr f , and 6. / 0.96Tr f  are fuzzy methods, 

which return values of corresponding properties of the transfer ( )/tr tr , i.e. 

( )

1 1

2 2

. _ () . ,

. _ () . ,

. _ () . , 0 ,

. _ () . ,

. _ () . ,

. _ () . .

tr get place tr place

tr get place tr place

tr get distance round tr distance

tr get transport tr transport

tr get duration tr duration

tr get price tr price

→

→

→

→

→

→

 

To enrich the example, let us define a fuzzy homogeneous class of objects / 0.87Jrn , 

which determines the concept of a journey through the sequence of geographic places and 

has the following structure: 

( ) ( )( )( )( ( )( )

( )( ) ( )( )

( ) ( )

( )

1 1 2

3 4

1 2

3 4

, , ,..., , / 0.93, , , / 0.88

, , / 0.79, , , / 0.84,

_ , , /1, , / 0.91,

_ , / 0.89, _ ,

nJrn p transfers tr Tr tr Tr p distannce dst km

p duration dr h p price p UAH

f get transfer jrn i Tr f get_distance jrn km

f get duration jrn h f get price jrn

= =

= =

= =

= = ( )

( ) )5

/ 0.82,

_ , / 0.78 / 0.87

UAH

f compute discount jrn UAH=

 

where 1. / 0.93Jrn p  is a fuzzy quantitative property, defining a sequence of transfers 

between different geographic places in the scope of the journey ( )/jrn jrn , i.e. 

( ) ( )( )1 1. / ,..., / ,n njrn transfers tr tr tr tr =  

such that 2 1 1. .i itr place tr place+= , 1, 1i n= − ; 2. / 0.88Jrn p  is a fuzzy quantitative property, 

meaning the total distance of the transfer, during the journey ( )/jrn jrn , and is defined 

in the following way 

1

. . [ ]. _ ();
n

i

jrn distance jrn transfers i get distance
=

=  



3. / 0.79Jrn p  is a fuzzy quantitative property, meaning the total duration of the transfer, 

during the journey ( )/jrn jrn , and is defined in the following way 

( )

( )

1

1

1

. ,

. [ ]. _ ()[ ] . [ ]. _ ()[ ],

. [ ]. _ ()[ ] ,

n

i

m

j

m

j

a
jrn duration

b

a jrn transfers i get duration j jrn transfers i get duration j

b jrn transfers i get durtion j





=

=

=

=

= 

=







 

where .n jrn transfers= , . [ ].m jrn transfers i duration= ; 4. / 0.84Jrn p  is a fuzzy 

quantitative property, meaning the total price of the transfer, during the journey 

( )/jrn jrn , and is defined in the following way 

( )

( )

1

1

1

. . _ (),

. [ ]. _ ()[ ] . [ ]. _ ()[ ],

. [ ]. _ ()[ ] ,

n

i

m

j

m

j

a
jrn price jrn compute diccount

b

a jrn transfers i get price j jrn transfers i get price j

b jrn transfers i get price j





=

=

=

 
= − 

 

= 

=







 

where .n jrn transfers= , . [ ].m jrn transfers i price= ; 1. /1Jrn f , 2. / 0.91Jrn f , 

3. / 0.89Jrn f , and 4. / 0.82Jrn f  are fuzzy methods, returning values for corresponding 

properties of the journey object ( )/jrn jrn , i.e. 

( )

( )

. _ ( ) . [ ],

. _ () . ,

. _ () . , 0 ,

. _ () . , 1 ;

jrn get transfer i jrn transfers i

jrn get distance jrn distance

jrn get duration round jrn duration

jrn get price round jrn price

→

→

→

→

 

5. / 0.87Jrn f  is a fuzzy method, calculating a discount on the price of a journey, depending 

on its distance, and that is defined as follows 

1

. _ () . [ ]. ,
n

i

jrn compute discount jrn transfers i price d
=

→   

where d  is defined by the following set of rules 



0.15, . [ ]. 1000,

0.12, . [ ]. 800,

0.09, . [ ]. 600,

0.05, . [ ]. 500,

0.02, . [ ]. 300,

0.00, .

if jrn transfer i distance

if jrn transfer i distance

if jrn transfer i distance
d

if jrn transfer i distance

if jrn transfer i distance

if jrn transf






=





[ ]. 300.er i distance












 

Let us analyze the properties and methods of the fuzzy homogeneous class of objects 

/ 0.87Jrn , to detect its internal semantic dependencies. As we see, fuzzy property 

1. / 0.93Jrn p  meaning transfer between two geographic places, is defined without using 

any other class members, therefore, it determines a corresponding fuzzy atom of the fuzzy 

class / 0.87Jrn , i.e. 

( )  1 1/ 0.87 . / 0.93 .A Jrn Jrn p=  

Fuzzy property 2. / 0.88Jrn p , meaning the total distance of the transfer during the journey, 

is defined using the property 1. / 0.93Jrn p , consequently, it determines a fuzzy molecule of 

the fuzzy class / 0.87Jrn , i.e. 

( )  ( )1 2 1/ 0.87 . / 0.88, . / 0.93 .M Jrn Jrn p Jrn p=  

Fuzzy property 3. / 0.79Jrn p , meaning the total duration of the transfer during the journey, 

is defined using the property 1. / 0.93Jrn p , therefore, it determines a fuzzy molecule of the 

fuzzy class / 0.87Jrn , i.e. 

( )  ( )2 3 1/ 0.87 . / 0.79, . / 0.93 .M Jrn Jrn p Jrn p=  

Fuzzy method 1. /1Jrn f , returning transfers list during the journey, is defined using the 

property 1. / 0.93Jrn p , therefore, it determines a fuzzy molecule of the fuzzy class 

/ 0.87Jrn , i.e. 

( )  ( )3 1 1/ 0.87 . /1, . / 0.93 .M Jrn Jrn f Jrn p=  

Fuzzy method 5. / 0.78Jrn f , returning the total price of the transfer during the journey, is 

defined using the property 1. / 0.93Jrn p , therefore, it determines a fuzzy molecule of the 

fuzzy class / 0.87Jrn , i.e. 

( )  ( )4 5 1/ 0.87 . / 0.78, . / 0.93 .M Jrn Jrn f Jrn p=  

Fuzzy property 4. / 0.84Jrn p , meaning the total price of the transfer during the journey, is 

defined using the property 1. / 0.93Jrn p  and fuzzy method 5. / 0.78Jrn f , consequently, it 

determines a fuzzy molecule of the fuzzy class / 0.87Jrn , i.e. 



( )  ( )5 4 5 1/ 0.87 . / 0.84, . / 0.78, . / 0.93 .M Jrn Jrn p Jrn f Jrn p=  

Fuzzy method 2. / 0.91Jrn f , returning the total distance of the transfer during the journey, 

is defined using the property 2. / 0.88Jrn p , consequently, it determines a fuzzy molecule of 

the fuzzy class / 0.87Jrn , i.e. 

( )  ( )6 2 2 1/ 0.87 . / 0.91, . / 0.88, . / 0.93 .M Jrn Jrn f Jrn p Jrn p=  

Fuzzy method 3. / 0.89Jrn f , returning the discount on the price of a journey, is defined 

using the property 3. / 0.79Jrn p , therefore, it determines a fuzzy molecule of the fuzzy class 

/ 0.87Jrn , i.e. 

( )  ( )7 3 3 1/ 0.87 . / 0.89, . / 0.79, . / 0.93 .M Jrn Jrn f Jrn p Jrn p=  

Fuzzy method 4. / 0.82Jrn f , returning the total price of the transfer during the journey, is 

defined using the properties 4. / 0.84Jrn p , 1. / 0.93Jrn p  and fuzzy method 5. / 0.78Jrn f , 

consequently, it determines a fuzzy molecule of the fuzzy class / 0.87Jrn , i.e. 

( )  ( )8 4 4 5 1/ 0.87 . / 0.8, . / 0.84, . / 0.78, . / 0.93 .M Jrn Jrn f Jrn p Jrn f Jrn p=  

All atoms and molecules of the class / 0.87Jrn , define its internal dependencies, i.e. 

( ) ( ) ( ) ( ) 1 1 8/ 0.87 / 0.87 , / 0.87 ,..., / 0.87 .ISD Jrn A Jrn M Jrn M Jrn=  

Analyzing detected internal semantic dependencies of the fuzzy class / 0.87Jrn , we can 

find some similarities and intersections among them. To observe the connections among 

different dependencies we visualized them in Fig. 1. The orange nodes depict corresponding 

internal semantic dependencies, while the violet ones mean the attributes of the fuzzy class. 

As we can see, all molecules of the fuzzy class / 0.87Jrn  contain the atom ( )1 / 0.87A Jrn , 

i.e. ( ) ( )1 / 0.87 / 0.87 ,iA Jrn M Jrn  where 1,8i = , while the bigger molecules contain 

some of the smaller ones, i.e. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 6 2 7

4 5 4 8

5 8

/ 0.87 / 0.87 , / 0.87 / 0.87 ,

/ 0.87 / 0.87 , / 0.87 / 0.87 ,

/ 0.87 / 0.87 .

M Jrn M Jrn M Jrn M Jrn

M Jrn M Jrn M Jrn M Jrn

M Jrn M Jrn

 

 



 

The directed arrows mean the dependencies between a pair of attributes. 



 

Figure 1. Internal semantic dependencies of the fuzzy homogeneous class of objects 

/ 0.87Jrn . 

Analyzing the structure of each internal semantic dependency, illustrated in Fig. 1, we 

can construct a dependency graph combining all of them, i.e. 

( ) ( ) ( )( )/ 0.87 / 0.87 , / 0.87 ,G Jrn A Jrn DL Jrn=  

where ( )/ 0.87A Jrn  is a set of attributes of the fuzzy class / 0.87Jrn , i.e. 

( ) 



1 2 3 4 1

2 3 4 5

/ 0.87 . / 0.93, . / 0.88, . / 0.79, . / 0.84, . /1,

. / 0.91, . / 0.89, . / 0.82, . / 078 ,

A Jrn Jrn p Jrn p Jrn p Jrn p Jrn f

Jrn f Jrn f Jrn f Jrn f

=
 

and ( )/ 0.87DL Jrn  is a set of dependency links among the attributes of the fuzzy class 

/ 0.87Jrn , i.e. 

( )  1 2 1

3 1 1 1 5 1

4 5 2 2 3 3

4

/ 0.87 . / 0.93 , . / 0.88 . / 0.93,

. / 0.79 . / 0.93, . /1 . / 0.93, . / 0.78 . / 0.93,

. / 0.84 . / 0.78, . / 0.91 . / 0.88, . / 0.89 . / 0.79,

. / 0.82

DL Jrn Jrn p Jrn p Jrn p

Jrn p Jrn p Jrn f Jrn p Jrn f Jrn p

Jrn p Jrn f Jrn f Jrn p Jrn f Jrn p

Jrn f

= ⊥ 

  

  

4. / 0.84 .Jrn p

 

The graph of internal semantic dependencies ( )/ 0.87G Jrn  is represented in Fig. 2. Violet 

nodes represent attributes of a fuzzy class / 0.87Jrn , edges depict dependency relations 

among the attributes, and edge titles mean the numbers of the molecules, which contain 



corresponding dependencies. To simplify the graph, we denote its nodes using only 

attribute identifiers. 

 

Figure 2. Graph of internal semantic dependencies of the fuzzy homogeneous class of 

objects / 0.87Jrn . 

Such representation of the internal semantic dependencies of the class / 0.87Jrn  allows us 

to use graph-based interpretation of its subclasses. Therefore, each subgraph of graph 

( )/ 0.87G Jrn  defines an appropriate subclass of the fuzzy class / 0.87Jrn . However, as 

we mentioned above, not all subclasses are semantically consistent, i.e. do not contradict 

the internal semantic dependencies of a fuzzy class. Therefore, let us define the satisfiability 

of internal semantic dependencies for the fuzzy homogeneous class of objects. 

Definition 4. Any subclass ( ) ( )/SC T M SC  of a fuzzy homogeneous class of objects 

( )/T M T  is semantically consistent if only if its graph of internal semantic dependencies  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )( )/ / , / ,G SC T M SC A SC T M SC DL A SC T M SC=  

where ( ) ( )( ) ( )( )/ /A SC T M SC A T M T , ( ) ( )( ) ( )( )/ /DL SC T M SC DL T M T , 

satisfies the following conditions: 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

, / | , /

/ / ,

/ | / /

, / , / .

u v DL T M T u v DL SC T M SC

u A SC T M SC v A SC T M SC

v A T M T v A SC T M SC u A T M T

u v DL T M T u v DL SC T M SC

   →

→   

     

  → 

 



Those subclasses whose internal semantic dependency graphs do not satisfy these conditions 

are semantically inconsistent. 

4. Conceptual Identification Space Reducing 

Let us compute the complete decomposition ( )/ 0.87D Jrn  of the fuzzy class / 0.87Jrn , 

using an algorithm for decomposing fuzzy homogeneous classes of objects via constraint-

based filtering, proposed in [12], with the following configuration 

( ) ( )  ( )/ / 0.87, / 0.87 , 1,...,8 , [0,1], 2 ,T M T Jrn C ISD Jrn N M = = = = =  

where ( )/T M T  is a fuzzy homogeneous class of objects, C  is a set of constraints (internal 

semantic dependencies) defined by molecules of the class ( )/T M T , N  is a sequence of 

required subclasses cardinalities, M  is an interval that defines admitted fuzziness of each 

subclass, and   is an accuracy to calculate a measure of fuzziness for subclasses. As a result, 

the algorithm constructed 71 semantically consistent proper non-empty subclasses of the 

fuzzy class / 0.87Jrn , among 510 possible ones, namely 1 subclass of cardinality 1, i.e. 

( ) ( )1

1 1/ 0.93 / 0.93 ,SC Jrn p=  

4 subclasses of cardinality 2, i.e. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

1 1 2

2

2 1 3

2

7 1 1

2

29 1 5

/ 0.91 / 0.93, / 0.88 ,

/ 0.86 / 0.93, / 0.79 ,

/ 0.97 / 0.93, /1 ,

/ 0.86 / 0.93, / 0.78 ,

SC Jrn p p

SC Jrn p p

SC Jrn p f

SC Jrn p f

=

=

=

=

 

9 subclasses of cardinality 3, i.e. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

3

1 1 2 3

3

5 1 2 1

3

6 1 3 1

3

11 1 2 2

3

22 1 3 3

3

57 1

/ 0.87 / 0.93, / 0.88, / 0.79 ,

/ 0.94 / 0.93, / 0.88, /1 ,

/ 0.91 / 0.93, / 0.79, /1 ,

/ 0.91 / 0.93, / 0.88, / 0.91 ,

/ 0.87 / 0.93, / 0.79, / 0.89 ,

/ 0.86 / 0.

SC Jrn p p p

SC Jrn p p f

SC Jrn p p f

SC Jrn p p f

SC Jrn p p f

SC Jrn p

=

=

=

=

=

= ( )

( ) ( )

( ) ( )

( ) ( )

2 5

3

58 1 3 5

3

60 1 4 5

3

63 1 1 5

93, / 0.88, / 0.78 ,

/ 0.83 / 0.93, / 0.79, / 0.78 ,

/ 0.85 / 0.93, / 0.84, / 0.78 ,

/ 0.9 / 0.93, /1, / 0.78 ,

p f

SC Jrn p p f

SC Jrn p p f

SC Jrn p f f

=

=

=

 

14 subclasses of cardinality 4. i.e. 



( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

4

2 1 2 3 1

4

6 1 2 3 2

4

10 1 2 1 2

4

16 1 2 3 3

4

21 1 3

/ 0.9 / 0.93, / 0.88, / 0.79, /1 ,

/ 0.88 / 0.93, / 0.88, / 0.79, / 0.91 ,

/ 0.93 / 0.93, / 0.88, /1, / 0.91 ,

/ 0.87 / 0.93, / 0.88, / 0.79, / 0.89 ,

/ 0.9 / 0.93, / 0

SC Jrn p p p f

SC Jrn p p p f

SC Jrn p p f f

SC Jrn p p p f

SC Jrn p p

=

=

=

=

= ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 3

4

71 1 2 3 5

4

72 1 2 4 5

4

73 1 3 4 5

4

75 1 2 1 5

7

.79, /1, / 0.89 ,

/ 0.85 / 0.93, / 0.88, / 0.79, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.84, / 0.78 ,

/ 0.84 / 0.93, / 0.79, / 0.84, / 0.78 ,

/ 0.9 / 0.93, / 0.88, /1, / 0.78 ,

f f

SC Jrn p p p f

SC Jrn p p p f

SC Jrn p p p f

SC Jrn p p f f

SC

=

=

=

=

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

4

6 1 3 1 5

4

78 1 4 1 5

4

81 1 2 2 5

4

92 1 3 3 5

4

109 1 4

/ 0.88 / 0.93, / 0.79, /1, / 0.78 ,

/ 0.89 / 0.93, / 0.84, /1, / 0.78 ,

/ 0.88 / 0.93, / 0.88, / 0.91, / 0.78 ,

/ 0.85 / 0.93, / 0.79, / 0.89, / 0.78 ,

/ 0.84 / 0.93,

Jrn p p f f

SC Jrn p p f f

SC Jrn p p f f

SC Jrn p p f f

SC Jrn p p

=

=

=

=

= ( )4 5/ 0.84, / 0.82, / 0.78 ,f f
 

16 subclasses of cardinality 5. i.e. 

( ) ( )

( ) ( )

( ) ( )

( )

5

3 1 2 3 1 2

5

8 1 2 3 1 3

5

12 1 2 3 2 3

5

57 1 2 3 4 5

/ 0.9 / 0.93, / 0.88, / 0.79, /1, / 0.91 ,

/ 0.9 / 0.93, / 0.88, / 0.79, /1, / 0.89 ,

/ 0.88 / 0.93, / 0.88, / 0.79, / 0.91, / 0.89 ,

/ 0.84 / 0.93, / 0.88, / 0.79, / 0.84,

SC Jrn p p p f f

SC Jrn p p p f f

SC Jrn p p p f f

SC Jrn p p p p f

=

=

=

= ( )

( ) ( )

( ) ( )

( ) ( )

( )

5

58 1 2 3 1 5

5

59 1 2 4 1 5

5

60 1 3 4 1 5

5

62 1 2 3 2

/ 0.78 ,

/ 0.88 / 0.93, / 0.88, / 0.79, /1, / 0.78 ,

/ 0.89 / 0.93, / 0.88, / 0.84, /1, / 0.78 ,

/ 0.87 / 0.93, / 0.79, / 0.84, /1, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.79, /

SC Jrn p p p f f

SC Jrn p p p f f

SC Jrn p p p f f

SC Jrn p p p f

=

=

=

= ( )

( ) ( )

( ) ( )

( ) ( )

( )

5

5

63 1 2 4 2 5

5

66 1 2 1 2 5

5

72 1 2 3 3 5

5

74 1 3

0.91, / 0.78 ,

/ 0.87 / 0.93, / 0.88, / 0.84, / 0.91, / 0.78 ,

/ 0.9 / 0.93, / 0.88, /1, / 0.91, / 0.78 ,

/ 0.85 / 0.93, / 0.88, / 0.79, / 0.89, / 0.78 ,

/ 0.85 / 0.93, / 0.79

f

SC Jrn p p p f f

SC Jrn p p f f f

SC Jrn p p p f f

SC Jrn p p

=

=

=

= ( )

( ) ( )

( ) ( )

( ) ( )

4 3 5

5

77 1 3 1 3 5

5

93 1 2 4 4 5

5

94 1 3 4 4 5

, / 0.84, / 0.89, / 0.78 ,

/ 0.88 / 0.93, / 0.79, /1, / 0.89, / 0.78 ,

/ 0.85 / 0.93, / 0.88, / 0.84, / 0.82, / 0.78 ,

/ 0.83 / 0.93, / 0.79, / 0.84, / 0.82, / 0.78 ,

p f f

SC Jrn p p f f f

SC Jrn p p p f f

SC Jrn p p p f f

=

=

=

 



( ) ( )5

99 1 4 1 4 5/ 0.87 / 0.93, / 0.84, /1 / 0.82, / 0.78 ,SC Jrn p p f f f=  

14 subclasses of cardinality 6. i.e. 

( ) ( )

( ) ( )

( ) ( )

( )

6

4 1 2 3 1 2 3

6

29 1 2 3 4 1 5

6

30 1 2 3 4 2 5

6

31 1

/ 0.9 / 0.93, / 0.88, / 0.79, /1, / 0.91, / 0.89 ,

/ 0.87 / 0.93, / 0.88, / 0.79, / 0.84, /1, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.79, / 0.84, / 0.91, / 0.78 ,

/ 0.88 / 0.93,

SC Jrn p p p f f f

SC Jrn p p p p f f

SC Jrn p p p p f f

SC Jrn p

=

=

=

= ( )

( ) ( )

( ) ( )

( )

2 3 1 2 5

6

32 1 2 4 1 2 5

6

35 1 2 3 4 3 5

6

36 1 2 3 1

/ 0.88, / 0.79, /1, / 0.91, / 0.78 ,

/ 0.9 / 0.93, / 0.88, / 0.84, /1, / 0.91, / 0.78 ,

/ 0.85 / 0.93, / 0.88, / 0.79, / 0.84, / 0.89, / 0.78 ,

/ 0.88 / 0.93, / 0.88, / 0.79, /1,

p p f f f

SC Jrn p p p f f f

SC Jrn p p p p f f

SC Jrn p p p f

=

=

= ( )

( ) ( )

( ) ( )

( ) ( )

3 5

6

38 1 3 4 1 3 5

6

40 1 2 3 2 3 5

6

50 1 2 3 4 4 5

/ 0.89, / 0.87 ,

/ 0.87 / 0.93, / 0.79, / 0.84, /1, / 0.89, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.79, / 0.91, / 0.89, / 0.78 ,

/ 0.84 / 0.93, / 0.88, / 0.79, / 0.84, / 0.82, / 0.78 ,

f f

SC Jrn p p p f f f

SC Jrn p p p f f f

SC Jrn p p p p f f

S

=

=

=

( ) ( )

( ) ( )

( ) ( )

( )

6

52 1 2 4 1 4 5

6

53 1 3 4 1 4 5

6

56 1 2 4 2 4 5

6

67 1

/ 0.88 / 0.93, / 0.88, / 0.84, /1, / 0.82, / 0.78 ,

/ 0.86 / 0.93, / 0.79, / 0.84, /1, / 0.82, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.84, / 0.91, / 0.82, / 0.78 ,

/ 0.84 / 0.93

C Jrn p p p f f f

SC Jrn p p p f f f

SC Jrn p p p f f f

SC Jrn p

=

=

=

= ( )3 4 3 4 5, / 0.79, / 0.84, / 0.89, / 0.82, / 0.78 ,p p f f f
 

9 subclasses of cardinality 7. i.e. 

( ) ( )

( ) ( )

( )

7

9 1 2 3 4 1 2 5

7

10 1 2 3 4 1 3 5

7

11 1 2 3 4 2 3 5

/ 0.88 / 0.93, / 0.88, / 0.79, / 0.84, /1, / 0.91, / 0.78 ,

/ 0.87 / 0.93, / 0.88, / 0.79, / 0.84, /1, / 0.89, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.79, / 0.84, / 0.91, / 0.89, / 0.

SC Jrn p p p p f f f

SC Jrn p p p p f f f

SC Jrn p p p p f f f

=

=

= ( )

( ) ( )

( ) ( )

( )

7

12 1 2 3 1 2 3 5

7

16 1 2 3 4 1 4 5

7

17 1 2 3 4 2 4

78 ,

/ 0.88 / 0.93, / 0.88, / 0.79, /1, / 0.91, / 0.89, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.79, / 0.84, /1, / 0.82, / 0.78 ,

/ 0.85 / 0.93, / 0.88, / 0.79, / 0.84, / 0.91, / 0.82,

SC Jrn p p p f f f f

SC Jrn p p p p f f f

SC Jrn p p p p f f f

=

=

= ( )

( ) ( )

( ) ( )

( )

5

7

19 1 2 4 1 2 4 5

7

22 1 2 3 4 3 4 5

7

25 1 3 4 1 3 4

/ 0.78 ,

/ 0.88 / 0.93, / 0.88, / 0.84, /1, / 0.91, / 0.82, / 0.78 ,

/ 0.85 / 0.93, / 0.88, / 0.79, / 0.84, / 0.89, / 0.82, / 0.78 ,

/ 0.86 / 0.93, / 0.79, / 0.84, /1, / 0.89, / 0.

SC Jrn p p p f f f f

SC Jrn p p p p f f f

SC Jrn p p p f f f

=

=

= ( )582, / 0.78 ,f

 

and 4 subclasses of cardinality 8. i.e. 

( ) (

)

8

2 1 2 3 4 1 2

3 5

/ 0.88 / 0.93, / 0.88, / 0.79, / 0.84, /1, / 0.91,

/ 0.89, / 0.78 ,

SC Jrn p p p p f f

f f

=
 



( ) (

)

( ) (

)

( )

8

3 1 2 3 4 1 2

4 5

8

4 1 2 3 4 1 3

4 5

8

5 1 2 3 4 2

/ 0.87 / 0.93, / 0.88, / 0.79, / 0.84, /1, / 0.91,

/ 0.82, / 0.78 ,

/ 0.87 / 0.93, / 0.88, / 0.79, / 0.84, /1, / 0.89,

/ 0.82, / 0.78 ,

/ 0.86 / 0.93, / 0.88, / 0.79, / 0.84, / 0.91

SC Jrn p p p p f f

f f

SC Jrn p p p p f f

f f

SC Jrn p p p p f

=

=

= (

)3 4 5

,

/ 0.89, / 0.82 / 0.78 .f f f

 

All obtained subclasses of the fuzzy homogeneous class of objects / 0.87Jrn  are elements 

of its semantically consistent decomposition ( )/ 0.87D Jrn . Analyzing graphs of internal 

semantic dependencies for each constructed subclass of fuzzy class / 0.87Jrn , we can see, 

that all of them are semantically consistent, according to Def. 4. 

It is known that the power set of a certain set is a partially ordered set, which defines a 

complete bounded lattice [21]. Therefore, the power set of the set of properties and 

methods of the fuzzy homogeneous class of objects / 0.87Jrn  is a poset 

( )( )/ 0.87 ,PS Jrn  , which defines a complete bounded lattice of subclasses of the fuzzy 

class / 0.87Jrn . i.e. 

( ) ( )( )/ 0.87 / 0.87 , , , , 0, 1 ,L Jrn PS Jrn=     

where   and   are the least upper bound (join) and the greatest lower bound (meet) 

operations, defined on the set ( )/ 0.87PS Jrn  i.e. 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

/ / 0.87 , / / 0.87

/ / / 0.87 ,

/ / / 0.87 ,

SC M SC PS Jrn SC M SC PS Jrn

SC M SC SC M SC PS Jrn

SC M SC SC M SC PS Jrn

    →

→  

 

 

and where 0  is the least element ( )0

1 / 0.0SC Jrn , and 1  is the greatest elements 

( )9

1 / 0.87SC Jrn  of the lattice, i.e. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

1 1

9 9

1 1

/ / 0.87 / 0.0 / / 0.0,

/ 0.87 / / 0.87.

SC M SC PS Jrn SC Jrn SC M SC SC Jrn

SC Jrn SC M SC SC Jrn

  →  =

 =
 

As we know, the cardinality of ( )/ 0.87PS Jrn  is equal to 92 2 512n = = , where 

/ 0.87n Jrn= , therefore, illustrating the Hasse diagram of such a lattice is a non-trivial 

task, because of its size. Therefore, let us construct and illustrate the tower of subclass 

lattice ( )/ 0.87L Jrn , using the corresponding approach proposed in [20] (see Fig. 3). As 

we can see, Fig. 3 represents three objects similar to tower buildings, which consist of 

sections and floors of a certain capacity. The tower sections are vertical columns of floors 



 

Figure 3. Tower of the complete bounded subclass lattice of the fuzzy homogeneous 

class of objects / 0.87Jrn . 



represented by grey and lime circles. The capacity of all floors, within the particular section, 

is represented by yellow circles with a corresponding number. The tower of the subclass 

lattice ( )/ 0.87L Jrn  is depicted on the left side of Fig. 3. The circles colored in gray can be 

interpreted as the unlighted tower floors because they mean semantically inconsistent 

subclasses of the fuzzy homogeneous class of objects / 0.87Jrn . The circles colored in lime 

have an opposite interpretation since they mean semantically consistent subclasses, 

detected by the decomposition algorithm. 

The second and third towers depicted in the middle and on the right in Fig. 3 are towers 

of sublattices of the subclass lattice ( )/ 0.87L Jrn , which contain only semantically 

inconsistent and only semantically consistent subclasses of the fuzzy homogeneous class of 

objects / 0.87Jrn , respectively. Comparing the number of subclasses of both kinds, we can 

see, that there are only 71  semantically consistent proper non-empty subclasses among the 

510  formally possible. In more detail, this comparison can be represented by Tab. 1. The 

first row of the table means the cardinality of subclasses, while the second and the third 

rows contain the number of all formally possible and all semantically consistent subclasses 

of the fuzzy homogeneous class of objects / 0.87Jrn  of certain cardinality. The fourth row 

represents the ratio third row to the second row in percent. According to [20], the 

decomposition consistency of the fuzzy homogeneous class of objects / 0.87Jrn  is 

approximately equal to 13.9% , i.e. 

Table 1 

Quantitative analysis of subclasses of the fuzzy homogeneous class of objects / 0.87Jrn . 

Cardinality 1 2 3 4 5 6 7 8 Total 

Possible Subclasses 9 36 84 126 126 84 36 9 510 
Consistent Subclasses 1 4 9 14 16 14 9 4 71 

Decomposition Consistency 11% 11% 11% 11% 13% 17% 25% 44% 14% 

( )
( )

( )

/ 0.87 71
/ 0.87 100% 13.9%.

510/ 0.87 2

D Jrn
DC Jrn

PS Jrn
=  = 

−
 

It means that only 13.9%  of all possible proper non-empty subclasses of the fuzzy 

homogeneous class of objects / 0.87Jrn  are semantically consistent ones. Consequently, 

we can reduce the search space for the conceptual identification within the semantically 

consistent decomposition of a fuzzy homogeneous class of objects. To do this, let us 

construct the sublattice of the subclass lattice ( )/ 0.87L Jrn , which contains only 

semantically consistent subclasses of the fuzzy class / 0.87Jrn . According to the definition 

provided in [21], the sublattice of the lattice L  is a subset X  of L , such that 

, ,a X b X a b X a b X  →     . It is obvious that the empty subclass 

( )0

1 / 0.0 / 0.87SC Jrn Jrn , as well as the subclass ( )9

1 / 0.87 / 0.87SC Jrn Jrn , are 



semantically consistent subclasses of the fuzzy homogeneous class of objects / 0.87Jrn , 

therefore the set of all its semantically consistent subclasses is defined as follows 

( ) ( ) ( ) ( ) 0 9

1 1/ 0.87 / 0.87 / 0.0, / 0.87 .CS Jrn D Jrn SC Jrn SC Jrn=   

 

Figure 4. Hasse diagram of complete bounded semantically consistent subclass lattice of 

the fuzzy homogeneous class of objects / 0.87Jrn . 

Therefore, a set of all semantically consistent subclasses ( ) ( )/ 0.87 / 0.87CS Jrn PS Jrn  

of the fuzzy class of objects / 0.87Jrn  defines a carrier ( )( )/ 0.87 ,CS Jrn   of the 

consistent subclass lattice ( )/ 0.87CSL Jrn , which is a sublattice of the subclass lattice 

( )/ 0.87L Jrn , since 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

/ / 0.87 , / / 0.87

/ / / 0.87 ,

/ / / 0.87 ,

SC M SC CS Jrn SC M SC CS Jrn

SC M SC SC M SC CS Jrn

SC M SC SC M SC CS Jrn

    →

→  

 

 

where   and   are the least upper bound (join) and the greatest lower bound (meet) 

operations, defined on the set ( )/ 0.87CS Jrn . In addition, the carrier of the sublattice 



( )/ 0.87CSL Jrn  contains the least element ( )0

1 / 0.0SC Jrn , and the greatest element 

( )9

1 / 0.87SC Jrn , which makes it the a bounded one, since 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

0 0

9 9

1 1

/ / 0.87

/ 0.0 / / 0.0,

/ 0.87 / / 0.87.

SC M SC CS Jrn

SC Jrn SC M SC SC Jrn

SC Jrn SC M SC SC Jrn

  →

→  =

 =

 

Consequently, the semantically consistent sublattice of subclasses lattice of the fuzzy 

homogeneous class of objects / 0.87Jrn  is defined as follows 

( ) ( )( )/ 0.87 / 0.87 , , , , 0, 1 ,CSL Jrn CS Jrn=     

where 0  means the least element, while 1  means the greatest element of the lattice. The 

Hasse diagram of the lattice ( )/ 0.87CSL Jrn  is depicted in the Fig. 4. The superscript of 

each lattice node means the cardinality of the corresponding subclass of the fuzzy class 

/ 0.87Jrn , and the subscript indicates the number of the subclass among all possible 

subclasses of such cardinality. 

Constructing the sublattice ( )/ 0.87CSL Jrn  allows us to reduce the subclass 

identification space by 512 / 73 7  times and to perform the subclass identification, 

analyzing only semantically consistent subclasses of the fuzzy class / 0.87Jrn . 

5. Identification of Consistent Fuzzy Knowledge 

To develop the identification of consistent fuzzy knowledge within the decomposition of 

fuzzy homogeneous classes of objects via constraint-based filtering, we modified the 

corresponding decomposition algorithm, proposed in [19], adding subclasses and 

superclasses detection procedures (see Algorithm 1). The main idea of the algorithm is to 

detect sets of all semantically consistent subclasses ( )( )/S SC M SC  and superclasses 

( )( )/S SC M SC  for the selected semantically consistent subclass ( )/SC M SC  of the 

fuzzy homogeneous class of objects ( )/T M T . As the input parameters, the algorithm uses 

the following: a fuzzy homogeneous class of objects ( )/T M T  as a space for the fuzzy 

knowledge identification; a semantically consistent subclass ( )/SC M SC  of the fuzzy class 

( )/T M T  as an identification target; a set of constraints ( )( )/C ISD T M T=  defined by 

molecules of the fuzzy class ( )/T M T , to detect its semantically consistent subclasses; a 

required accuracy   for computation of the measure of fuzziness of subclasses and 

superclasses of the class ( )/SC M SC . 

In general, the procedure of the identification of consistent fuzzy knowledge can be split 

into a few successive stages. In the first stage, the algorithm constructs all formally possible 



subclasses of the fuzzy class ( )/T M T , which have a cardinality greater or less than the 

cardinality of the subclass ( )/SC M SC . This reduces the identification space again, 

avoiding subclasses of the same cardinality as the ( )/SC M SC  subclass, since such 

subclasses definitely are not superclass or subclass of the subclass ( )/SC M SC . 

Algorithm 1. Identification of Consistent Fuzzy Knowledge 

Require: ( )/T M T , ( )/SC M SC , C ,   

Ensure: S , S  

1: : {};t =  

2: : {};S =  

3: : {};S =  

4: for 
( )/

1,...,2 1
T M T

i = −  do 

5:     if ( )binary( ).count(1) /i SC M SC  then 

6:         for ( ) ( )/ /j ja a T M T  , ( )1,..., /j T M T=  do 

7:             if ( )( )& 1 0i j   then 

8:                 ( )( ).add / ;j jt a a  

9:         satisfy :=  true; 

10:         for all c C  do 

11:             if ( )is_satisfy ,t c  = false then 

12:                 staisf :y =  false; 

13:                 break; 
14:         if satisfy  then 

15:             ( ) ( )compute_fuzziness , ;M t t =  

16:             if ( ) ( )( )is_subclass / , /SC M SC t M t  then 

17:                 ( )( ).add / ;S t M t  

18:             if ( ) ( )( )is_superclass / , /SC M SC t M t  then 

19:                 ( )( ).add / ;S t M t  

20:         : {};t =  

21: return S , S . 

In the second stage, the algorithm detects all semantically consistent subclasses of the 

fuzzy homogeneous class of objects ( )/T M T , among previously generated, performing 

the constraint-based filtering, using Procedure 1. It verifies the satisfiability of each 



constraint c C , defined by molecules of the fuzzy class ( )/T M T , for the subclass 

( )/SC M SC . In general, the subclass ( )/SC M SC  can satisfy or not satisfy the constraint 

c C  as well as the constraint can be inapplicable to the subclass, therefore, the procedure 

can return as a value true, false, or none, respectively. In the third stage, the algorithm 

computes the fuzziness for each semantically consistent potential subclass or superclass of 

the class ( )/SC M SC , using Procedure 2. After that, the algorithm verifies the subclass and 

(or) superclass relation between the detected semantically consistent subclasses of the 

fuzzy class ( )/T M T  and subclass ( )/SC M SC , using Procedure 3 and Procedure 4, 

respectively. 

Procedure 1. ( )is_satisfy ,t c  

Input: t , c  

Output: satisfy {→ true, false, none}  

1: satisfy :=  none; 

2: if  0c t  then 

3:     satisfy :=  false; 

4:     for 1,...,i c  do 

5:         for all ( )  /a a c i   do 

6:             if ( )/a a t   then 

7:                 satisfy :=  true; 

8:             else 
9:                 satisfy :=  false; 

10:                 break; 
11:         if satisfy  then 

12:             return satisfy;  

13: return satisfy.  

Procedure 2. ( )compute_fuzziness ,t   

Input: t ,   

Output: ( )  0, 1M t →  

1: sum: 0;=  

2: for all ( )/a a t   do 

3:     ( )sum: sum ;a= +  

4: ( ) ( )( ): / max , 1 , ;M t round sum t =  

5: return ( ).M t  



Procedure 3. ( ) ( )( )is_subclass / , /SC M SC t M t  

Input: ( )/SC M SC , ( )/t M t  

Output: is_subclass {→ true, false}  

1: if ( ) ( )/ /SC M SC t M t  then 

2:     return false; 

3: for all ( ) ( )/ /a a SC M SC   do 

4:     if ( ) ( )/ /a a t M t   then 

5:         return false; 
6: return true. 

Procedure 4. ( ) ( )( )is_superclass / , /SC M SC t M t  

Input: ( )/SC M SC , ( )/t M t  

Output: is_superclass {→ true, false}  

1: if ( ) ( )/ /SC M SC t M t  then 

2:     return false; 

3: for all ( ) ( )/ /a a t M t   do 

4:     if ( ) ( )/ /a a SC M SC   then 

5:         return false; 
6: return true. 

As a result, the algorithm computes a set of all semantically consistent proper non-empty 

subclasses ( )( )/S SC M SC  and superclasses ( )( )/S SC M SC  for the subclass 

( )/SC M SC . 

To demonstrate the conceptual identification of fuzzy knowledge using Algorithm 1, let 

us apply the proposed approach to the subclass ( )6

29 / 0.87SC Jrn  of the fuzzy homogeneous 

class of objects / 0.87Jrn , described in the previous section. Consequently, we obtain the 

following sets of proper non-empty subclasses 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

6 5 5 5

29 57 58 59

5 4 4 4 4

60 2 71 72 73

4 4 4 3 3

75 76 78 1 5

3

6

/ 0.87 / 0.84, / 0.88, / 0.89,

/ 0.87, / 0.9, / 0.85, / 0.86, / 0.84,

/ 0.9, / 0.88, / 0.89, / 0.87, / 0.94,

S SC Jrn SC Jrn SC Jrn SC Jrn

SC Jrn SC Jrn SC Jrn SC Jrn SC Jrn

SC Jrn SC Jrn SC Jrn SC Jrn SC Jrn

SC Jrn

 =

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 

3 3 3 3

57 58 60 63

2 2 2 2 1

1 2 7 29 1

/ 0.91, / 0.86, / 0.83, / 0.85, / 0.9,

/ 0.91, / 0.86, / 0.97, / 0.86, / 0.93 ,

SC Jrn SC Jrn SC Jrn SC Jrn

SC Jrn SC Jrn SC Jrn SC Jrn SC Jrn

 



and superclasses 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) 

6 7 7 7

29 9 10 16

8 8 8

2 3 4

/ 0.87 / 0.88, / 0.87, / 0.86,

/ 0.88, / 0.87, / 0.87 .

S SC Jrn SC Jrn SC Jrn SC Jrn

SC Jrn SC Jrn SC Jrn

 =
 

As was noted above, subclasses ( )0

1 / 0.0SC Jrn , and ( )9

1 / 0.87SC Jrn  are semantically 

consistent subclasses of the fuzzy class / 0.87Jrn , therefore the identification space for the 

subclass ( )6

29 / 0.87SC Jrn  is defined as follows 

( ) ( )( ) ( )( )

( ) ( ) 

6 6 6

29 29 29

0 9

1 1

/ 0.87 / 0.87 / 0.87

/ 0.0, / 0.87 .

IS Jrn S SC Jrn S SC Jrn

SC Jrn SC Jrn

 =  


 

Thus, the identification space ( )6

29 / 0.87IS Jrn  of the subclass ( )6

29 / 0.87SC Jrn  defines the 

carrier ( )( )6

29 / 0.87 ,IS Jrn   of the identification space lattice ( )6

29 / 0.87ISL Jrn , which is 

a sublattice of the consistent subclass lattice ( )/ 0.87CSL Jrn  and subclass lattice 

( )/ 0.87L Jrn , since ( ) ( ) ( )6

29 / 0.87 / 0.87 / 0.87IS Jrn CS Jrn PS Jrn   and 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

6 6

1 1 29 2 2 29

6

1 1 2 2 29

6

1 1 2 2 29

/ / 0.87 , / / 0.87

/ / / 0.87 ,

/ / / 0.87 ,

SC M SC IS Jrn SC M SC IS Jrn

SC M SC SC M SC IS Jrn

SC M SC SC M SC IS Jrn

    →

→  

 

 

where   and   are the least upper bound (join) and the greatest lower bound (meet) 

operations, defined on the set ( )( )6

29 / 0.87IS SC Jrn . Since the carrier of the lattice 

( )6

29 / 0.87ISL Jrn  contains the least element ( )0

1 / 0.0SC Jrn , and the greatest element 

( )9

1 / 0.87SC Jrn , it makes the identification sublattice ( )6

29 / 0.87ISL Jrn  a bounded one, 

since 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

6

29

1 1

0 0

9 9

1 1

/ / 0.87

/ 0.0 / / 0.0,

/ 0.87 / / 0.87.

SC M SC IS Jrn

SC Jrn SC M SC SC Jrn

SC Jrn SC M SC SC Jrn

  →

→  =

 =

 

Thus, the identification lattice for the subclass ( )6

29 / 0.87SC Jrn  of the fuzzy homogeneous 

class of objects / 0.87Jrn  is defined as follows 

( ) ( )( )6 6

29 29/ 0.87 / 0.87 , , , , 0, 1 ,ISL Jrn IS Jrn=     



where 0  means the least element, while 1  means the greatest element of the lattice. The 

Hasse diagram of the lattice ( )6

29 / 0.87ISL Jrn  is depicted in the Fig. 5. The yellow node 

means the subclass ( )6

29 / 0.87SC Jrn , while the lime nodes represent its subclasses and 

superclasses.  

 

Figure 5. Hasse diagram of complete bounded identification space lattice of the subclass 

( )6

29 / 0.87 / 0.87.SC Jrn Jrn  

Let us define a concept of a subclass neighborhood within the identification lattice, which 

will provide an opportunity to consider the so-called subclass locus instead of the subclass 

itself. 

Definition 5. The neighborhood of the subclass ( )/SC M SC  of a fuzzy homogeneous class 

of objects ( )/T M T  is a pair ( )( ) ( )/ , ,n nN SC M SC S S =  where  

( ) ( ) 
( )( )

1 1/ ,..., / ,

/ ,

n k k

n

S SC M SC SC M SC

S IS SC M SC

    



=



 



( ) ( ) 
( )( )

1 1/ ,..., / ,

/ ,

n w w

n

S SC M SC SC M SC

S IS SC M SC

    



=



 

are sets of subclasses and superclasses of the subclass ( )/SC M SC  such that 

( ) ( ) ( )

( ) ( ) ( )

/ , 1, / / ,

/ , 1, / / ,

i i n i i

j j n j j

SC M SC S i k SC M SC SC M SC

SC M SC S j w SC M SC SC M SC

    

    

  = → 

  = → 
 

and where ( )( )/IS SC M SC  is a carrier of the subclass identification lattice 

( )( )/ISL SC M SC . 

Using concept of subclass neighborhood, let us define a notion of a subclass neighborhood 

measure. 

Definition 6. The neighborhood measure of the subclass ( )/SC M SC  of a fuzzy 

homogeneous class of objects ( )/T M T  is a pair ( )( ) ( )/ ,N SC M SC n n

 = , where n  

and n  are subclass and superclass neighborhood, respectively, and defined in the following 

way 

( )( )

( )( )

( )( )

( )( )

/
,

/

/
.

/

n

n

S SC M SC
n

S SC M SC

S SC M SC
n

S SC M SC













=

=

 

Now let us consider an example of the subclass neighborhood and its measure for the 

subclass ( )6

29 / 0.87SC Jrn . Suppose that neighborhood of the subclass ( )6

29 / 0.87SC Jrn  is 

defined in the following way 

( )( ) ( )
( ) ( ) ( ) 

( ) ( ) ( ) 

6

29

5 5 4

59 60 78

7 7 8

9 16 3

/ 0.87 , ,

/ 0.89, / 0.87, / 0.89 ,

/ 0.88, / 0.86, / 0.87 ,

n n

n

n

N SC Jrn S S

S SC Jrn SC Jrn SC Jrn

S SC Jrn SC Jrn SC Jrn

 





=

=

=

 

then its neighborhood measure is ( )( ) ( )6

29 / 0.87 0.13 , 0.43N SC Jrn

 = , where 

( )( )
( )( )

6

29

6

29

/ 0.87 3
0.13,

24/ 0.87

nS SC Jrn
n

S SC Jrn






= =   



( )( )
( )( )

6

29

6

29

/ 0.87 3
0.43.

7/ 0.87

nS SC Jrn
n

S SC Jrn






= =   

It is clear that  0,1n  and  0,1n , therefore if their values are closer to 0 , this means 

that the subclass and superclass neighborhood is low, but if it is closer to1  then their 

neighborhood is high. Using a neighborhood ( )( )6

29 / 0.87N SC Jrn  of the subclass 

( )6

29 / 0.87SC Jrn  we can consider a subclass locus defined by its subclasses and 

superclasses instead of the subclass itself. 

6. Conclusions 

In this paper, we analyzed known approaches to the conceptual identification of fuzzy 

knowledge using a formal concept analysis and its fuzzy extension. Since the FCA/FFCA-

based computation of formal concepts can construct semantically inconsistent concepts, 

which are impossible or unreal within a modeled domain, we proposed another new lattice-

based approach to the conceptual identification of fuzzy knowledge. We study the 

conceptual identification of subclasses within the decomposition of fuzzy homogeneous 

classes of objects. The proposed approach allows us to identify semantically consistent 

subclasses within the decomposition of a fuzzy homogeneous class of objects constructing 

corresponding sub-class lattice. Such lattice is considered as a space for conceptual 

identification of any of its elements via detection of its subclasses and superclasses. 

Identification of a specific subclass involves the construction of a corresponding 

identification lattice, which is a sub-lattice of the subclass lattice. To implement the 

approach, we developed the corresponding identification algorithm, extending the 

algorithm for the decomposition of fuzzy homogeneous classes of objects via constraint-

based filtering, proposed in [18]. As a result, the algorithm constructs all semantically 

consistent subclasses of a fuzzy homogeneous class of objects and then, verifies the 

subclass-superclass relation between each of them and a subclass, which needs to be 

identified. 

To demonstrate the conceptual identification of fuzzy knowledge using the developed 

algorithm, we provided an example of conceptual identification of a semantically consistent 

subclass of a fuzzy homogeneous class of objects, which defines a fuzzy concept of a journey 

through the sequence of geographic places. To visualize the identification process, the 

corresponding identification lattice was constructed. Using this lattice, we introduced the 

notions of subclass neighborhood and its measure. The proposed approach can be extended 

for the conceptual identification of fuzzy knowledge within the fuzzy conceptual hierarchies 

and scaling of big concept lattices. 
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