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Abstract 
The purpose of this paper is to explore the potential of applying Large Language Models (LLMs) 
in the processes involved in linked data publication, which require a high level of domain 
knowledge. In particular, we are interested in the semantic and syntactic correctness of data 
provided by LLMs, which could be used during the development of declarative uplift mappings. 
The R2[RML]-ChatGPT Framework is proposed, which integrates ChatGPT to gather useful 
quality insights on uplift mappings required in the publication of linked data. Two system 
experiments were conducted, which involved inputting mappings to test the correctness of 
returned knowledge. The semantic correctness of key ontology terms related to 50 distinct 
concepts were measured. Furthermore, 150 files of relevant code were automatically generated 
using the framework and measured for syntactic correctness. Moreover, the framework 
attempted to resolve invalid syntactics, which were then reassessed. 
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1. Introduction 

Data quality is often defined as “fitness for use” [1] and is a multidimensional concept, which 

is determined by the stakeholders and factors involved in the creation of the data  [2]. The 

quality of the data will influence the usefulness of data for use cases of consumers [1]. 

Currently, quality assessment within the linked data domain is commonly performed on the 

published data and is the responsibility of data consumers rather than the producers [3]. 

‘Uplift’ mapping artefacts typically are responsible for the generation of Resource 

Description Framework (RDF) data published on the web [4]. Uplift declarative mappings 

are used to define transformation rules for converting non-RDF data (e.g. excel or relational 

data) into RDF representation. Common languages include the World Wide Web 

Consortium (W3C) recommendation named the RDB to RDF Mapping Language (R2RML) 

[5]. R2RML was designed to express customized transformation rules for converting 

relational databases to RDF data. Another prominent language is the RDF Mapping 

Language (RML) [6], which extends the R2RML vocabulary to support source data 

represented in heterogenous formats, such as CSV, JSON and XML. These two languages are 

commonly used in the linked data publication process in the semantic web domain [4] and 

inherently impact the quality of the resulting linked data [1,2]. Creating these mappings is 

 

KGCW'24: 5th International Workshop on Knowledge Graph Construction, May 27, 2024, Crete, GRE 
∗ Corresponding author. 

 alex.randles@adaptcentre.ie (A. Randles); declan.osullivan@adaptcentre.ie (D. O’Sullivan) 

 0000-0001-6231-3801 (A. Randles); 0000-0003-1090-3548 (D. O’Sullivan) 

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



a complex, time-consuming task, which is frequently error prone [2]. Often quality issues 

within these mappings are not detected until the dataset has been published [1,2]. In 

addition, creating high quality mappings requires a high level of relevant background 

knowledge [4]. Background knowledge in this context is described as information which 

informs design decisions involved in declarative mappings, such as knowledge on 

ontologies, RDF data querying and validation.  

The research described in this paper makes a connection between LLMs [7] and 

semantically represented knowledge graphs, which are generated by declarative uplift 

mappings. The recent increasing uptake of ChatGPT [8] has demonstrated its ability to 

provide semantically correct natural language, however, can it provide semantically correct 

RDF concepts? In addition, can it syntactically correct RDF related code, such as Terse RDF 

Triple Language (Turtle) [9] and SPARQL Protocol and RDF Query Language (SPARQL) 

[10]?. Previous research [11] has applied the ChatGPT LLM to enrich data contained in 

resulting linked data and states that “One of the aspects which have not yet taken over the 

spotlight is the combined application of these models with semantic technologies to enable 

reasoning and inference.”. Thus, additional exploration is warranted to discover the possible 

benefits of the application of LLMs in the publication of linked data. The intuition is that 

applying LLMs early in the publication process of linked data could result in improved 

quality, by informing agents while completing important uplift mapping design decisions. 

In order to explore the use case, we propose the R2[RML]-ChatGPT Framework, which 

was designed to provide insights from ChatGPT 3.5 turbo2 on aspects of uplift mappings 

defined in R2RML and RML.  

This paper is structured as follows: Section 2 presents the design and implementation of 

the framework. Section 3 presents the experiments completed on the framework. Section 4 

describes related work. Section 5 outlines future work and concludes the paper. 

2. Design and Implementation of R2[RML]-ChatGPT Framework 

This section presents the design and implementation of the R2[RML]-ChatGPT Framework3. 

2.1. Design  

Figure 1 presents an overview of the components and activities involved in the framework. 

The initiation of the framework involves an input of an uplift mapping. The concepts in the 

mapping are used to retrieve information from ChatGPT by inserting them into predefined 

prompt templates. The processing of user input and output from ChatGPT shown in the 

diagram is described in the following subsections.  

 

 

2  https://platform.openai.com/docs/models/gpt-3-5-turbo 
3 Video demo at https://drive.google.com/file/d/1_f_bssrOL5e6ATD0Ee1NCkuql8GYy2OE 
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Figure 1: Workflow of the R2[RML]-ChatGPT Framework 

Pre-Processing. Figure 2 presents an overview of the activities involved in pre-

processing of the framework. 

 

 

Figure 2: Workflow of Pre-Processing by the framework 

Pre-processing involves retrieving necessary information from the input uplift mapping 

and generating prompts for ChatGPT. First, an uplift mapping is input into the framework 

using the GUI. Thereafter, a SPARQL [10] query4 is executed on the mapping to retrieve 

distinct concepts (classes and properties). Each of the concepts are fed into prompt 

templates, which are designed to provide initial useful insights related to each concept. 

Initially, the framework executed a new request to ChatGPT [8] for each concept in order to 

retrieve the initial response. However, the observed processing time was longer than 

expected as multiple requests were being executed at once. In particular, those mappings 

with large numbers of concepts were observed to be performance intensive. Threading5 

 

4 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/retrieve_concepts.rq 
5 https://docs.python.org/3/library/threading.html  

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/retrieve_concepts.rq
https://docs.python.org/3/library/threading.html


was experimented with to improve the performance, however, the results varied depending 

on the current load of the ChatGPT model. Thus, it was decided to include a relational 

database to store previously retrieved prompts, in order to improve the performance of the 

framework (acting as a cache). The database is queried to find if the initial generated 

prompt has been previously requested. Thereafter, the cached response retrieved from the 

database is output to users. Otherwise, ChatGPT is queried and the response cached for later 

reuse. It was decided not to use a triple store for storing responses as these are represented 

in natural language rather than semantic data. Values which could be later used for 

additional prompts are stored in specific chat threads (<chat_id>). For instance, the value 

retrieved for the range (rdfs:range) of a property (<property>), which was requested can 

be extracted from the response using a regular expression ("’rdfs:range’ is ‘(.*)’ "). 

Thereafter, the value is stored in a dictionary default mapping 

(<chat_id>:{‘rdfs:range’:<regex_result>}). The dictionary can be queried when additional 

prompt buttons available on the framework are pressed, such as the “SHACL Shape #1” 

button, which creates a constraint in the Shapes Constraint Language (SHACL) [12]. SHACL 

is a W3C recommendation designed to allow the definition of constraints in RDF format 

using the provided ontology terms.  

Post-Processing.  Figure 3 presents an overview of the activities involved in post-

processing of the framework. 

 

 

Figure 3: Workflow of Post-Processing by the framework 

Post-processing involves retrieving necessary information from responses to feed into 

other prompts or extraction and validation of sample data. The response from ChatGPT is 

either processed to extract relevant values, which can be used in additional queries or to 

extract requested code. A regular expression ("(.*?)") is used to extract concepts from 

responses, which can be inserted into additional prompt templates. For instance, the range 

of a property which was requested can be inserted into another prompt in order to create a 

SHACL [12] constraint to validate the resulting dataset. However, it was observed that some 

of the data returned was missing required prefix definitions. Regular expressions 

(‘Undefined prefix "(.*)"’, ‘Prefix "(.*)"’) are used to extract information from the output of 

the syntax parser if the code was unsuccessfully parsed. The extracted information can be 



used to improve the quality of the code by inserting prefixes stored in a CSV file6. The 

resulting data can be exported into a file using the framework, with a visual indication of 

syntactic correctness provided to users.  

2.2. Implementation  

The framework was implemented using several Python libraries7. Flask was used to develop 

the web framework. SPARQLWrapper is used to execute SPARQL queries. RDFLib is used to 

parse RDF data. The Open-AI library is used to communicate with ChatGPT. Figure 4 

presents a screenshot of the implementation information that is displayed by the 

framework related to prov:generatedAtTime8. 

 

Figure 4: Screenshot of Implementation displaying information related to concepts in a 

mapping 

The framework allows users to interact with chats related to the various concepts using 

the side bar shown. The initial prompt response shown is created using the following 

prompt templates: “Can you provide me with key information related to the ‘<concept_name> 

used in RDF/OWL Technology?”, which inserts concepts retrieved from the input mapping. 

It is hoped this initial information can provide useful insights on each concept in the 

uploaded mapping. The blue buttons above the input text area are designed to input further 

prompts based on the current concept. For instance, the “Range” button, inserts the 

respective concept into the following prompt: “Can you tell me the ‘rdfs:range’ value for the 

RDF concept named ‘<concept_name>?”. Thereafter, the term returned for the range can be 

 

6 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/prefixes.csv 
7 Libraries used at  https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/libraries.pdf  
8 http://www.w3.org/ns/prov#generatedAtTime 

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/prefixes.csv
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/libraries.pdf
http://www.w3.org/ns/prov#generatedAtTime


compared with the mapping to ensure consistent use of the respective ontology. Hover text 

is provided on the framework for each prompt button to further clarify their intended usage. 

Certain buttons are designed to output SPARQL (“SPARQL Query #1”), Turtle (“Sample 

Graph #1”) and SHACL (“SHACL Code #1”) code.  

Figure 5 presents the functionality used to export and validate RDF related code from 

the framework.  

 

 
 

Figure 5: Screenshot of code validation and exportation available on the framework 

 

First, the code can be extracted (“Extract Code”) from raw the response received from 

ChatGPT. The processed code can be export (“Export Code”) into a file for reuse later. A 

green export button (as shown) indicates the code was successfully parsed. A red button 

indicates to users that the syntax parsing was unsuccessful, and the framework could not 

repair the code. The sample shown includes a SPARQL query for checking if a resource is 

defined as a type of rdfs:Class [13]. As can be seen, the initial response from ChatGPT 

was missing prefix definitions, which were added by the framework. 

3. Experimentation  

A system experimentation9 was conducted in order to validate two key aspects related to 

the application of ChatGPT for supporting the mapping quality improvement use case. 

These aspects related to the semantic and syntactic correctness of RDF concepts and code 

output by the developed R2[RML]-ChatGPT framework. “Code” in this experiment, refers to 

Turtle data and SPARQL queries. Two research questions (RQ) were posed in order to 

explore these aspects: 

 

9 Experiment Results at https://github.com/alex-randles/R2RML-ChatGPT-Experiments  

https://github.com/alex-randles/R2RML-ChatGPT-Experiments


RQ1: To what extent will ChatGPT produce semantically correct data for certain values 

in a declarative uplift mapping (e.g. type, domain, range and label)?  

RQ2: To what extent will ChatGPT produce syntactically correct RDF data and SPARQL 

queries?  

RQ1 was tested by retrieving ontology terms for concepts using ChatGPT and then 

comparing it with the term definition from the respective ontology. Matching terms would 

indicate that ChatGPT has output a semantically correct concept. For instance, the range 

(rdfs:domain) of the foaf:based_near property in the FOAF ontology [14] is defined 

as geo:SpatialThing10, which would be compared to the domain that is output by 

ChatGPT when provided with a respective prompt. The comparison takes into account 

subclasses of the concept output. The foaf:Person concept is a valid domain for this case 

as it is a subclass of geo:SpatialThing. RQ2 was tested by validating the syntax of the 

RDF and SPARQL code output by ChatGPT. The framework attempted to resolve issues in 

incorrect syntax using the post-processing described in Section 2.1. Thereafter, the updated 

syntax was assessed similarly. Figure 6 presents an overview of the activities involved in 

the experimentation.  

 

 

Figure 6: Overview of Activities involved in the Experimentation 

Initially, the 50 distinct common RDF concepts (25 classes and 25 properties) in  5 

R2RML [5] mappings11  were input into the framework. 10 concepts (5 classes and 5 

properties) were retrieved from the following five well-known ontologies: RDF [15], RDFS 

[13], FOAF [14], SKOS [16] and PROV-O [17]. It was decided to use these ontologies as they 

are designed to represent diverse information such as provenance (PROV-O), social 

networks (FOAF) and taxonomies (SKOS). Only concepts with the respective related 

properties were chosen to ensure that a value for comparison existed. For instance, only 

properties with an associated range were tested for range correctness. Ontology terms and 

RDF related code related to these concepts were retrieved from ChatGPT using prompt 

templates, where each respective concept name was inserted. Thereafter, relevant values 

were extracted from the response and stored for comparison. The comparison was 

completed by inserting respective values into an ASK SPARQL [10] query. Thereafter, the 

query was executed on the respective ontology which was stored in the local Apache Jena 

 

10 http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing 
11 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/mappings  

http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/mappings


Fueski Triple Store12. The queries when executed resulted in boolean (True or False) values, 

which represented the result of comparison. In addition, 150 files containing SPARQL, 

SHACL and Sample instances were generated using the framework, by asking ChatGPT to 

produce sample data related to each ontology term in the sample mappings. Relevant 

information for testing RQ1 was the concept name returned for each requested ontology 

term. Relevant information for testing RQ2 was associated RDF graphs and SPARQL 

queries. 

3.1. Experiment 1: Semantic Correctness of RDF terms 

Testing of semantic correctness (RQ1) involved retrieving the type (rdf:type), range 

(rdfs:range), domain (rdfs:domain) and human readable label (rdfs:label) 

associated with the 50 concepts. The results from ChatGPT were compared to the 

corresponding term defined in the ontology using an ASK SPARQL query template. For 

instance, the type of prov:atLocation was tested. ChatGPT was provided with the 

following prompt: “Can you provide the ‘rdf:type’ value for the ‘prov:atLocation’ concept 

defined in an ontology used in RDF/OWL Technology?”. The type returned was extracted from 

the response and inserted into a SPARQL query template13, which queries the namespace 

ontology. The results of the comparison were manually validated to ensure consistent 

results. Table 1 presents the results of the comparison of the output for each of the ontology 

terms. The ASK query returning True (“True Count”) indicate the ontology term returned 

by ChatGPT was the same as the ontology. The query returning False (“False Count”) 

indicates the concept output does not match the ontology. In addition, no respective value 

(“No Response”) could be returned from ChatGPT. The label and type term related to all 50 

concepts. However, the domain and range only related to properties as classes do not have 

these restrictions. 

Table 1: Results of Semantic Correctness Experiment 
Ontology Term True Count False Count No Response Results 
rdf:type 38 12 0 Link 

rdfs:domain 22 3 0 Link 
rdfs:range 21 4 0 Link 
rdfs:label 37 13 0 Link 

 

Figure 7 presents an overview of the results shown. Each pie chart shown relates to the 

correctness of each ontology term tested. 

 

 

12 https://jena.apache.org/documentation/fuseki2/ 
13 https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/ask_query_template.rq 

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Type_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Domain_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Range_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-1-Results/Label_Results.pdf
https://jena.apache.org/documentation/fuseki2/
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/ask_query_template.rq


 

Figure 7: Results of correctness of each ontology term tested 

The results indicate that ChatGPT produces correct terms for 118 (78.6%) of the tested 

cases, with the correctness influenced by the ontology and requested term. It scored best 

for retrieving the correct domain (rdfs:domain) of properties with 88% semantically 

correct terms retrieved. Slightly worse scores were identified for the range (rdfs:range) 

of properties with 84% correct. While ChatGPT was capable of providing semantically 

correct types (rdf:type) of concepts with a slightly worse degree of accuracy (76%). Most 

correct cases related to the generalized RDF class (rdfs:Class) or property 

(rdf:Property), which all RDF concepts are types of [13].  In addition, a high proportion 

of domain and ranges returned related to the generalized RDF resource (rdfs:Resource) 

which all RDF resources are instances [13]. Most incorrect cases related to ChatGPT 

returning a type of the name of the concept itself, such as prov:Agent, which returned a 

type of prov:Agent. Labels (rdfs:label) scored worst (74%), which could be a result 

of the natural language representation of them. As LLMs [7] are trained using natural 

language it could be harder for them to distinguish these values from other text when 

compared to RDF concepts. Interestingly, it was observed that ChatGPT made inferences 

about certain labels. For instance, the label returned from the rdf:HTML class was 

“HTML/XML Syntax for RDF”, however, the value defined in the ontology is “HTML”. 

It could have made inferences about the usage for RDF due to the context of the request. 

Similarly, the label returned for the rdf:rest property was “rest of list”, whereas 

the correct value is “rest”. As ChatGPT knows that the property is related to lists, it could 

infer the label based on the background information. In addition, a limitation for labels is 

that ChatGPT may not understand the common naming convention (property name in camel 

case). Table 2 presents an overview of the results categorized by respective ontology.  

Table 2: Results of semantically correct concepts for each ontology tested 

Tested Ontology True Count False Count No Response 

RDFS 28 2 0 

SKOS 19 11 0 

FOAF 24 6 0 

PROV-O 22 8 0 



RDF 25 5 0 

 

     The results indicate that the ontology where the term was defined influenced the 

semantic correctness of values returned. In addition, the high standard deviation (3.4) 

indicates that the scores for each ontology were spread around the mean. As can be seen, 

RDF [15], RDFS [13] and FOAF [14] scored best, while SKOS [16] and PROV-O [17] scored 

worse. Thus, these results indicate that the ontology where the tested concept originates 

influences the semantic correctness of ChatGPT. However, all ontologies scored between 

63% (SKOS) and 93% (RDFS) correctness for each of the 30 tests completed on them.  The 

worse scores could be as a result of the amount and quality of documentation published by 

the ontology, which was used to the train the LLM [7]. Table 3 presents a sample of results 

from this experiment. The tested (“Concept”) is shown, along with the term returned from 

ChatGPT (“ChatGPT Output”) and the semantically correct corresponding term (“Ontology 

Term”) from the respective ontology.  

Table 3: Samples of concepts tested in the experiment and respective values retrieved from 

ChatGPT and namespace ontology 

Tested Term Concept ChatGPT Output Ontology Term 

rdf:type rdf:Bag rdf:Bag rdfs:Class 

rdf:value rdf:Property rdf:Property 

rdf:Statement rdf:Class rdfs:Class 

          foaf:Document         foaf:Document              owl:class 

rdfs:domain foaf:based_near foaf:Agent geo:SpatialThing 

rdfs:range rdfs:Property rdf:Property 

prov:hadMember prov:Collection prov:Collection 

    foaf:knows  foaf:Person foaf:Person 

rdfs:range skos:topConceptOf skos:Concept skos:ConceptScheme 

prov:used prov:entity prov:Entity 

foaf:based_near geo:SpatialThing geo:SpatialThing 

prov:generatedAtTime xsd:dateTime xsd:dateTime 

rdfs:label rdf:HTML “HTML/XML Syntax for 

RDF” 

“HTML” 

foaf:based_near “based near” “based near” 

skos:Collection “A collection of 

concepts” 

“A collection of 

concepts” 

rdf:rest “rest of list” “rest” 

 

The overall results show that ChatGPT can provide semantically correct concepts with 

118 (78.6%) correct for this use case. Overall, it can be concluded from RQ1 that the 

framework could be beneficial for agents involved in quality assessment of the publication 

process of linked data. The information related to ontology reuse could be used by agents 

to inform crucial design decisions which will impact overall quality.  

3.2. Experiment 2: Syntactic Correctness of RDF-related code  

Testing of RQ2 involved retrieving a sample instance Turtle [9] graph, sample SHACL [12] 

shape and sample SPARQL [10] queries related to the 50 ontology concepts. In total, 150 

files (3 for each concept) of code were generated. Table 4 presents the results of inputting 



these 150 files into the RDFLib parser14 in order to validate syntactic correctness. Each 

tested category consisted of a total of 50 files. Files which were tested and contained initially 

correct code syntax required no further actions. Incorrect code was post-processed by the 

framework as described in Section 2.1, resulting in the final syntax of the code. 

Table 4:  Results of Syntax Correctness Experiment 
Category Initial Correct  Final Correct  Results 

SPARQL Query 43 47 Link 

SHACL Constraints 46 50 Link 

Sample Instances 43 49 Link 

 

Figure 8 presents an overview of the results shown. The percentage of each category 

correct before (left) and after (right) post-processing.  

 

 

Figure 8: Results of occurrences of syntactic correctness for each category tested before 

(left) and after (right) post-processing by the framework 

The results show that ChatGPT can produce RDF related code with a high degree of 

accuracy. Initially, all categories scored better than 42 (84%) syntactically correct. The post-

processing of the incorrect files resulted in an improvement to a mean of 48 (96%) for all 

categories. The results show SHACL constraints scored slightly better than the other 

categories, which could be due to less prefixes being needed in most cases. SPARQL queries 

and Sample instance graphs scored similar. Majority (14 out of 18) of the syntax problems 

were due to missing prefixes in the initial response from ChatGPT. Only 1 out of the 11 

initially incorrect Turtle graphs could not be repaired using the post processing, which 

indicates that ChatGPT has a good understanding of the overall structure of these graphs. 

SPARQL queries accounted for the most (3) files where syntax could not be repaired. These 

results provide an indication that ChatGPT has the least understanding of them.  

 

14 Parser used to validate syntax at https://rdflib.readthedocs.io/en/stable/plugin_parsers.html  

https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-2-Results/SPARQL_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-2-Results/SHACL_Results.pdf
https://github.com/alex-randles/R2RML-ChatGPT-Experiments/tree/main/documents/Experiment-2-Results/Instance_Results.pdf
https://rdflib.readthedocs.io/en/stable/plugin_parsers.html


4. Related Work 

In recent years, research into frameworks to support the generation of high-quality 

mappings have been conducted. The Mapping Quality Improvement (MQI) Framework [18] 

to improve and maintain the quality of R2[RML] [5,6] uplift mappings has been proposed 

and evaluated. The framework consists of two core components. The mapping quality 

assessment and refinement component is designed to detect quality issues and suggest 

semi-automatic refinements to resolve them. The change detection component detects 

changes in respective source data and provides suggestions on how to maintain alignment 

between them. An approach [1] exists which was designed to assess and refine the quality 

of R2[RML] mappings using rule-based reasoning, which involves executing various test 

cases on them. Some of the related approaches [2,3] extend existing linked data quality 

assessment frameworks. These approaches are designed to target mappings represented in 

RDF format, such as R2RML [5] and RML [6]. EvaMap is an approach [19] which was 

designed with the requirements in mind and uses information contained in respective 

ontologies to assess the quality of YARRRML15 mappings. The assessment involves quality 

metrics in 7 dimensions, which are used to calculate a weighted mean score. However, these 

approaches are limited to information contained in ontologies used by respective mappings, 

which are queried in order to assess quality. Thus, mapping engineers who use these 

approaches are required to search other forms of data on the web to resolve issues out of 

scope of the used ontologies, such as alternative ontologies to reuse.  

5. Future Work and Conclusion 

Future work includes expanding the test cases applied during the experimentation outlined 

in this paper. It is hoped expanded test cases will provide further indications of the accuracy 

of the relevant knowledge supplied. In addition, conducting a usability experiment on the 

framework will help to identify limitations for respective end users. A standardized 

questionnaire, such as the Post-Study System Usability Questionnaire (PSSUQ) [20], which 

was designed by IBM could be used. The PSSUQ measures user satisfaction from a software 

system, which involves rating various key aspects using a Likert scale. Furthermore, the 

semantic correctness of generated SPARQL queries and SHACL shapes could be tested, by 

executing them on respective input and comparing the output with expected results. 

Moreover, knowledge from the generation of SHACL [21] shapes using Ontology Design 

Patterns [22] could be integrated into the framework to generate ontology specific 

constraints. Finally, the framework could be extended to support other mappings 

represented in RDF format, such as the Database to RDF Mapping Language (D2RQ) [23].  

The R2[RML]-ChatGPT framework proposed in this paper provides possible direction 

for future applications of LLMs in the publication process of linked data. It is hoped the 

approach can be used to provide accurate quality insights on various aspects of associated 

artefacts to alleviate the high requirement of background knowledge from domain experts. 

In addition, it is hoped that the availability of diverse prompt templates will result in a more 

 

15 https://rml.io/yarrrml/  

https://rml.io/yarrrml/


straightforward knowledge discovery process using the framework. The results of the 

experiments demonstrated that ChatGPT is capable of providing syntactically and 

semantically correct data. 118 (78.6%) of the 150 tested ontology terms were semantically 

correct and a mean of 48 (96%) of the 50 code files for the tested categories (after post-

processing) were syntactically correct, which indicates a high level of accuracy. These 

results indicate that the information could be beneficial to mapping engineers when making 

crucial design decisions within the linked data publication process. It is hoped the easily 

accessible information covering various knowledge domains could be used to support 

domain experts when retrieving required knowledge during the publication process. In 

addition, it is hoped the automation of syntactically correct RDF related code will reduce 

workload for involved agents.  
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