
R2[RML]-ChatGPT Framework

Alex Randles1,⋆ and Declan O’Sullivan1

1 ADAPT Centre for Digital Content, Trinity College Dublin, Dublin, Ireland

Abstract
The purpose of this paper is to explore the potential of applying Large Language Models (LLMs)
in the processes involved in linked data publication, which require a high level of domain
knowledge. In particular, we are interested in the semantic and syntactic correctness of data
provided by LLMs, which could be used during the development of declarative uplift mappings.
The R2[RML]-ChatGPT Framework is proposed, which integrates ChatGPT to gather useful
quality insights on uplift mappings required in the publication of linked data. Two system
experiments were conducted, which involved inputting mappings to test the correctness of
returned knowledge. The semantic correctness of key ontology terms related to 50 distinct
concepts were measured. Furthermore, 150 files of relevant code were automatically generated
using the framework and measured for syntactic correctness. Moreover, the framework
attempted to resolve invalid syntactics, which were then reassessed.

Keywords
Semantic Web, Mapping Quality, Linked data Generation, ChatGPT. 1

1. Introduction

Data quality is often defined as “fitness for use” [1] and is a multidimensional concept, which

is determined by the stakeholders and factors involved in the creation of the data [2]. The

quality of the data will influence the usefulness of data for use cases of consumers [1].

Currently, quality assessment within the linked data domain is commonly performed on the

published data and is the responsibility of data consumers rather than the producers [3].

‘Uplift’ mapping artefacts typically are responsible for the generation of Resource

Description Framework (RDF) data published on the web [4]. Uplift declarative mappings

are used to define transformation rules for converting non-RDF data (e.g. excel or relational

data) into RDF representation. Common languages include the World Wide Web

Consortium (W3C) recommendation named the RDB to RDF Mapping Language (R2RML)

[5]. R2RML was designed to express customized transformation rules for converting

relational databases to RDF data. Another prominent language is the RDF Mapping

Language (RML) [6], which extends the R2RML vocabulary to support source data

represented in heterogenous formats, such as CSV, JSON and XML. These two languages are

commonly used in the linked data publication process in the semantic web domain [4] and

inherently impact the quality of the resulting linked data [1,2]. Creating these mappings is

KGCW'24: 5th International Workshop on Knowledge Graph Construction, May 27, 2024, Crete, GRE
∗ Corresponding author.

 alex.randles@adaptcentre.ie (A. Randles); declan.osullivan@adaptcentre.ie (D. O’Sullivan)

 0000-0001-6231-3801 (A. Randles); 0000-0003-1090-3548 (D. O’Sullivan)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

a complex, time-consuming task, which is frequently error prone [2]. Often quality issues

within these mappings are not detected until the dataset has been published [1,2]. In

addition, creating high quality mappings requires a high level of relevant background

knowledge [4]. Background knowledge in this context is described as information which

informs design decisions involved in declarative mappings, such as knowledge on

ontologies, RDF data querying and validation.

The research described in this paper makes a connection between LLMs [7] and

semantically represented knowledge graphs, which are generated by declarative uplift

mappings. The recent increasing uptake of ChatGPT [8] has demonstrated its ability to

provide semantically correct natural language, however, can it provide semantically correct

RDF concepts? In addition, can it syntactically correct RDF related code, such as Terse RDF

Triple Language (Turtle) [9] and SPARQL Protocol and RDF Query Language (SPARQL)

[10]?. Previous research [11] has applied the ChatGPT LLM to enrich data contained in

resulting linked data and states that “One of the aspects which have not yet taken over the

spotlight is the combined application of these models with semantic technologies to enable

reasoning and inference.”. Thus, additional exploration is warranted to discover the possible

benefits of the application of LLMs in the publication of linked data. The intuition is that

applying LLMs early in the publication process of linked data could result in improved

quality, by informing agents while completing important uplift mapping design decisions.

In order to explore the use case, we propose the R2[RML]-ChatGPT Framework, which

was designed to provide insights from ChatGPT 3.5 turbo2 on aspects of uplift mappings

defined in R2RML and RML.

This paper is structured as follows: Section 2 presents the design and implementation of

the framework. Section 3 presents the experiments completed on the framework. Section 4

describes related work. Section 5 outlines future work and concludes the paper.

2. Design and Implementation of R2[RML]-ChatGPT Framework

This section presents the design and implementation of the R2[RML]-ChatGPT Framework3.

2.1. Design

Figure 1 presents an overview of the components and activities involved in the framework.

The initiation of the framework involves an input of an uplift mapping. The concepts in the

mapping are used to retrieve information from ChatGPT by inserting them into predefined

prompt templates. The processing of user input and output from ChatGPT shown in the

diagram is described in the following subsections.

2 https://platform.openai.com/docs/models/gpt-3-5-turbo
3 Video demo at https://drive.google.com/file/d/1_f_bssrOL5e6ATD0Ee1NCkuql8GYy2OE

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://drive.google.com/file/d/1_f_bssrOL5e6ATD0Ee1NCkuql8GYy2OE

Figure 1: Workflow of the R2[RML]-ChatGPT Framework

Pre-Processing. Figure 2 presents an overview of the activities involved in pre-

processing of the framework.

Figure 2: Workflow of Pre-Processing by the framework

Pre-processing involves retrieving necessary information from the input uplift mapping

and generating prompts for ChatGPT. First, an uplift mapping is input into the framework

using the GUI. Thereafter, a SPARQL [10] query4 is executed on the mapping to retrieve

distinct concepts (classes and properties). Each of the concepts are fed into prompt

templates, which are designed to provide initial useful insights related to each concept.

Initially, the framework executed a new request to ChatGPT [8] for each concept in order to

retrieve the initial response. However, the observed processing time was longer than

expected as multiple requests were being executed at once. In particular, those mappings

with large numbers of concepts were observed to be performance intensive. Threading5

4 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/retrieve_concepts.rq
5 https://docs.python.org/3/library/threading.html

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/retrieve_concepts.rq
https://docs.python.org/3/library/threading.html

was experimented with to improve the performance, however, the results varied depending

on the current load of the ChatGPT model. Thus, it was decided to include a relational

database to store previously retrieved prompts, in order to improve the performance of the

framework (acting as a cache). The database is queried to find if the initial generated

prompt has been previously requested. Thereafter, the cached response retrieved from the

database is output to users. Otherwise, ChatGPT is queried and the response cached for later

reuse. It was decided not to use a triple store for storing responses as these are represented

in natural language rather than semantic data. Values which could be later used for

additional prompts are stored in specific chat threads (<chat_id>). For instance, the value

retrieved for the range (rdfs:range) of a property (<property>), which was requested can

be extracted from the response using a regular expression ("’rdfs:range’ is ‘(.*)’ ").

Thereafter, the value is stored in a dictionary default mapping

(<chat_id>:{‘rdfs:range’:<regex_result>}). The dictionary can be queried when additional

prompt buttons available on the framework are pressed, such as the “SHACL Shape #1”

button, which creates a constraint in the Shapes Constraint Language (SHACL) [12]. SHACL

is a W3C recommendation designed to allow the definition of constraints in RDF format

using the provided ontology terms.

Post-Processing. Figure 3 presents an overview of the activities involved in post-

processing of the framework.

Figure 3: Workflow of Post-Processing by the framework

Post-processing involves retrieving necessary information from responses to feed into

other prompts or extraction and validation of sample data. The response from ChatGPT is

either processed to extract relevant values, which can be used in additional queries or to

extract requested code. A regular expression ("(.*?)") is used to extract concepts from

responses, which can be inserted into additional prompt templates. For instance, the range

of a property which was requested can be inserted into another prompt in order to create a

SHACL [12] constraint to validate the resulting dataset. However, it was observed that some

of the data returned was missing required prefix definitions. Regular expressions

(‘Undefined prefix "(.*)"’, ‘Prefix "(.*)"’) are used to extract information from the output of

the syntax parser if the code was unsuccessfully parsed. The extracted information can be

used to improve the quality of the code by inserting prefixes stored in a CSV file6. The

resulting data can be exported into a file using the framework, with a visual indication of

syntactic correctness provided to users.

2.2. Implementation

The framework was implemented using several Python libraries7. Flask was used to develop

the web framework. SPARQLWrapper is used to execute SPARQL queries. RDFLib is used to

parse RDF data. The Open-AI library is used to communicate with ChatGPT. Figure 4

presents a screenshot of the implementation information that is displayed by the

framework related to prov:generatedAtTime8.

Figure 4: Screenshot of Implementation displaying information related to concepts in a

mapping

The framework allows users to interact with chats related to the various concepts using

the side bar shown. The initial prompt response shown is created using the following

prompt templates: “Can you provide me with key information related to the ‘<concept_name>

used in RDF/OWL Technology?”, which inserts concepts retrieved from the input mapping.

It is hoped this initial information can provide useful insights on each concept in the

uploaded mapping. The blue buttons above the input text area are designed to input further

prompts based on the current concept. For instance, the “Range” button, inserts the

respective concept into the following prompt: “Can you tell me the ‘rdfs:range’ value for the

RDF concept named ‘<concept_name>?”. Thereafter, the term returned for the range can be

6 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/prefixes.csv
7 Libraries used at https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/libraries.pdf
8 http://www.w3.org/ns/prov#generatedAtTime

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/prefixes.csv
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/libraries.pdf
http://www.w3.org/ns/prov#generatedAtTime

compared with the mapping to ensure consistent use of the respective ontology. Hover text

is provided on the framework for each prompt button to further clarify their intended usage.

Certain buttons are designed to output SPARQL (“SPARQL Query #1”), Turtle (“Sample

Graph #1”) and SHACL (“SHACL Code #1”) code.

Figure 5 presents the functionality used to export and validate RDF related code from

the framework.

Figure 5: Screenshot of code validation and exportation available on the framework

First, the code can be extracted (“Extract Code”) from raw the response received from

ChatGPT. The processed code can be export (“Export Code”) into a file for reuse later. A

green export button (as shown) indicates the code was successfully parsed. A red button

indicates to users that the syntax parsing was unsuccessful, and the framework could not

repair the code. The sample shown includes a SPARQL query for checking if a resource is

defined as a type of rdfs:Class [13]. As can be seen, the initial response from ChatGPT

was missing prefix definitions, which were added by the framework.

3. Experimentation

A system experimentation9 was conducted in order to validate two key aspects related to

the application of ChatGPT for supporting the mapping quality improvement use case.

These aspects related to the semantic and syntactic correctness of RDF concepts and code

output by the developed R2[RML]-ChatGPT framework. “Code” in this experiment, refers to

Turtle data and SPARQL queries. Two research questions (RQ) were posed in order to

explore these aspects:

9 Experiment Results at https://github.com/alex-randles/R2RML-ChatGPT-Experiments

https://github.com/alex-randles/R2RML-ChatGPT-Experiments

RQ1: To what extent will ChatGPT produce semantically correct data for certain values

in a declarative uplift mapping (e.g. type, domain, range and label)?

RQ2: To what extent will ChatGPT produce syntactically correct RDF data and SPARQL

queries?

RQ1 was tested by retrieving ontology terms for concepts using ChatGPT and then

comparing it with the term definition from the respective ontology. Matching terms would

indicate that ChatGPT has output a semantically correct concept. For instance, the range

(rdfs:domain) of the foaf:based_near property in the FOAF ontology [14] is defined

as geo:SpatialThing10, which would be compared to the domain that is output by

ChatGPT when provided with a respective prompt. The comparison takes into account

subclasses of the concept output. The foaf:Person concept is a valid domain for this case

as it is a subclass of geo:SpatialThing. RQ2 was tested by validating the syntax of the

RDF and SPARQL code output by ChatGPT. The framework attempted to resolve issues in

incorrect syntax using the post-processing described in Section 2.1. Thereafter, the updated

syntax was assessed similarly. Figure 6 presents an overview of the activities involved in

the experimentation.

Figure 6: Overview of Activities involved in the Experimentation

Initially, the 50 distinct common RDF concepts (25 classes and 25 properties) in 5

R2RML [5] mappings11 were input into the framework. 10 concepts (5 classes and 5

properties) were retrieved from the following five well-known ontologies: RDF [15], RDFS

[13], FOAF [14], SKOS [16] and PROV-O [17]. It was decided to use these ontologies as they

are designed to represent diverse information such as provenance (PROV-O), social

networks (FOAF) and taxonomies (SKOS). Only concepts with the respective related

properties were chosen to ensure that a value for comparison existed. For instance, only

properties with an associated range were tested for range correctness. Ontology terms and

RDF related code related to these concepts were retrieved from ChatGPT using prompt

templates, where each respective concept name was inserted. Thereafter, relevant values

were extracted from the response and stored for comparison. The comparison was

completed by inserting respective values into an ASK SPARQL [10] query. Thereafter, the

query was executed on the respective ontology which was stored in the local Apache Jena

10 http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing
11 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/mappings

http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/mappings

Fueski Triple Store12. The queries when executed resulted in boolean (True or False) values,

which represented the result of comparison. In addition, 150 files containing SPARQL,

SHACL and Sample instances were generated using the framework, by asking ChatGPT to

produce sample data related to each ontology term in the sample mappings. Relevant

information for testing RQ1 was the concept name returned for each requested ontology

term. Relevant information for testing RQ2 was associated RDF graphs and SPARQL

queries.

3.1. Experiment 1: Semantic Correctness of RDF terms

Testing of semantic correctness (RQ1) involved retrieving the type (rdf:type), range

(rdfs:range), domain (rdfs:domain) and human readable label (rdfs:label)

associated with the 50 concepts. The results from ChatGPT were compared to the

corresponding term defined in the ontology using an ASK SPARQL query template. For

instance, the type of prov:atLocation was tested. ChatGPT was provided with the

following prompt: “Can you provide the ‘rdf:type’ value for the ‘prov:atLocation’ concept

defined in an ontology used in RDF/OWL Technology?”. The type returned was extracted from

the response and inserted into a SPARQL query template13, which queries the namespace

ontology. The results of the comparison were manually validated to ensure consistent

results. Table 1 presents the results of the comparison of the output for each of the ontology

terms. The ASK query returning True (“True Count”) indicate the ontology term returned

by ChatGPT was the same as the ontology. The query returning False (“False Count”)

indicates the concept output does not match the ontology. In addition, no respective value

(“No Response”) could be returned from ChatGPT. The label and type term related to all 50

concepts. However, the domain and range only related to properties as classes do not have

these restrictions.

Table 1: Results of Semantic Correctness Experiment
Ontology Term True Count False Count No Response Results
rdf:type 38 12 0 Link

rdfs:domain 22 3 0 Link
rdfs:range 21 4 0 Link
rdfs:label 37 13 0 Link

Figure 7 presents an overview of the results shown. Each pie chart shown relates to the

correctness of each ontology term tested.

12 https://jena.apache.org/documentation/fuseki2/
13 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/ask_query_template.rq

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Type_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Domain_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Range_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Label_Results.pdf
https://jena.apache.org/documentation/fuseki2/
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/ask_query_template.rq

Figure 7: Results of correctness of each ontology term tested

The results indicate that ChatGPT produces correct terms for 118 (78.6%) of the tested

cases, with the correctness influenced by the ontology and requested term. It scored best

for retrieving the correct domain (rdfs:domain) of properties with 88% semantically

correct terms retrieved. Slightly worse scores were identified for the range (rdfs:range)

of properties with 84% correct. While ChatGPT was capable of providing semantically

correct types (rdf:type) of concepts with a slightly worse degree of accuracy (76%). Most

correct cases related to the generalized RDF class (rdfs:Class) or property

(rdf:Property), which all RDF concepts are types of [13]. In addition, a high proportion

of domain and ranges returned related to the generalized RDF resource (rdfs:Resource)

which all RDF resources are instances [13]. Most incorrect cases related to ChatGPT

returning a type of the name of the concept itself, such as prov:Agent, which returned a

type of prov:Agent. Labels (rdfs:label) scored worst (74%), which could be a result

of the natural language representation of them. As LLMs [7] are trained using natural

language it could be harder for them to distinguish these values from other text when

compared to RDF concepts. Interestingly, it was observed that ChatGPT made inferences

about certain labels. For instance, the label returned from the rdf:HTML class was

“HTML/XML Syntax for RDF”, however, the value defined in the ontology is “HTML”.

It could have made inferences about the usage for RDF due to the context of the request.

Similarly, the label returned for the rdf:rest property was “rest of list”, whereas

the correct value is “rest”. As ChatGPT knows that the property is related to lists, it could

infer the label based on the background information. In addition, a limitation for labels is

that ChatGPT may not understand the common naming convention (property name in camel

case). Table 2 presents an overview of the results categorized by respective ontology.

Table 2: Results of semantically correct concepts for each ontology tested

Tested Ontology True Count False Count No Response

RDFS 28 2 0

SKOS 19 11 0

FOAF 24 6 0

PROV-O 22 8 0

RDF 25 5 0

 The results indicate that the ontology where the term was defined influenced the

semantic correctness of values returned. In addition, the high standard deviation (3.4)

indicates that the scores for each ontology were spread around the mean. As can be seen,

RDF [15], RDFS [13] and FOAF [14] scored best, while SKOS [16] and PROV-O [17] scored

worse. Thus, these results indicate that the ontology where the tested concept originates

influences the semantic correctness of ChatGPT. However, all ontologies scored between

63% (SKOS) and 93% (RDFS) correctness for each of the 30 tests completed on them. The

worse scores could be as a result of the amount and quality of documentation published by

the ontology, which was used to the train the LLM [7]. Table 3 presents a sample of results

from this experiment. The tested (“Concept”) is shown, along with the term returned from

ChatGPT (“ChatGPT Output”) and the semantically correct corresponding term (“Ontology

Term”) from the respective ontology.

Table 3: Samples of concepts tested in the experiment and respective values retrieved from

ChatGPT and namespace ontology

Tested Term Concept ChatGPT Output Ontology Term

rdf:type rdf:Bag rdf:Bag rdfs:Class

rdf:value rdf:Property rdf:Property

rdf:Statement rdf:Class rdfs:Class

 foaf:Document foaf:Document owl:class

rdfs:domain foaf:based_near foaf:Agent geo:SpatialThing

rdfs:range rdfs:Property rdf:Property

prov:hadMember prov:Collection prov:Collection

 foaf:knows foaf:Person foaf:Person

rdfs:range skos:topConceptOf skos:Concept skos:ConceptScheme

prov:used prov:entity prov:Entity

foaf:based_near geo:SpatialThing geo:SpatialThing

prov:generatedAtTime xsd:dateTime xsd:dateTime

rdfs:label rdf:HTML “HTML/XML Syntax for

RDF”

“HTML”

foaf:based_near “based near” “based near”

skos:Collection “A collection of

concepts”

“A collection of

concepts”

rdf:rest “rest of list” “rest”

The overall results show that ChatGPT can provide semantically correct concepts with

118 (78.6%) correct for this use case. Overall, it can be concluded from RQ1 that the

framework could be beneficial for agents involved in quality assessment of the publication

process of linked data. The information related to ontology reuse could be used by agents

to inform crucial design decisions which will impact overall quality.

3.2. Experiment 2: Syntactic Correctness of RDF-related code

Testing of RQ2 involved retrieving a sample instance Turtle [9] graph, sample SHACL [12]

shape and sample SPARQL [10] queries related to the 50 ontology concepts. In total, 150

files (3 for each concept) of code were generated. Table 4 presents the results of inputting

these 150 files into the RDFLib parser14 in order to validate syntactic correctness. Each

tested category consisted of a total of 50 files. Files which were tested and contained initially

correct code syntax required no further actions. Incorrect code was post-processed by the

framework as described in Section 2.1, resulting in the final syntax of the code.

Table 4: Results of Syntax Correctness Experiment
Category Initial Correct Final Correct Results

SPARQL Query 43 47 Link

SHACL Constraints 46 50 Link

Sample Instances 43 49 Link

Figure 8 presents an overview of the results shown. The percentage of each category

correct before (left) and after (right) post-processing.

Figure 8: Results of occurrences of syntactic correctness for each category tested before

(left) and after (right) post-processing by the framework

The results show that ChatGPT can produce RDF related code with a high degree of

accuracy. Initially, all categories scored better than 42 (84%) syntactically correct. The post-

processing of the incorrect files resulted in an improvement to a mean of 48 (96%) for all

categories. The results show SHACL constraints scored slightly better than the other

categories, which could be due to less prefixes being needed in most cases. SPARQL queries

and Sample instance graphs scored similar. Majority (14 out of 18) of the syntax problems

were due to missing prefixes in the initial response from ChatGPT. Only 1 out of the 11

initially incorrect Turtle graphs could not be repaired using the post processing, which

indicates that ChatGPT has a good understanding of the overall structure of these graphs.

SPARQL queries accounted for the most (3) files where syntax could not be repaired. These

results provide an indication that ChatGPT has the least understanding of them.

14 Parser used to validate syntax at https://rdflib.readthedocs.io/en/stable/plugin_parsers.html

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-2-Results/SPARQL_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-2-Results/SHACL_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-2-Results/Instance_Results.pdf
https://rdflib.readthedocs.io/en/stable/plugin_parsers.html

4. Related Work

In recent years, research into frameworks to support the generation of high-quality

mappings have been conducted. The Mapping Quality Improvement (MQI) Framework [18]

to improve and maintain the quality of R2[RML] [5,6] uplift mappings has been proposed

and evaluated. The framework consists of two core components. The mapping quality

assessment and refinement component is designed to detect quality issues and suggest

semi-automatic refinements to resolve them. The change detection component detects

changes in respective source data and provides suggestions on how to maintain alignment

between them. An approach [1] exists which was designed to assess and refine the quality

of R2[RML] mappings using rule-based reasoning, which involves executing various test

cases on them. Some of the related approaches [2,3] extend existing linked data quality

assessment frameworks. These approaches are designed to target mappings represented in

RDF format, such as R2RML [5] and RML [6]. EvaMap is an approach [19] which was

designed with the requirements in mind and uses information contained in respective

ontologies to assess the quality of YARRRML15 mappings. The assessment involves quality

metrics in 7 dimensions, which are used to calculate a weighted mean score. However, these

approaches are limited to information contained in ontologies used by respective mappings,

which are queried in order to assess quality. Thus, mapping engineers who use these

approaches are required to search other forms of data on the web to resolve issues out of

scope of the used ontologies, such as alternative ontologies to reuse.

5. Future Work and Conclusion

Future work includes expanding the test cases applied during the experimentation outlined

in this paper. It is hoped expanded test cases will provide further indications of the accuracy

of the relevant knowledge supplied. In addition, conducting a usability experiment on the

framework will help to identify limitations for respective end users. A standardized

questionnaire, such as the Post-Study System Usability Questionnaire (PSSUQ) [20], which

was designed by IBM could be used. The PSSUQ measures user satisfaction from a software

system, which involves rating various key aspects using a Likert scale. Furthermore, the

semantic correctness of generated SPARQL queries and SHACL shapes could be tested, by

executing them on respective input and comparing the output with expected results.

Moreover, knowledge from the generation of SHACL [21] shapes using Ontology Design

Patterns [22] could be integrated into the framework to generate ontology specific

constraints. Finally, the framework could be extended to support other mappings

represented in RDF format, such as the Database to RDF Mapping Language (D2RQ) [23].

The R2[RML]-ChatGPT framework proposed in this paper provides possible direction

for future applications of LLMs in the publication process of linked data. It is hoped the

approach can be used to provide accurate quality insights on various aspects of associated

artefacts to alleviate the high requirement of background knowledge from domain experts.

In addition, it is hoped that the availability of diverse prompt templates will result in a more

15 https://rml.io/yarrrml/

https://rml.io/yarrrml/

straightforward knowledge discovery process using the framework. The results of the

experiments demonstrated that ChatGPT is capable of providing syntactically and

semantically correct data. 118 (78.6%) of the 150 tested ontology terms were semantically

correct and a mean of 48 (96%) of the 50 code files for the tested categories (after post-

processing) were syntactically correct, which indicates a high level of accuracy. These

results indicate that the information could be beneficial to mapping engineers when making

crucial design decisions within the linked data publication process. It is hoped the easily

accessible information covering various knowledge domains could be used to support

domain experts when retrieving required knowledge during the publication process. In

addition, it is hoped the automation of syntactically correct RDF related code will reduce

workload for involved agents.

Acknowledgements

This research was conducted with the financial support of the ADAPT SFI Research Centre

(Grant No. 13/RC/2106_P2) at Trinity College Dublin.

References

[1] A. Dimou, D. Kontokostas, M. Freudenberg, R. Verborgh, J. Lehmann, E. Mannens, S.

Hellmann, R. Van de Walle, Assessing and refining mappings to RDF to improve

dataset quality, in: 14th International Semantic Web Conference (ISWC 2015), 2015:

pp. 133–149. https://doi.org/10.1007/978-3-319-25010-6_8.
[2] A.C. Junior, J. Debattista, D. O’Sullivan, Assessing the Quality of R2RML Mappings, in:

Joint Proceedings of the International Workshop On Semantics For Transport and on

Approaches for Making Data Interoperable Co-Located with 15th Semantics

Conference, 2019: pp. 12–24.

[3] P. Heyvaert, B. De Meester, A. Dimou, R. Verborgh, Rule-driven inconsistency

resolution for knowledge graph generation rules, Semant Web 10 (2019) 1071–

1086. https://doi.org/10.3233/SW-190358.

[4] A. Crotti, C. Debruyne, R. Brennan, D. O’Sullivan, An evaluation of uplift mapping

languages, International Journal of Web Information Systems 13 (2017) 405–424.

https://doi.org/10.1108/IJWIS-04-2017-0036.

[5] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language, World Wide

Web Consortium (W3C) Recommendation (2012). http://www.w3.org/TR/r2rml/

(accessed April 1, 2023).

[6] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle,

RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data, in:

Proceedings of the Workshop on Linked Data on the Web Co-Located Withthe 23rd

International World Wide Web Conference (WWW 2014), 2014.

[7] T. Brants, A.C. Popat, P. Xu, F.J. Och, J. Dean, Large Language Models in Machine

Translation, in: Proceedings of the 2007 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL), Association for Computational Linguistics, Prague, Czech Republic,

2007: pp. 858–867.

[8] T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, Y. Tang, A brief overview of ChatGPT: The

history, status quo and potential future development, IEEE/CAA Journal of

Automatica Sinica 10 (2023) 1122–1136.

[9] World Wide Web Consortium (W3C) Recommendation, RDF 1.1 Turtle, (2014).

https://www.w3.org/TR/turtle/ (accessed May 15, 2023).

[10] S. Harris, A. Seaborne, E. Prud’hommeaux, SPARQL 1.1 Query Language, World Wide

Web Consortium (W3C) Recommendation 21 (2013) 778.

https://www.w3.org/TR/sparql11-query/ (accessed April 1, 2023).

[11] M. Trajanoska, R. Stojanov, D. Trajanov, Enhancing Knowledge Graph Construction

Using Large Language Models. arXiv preprint arXiv:2305.04676. (2023).

https://doi.org/10.48550/arXiv.2305.04676.

[12] H. Knublauch, D. Kontokostas, Shapes Constraint Language (SHACL), World Wide

Web Consortium (W3C) Recommendation (2017). https://www.w3.org/TR/shacl/

(accessed April 1, 2023).

[13] D. Brickley, R. V Guha, B. McBride, RDF Schema 1.1, World Wide Web Consortium

(W3C) Recommendation (2014). https://www.w3.org/TR/rdf-schema/ (accessed

April 1, 2023).

[14] J. Golbeck, M. Rothstein, Linking Social Networks on the Web with FOAF: A Semantic

Web Case Study., in: 23rd AAAI Conference on Artificial Intelligence (AAAI), 2008:

pp. 1138–1143.

[15] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J.J. Carroll, B. McBride, RDF 1.1 Concepts

and Abstract Syntax, World Wide Web Consortium (W3C) Recommendation 25

(2014). https://www.w3.org/TR/rdf11-concepts/ (accessed April 1, 2023).

[16] W3C Working Draft, SKOS Core Vocabulary Specification, (2005).

https://www.w3.org/TR/swbp-skos-core-spec/ (accessed May 15, 2023).

[17] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S.

Soiland-Reyes, S. Zednik, J. Zhao, The PROV Ontology (PROV-O), World Wide Web

Consortium (W3C) Recommendation (2013). https://www.w3.org/TR/prov-o/

(accessed April 1, 2023).

[18] A. Randles, D. O’Sullivan, Preserving the Alignment of LD with Source Data, in:

Proceedings of the 4th International Workshop on Knowledge Graph Construction

(KGCW) Co-Located with the 20th Extended Semantic Web Conference, 2023.

[19] B. Moreau, P. Serrano-Alvarado, Assessing the Quality of RDF Mappings with

EvaMap, in: 17th Extended Semantic Web Conference (ESWC2020), 2020: pp. 164–

167. https://doi.org/10.1007/978-3-030-62327-2_28.

[20] J.R. Lewis, Psychometric Evaluation of the PSSUQ Using Data from Five Years of

Usability Studies, Int J Hum Comput Interact 14 (2002) 463–488.

https://doi.org/10.1080/10447318.2002.9669130.

[21] H. Knublauch, D. Kontokostas, Shapes Constraint Language (SHACL), World Wide

Web Consortium (W3C) Recommendation (2017). https://www.w3.org/TR/shacl/

(accessed April 1, 2023).

[22] H.J. Pandit, D. O’Sullivan, D. Lewis, An Argument for Generating SHACL Shapes from

ODPs, in: Advances in Pattern-Based Ontology Engineering, IOS Press, 2021: pp. 134–

141. https://doi.org/10.3233/SSW210011.

[23] C. Bizer, A. Seaborne, D2RQ – Treating Non-RDF Databases as Virtual RDF Graphs, in:

Proceedings of the 3rd International Semantic Web Conference (ISWC2004), 2004:

pp. 125–127.

