
Knowledge presentation methods development in the

intelligent business analytics systems based on ontologies

and models

Victoria Vysotska1,†, Yevhen Burov1,∗,†, Lyubomyr Chyrun2,†, Sofia Chyrun1,†, Oksana

Brodyak1,†, Valentyna Panasyuk3,†, Dmytro Karpyn4,†, Liubomyr Pohreliuk1,† and

Nadiya Shykh4,†

1 Lviv Polytechnic National University, Stepan Bandera 12, 79013Lviv, Ukraine
2 Ivan Franko National University of Lviv, University 1, 79000Lviv, Ukraine
3 West Ukrainian National University, Lvivska 11, 46004Ternopil, Ukraine
4 Ivan Franko Drohobych State Pedagogical University, Ivan Franko 24, 82100Drohobych, Ukraine

Abstract
The use of knowledge presentation models to solve the management problems of complex
ontologies is a promising direction in the development of ontology management systems and will
increase the efficiency of the expert's work. We will demonstrate ways of using knowledge
models to solve the problems of ontology management, in particular, creating, tracking the origin
of elements, and validating the ontology. We will consider ways of presenting and using
algorithmic models using the example of an intelligent system for automated testing of software
products.

Keywords
Semantic, knowledge, ontology, business analytics, intelligent system, model, validation 1

1. Introduction

The central element of intelligent semantically oriented systems, which are developed

within the scientific direction of the semantic web, is an ontology - a formal, declarative

model of a defined subject area. An ontology is created by an expert - an ontology engineer.

CLW-2024: Computational Linguistics Workshop at 8th International Conference on Computational Linguistics
and Intelligent Systems (CoLInS-2024), April 12–13, 2024, Lviv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 victoria.a.vysotska@lpnu.ua (V. Vysotska); yevhen.v.burov@lpnu.ua (Y. Burov);
Lyubomyr.Chyrun@lnu.edu.ua (L. Chyrun); sofiia.chyrun.sa.2022@lpnu.ua (S. Chyrun);
brodyakoksana1976@gmail.com (O. Brodyak); v.panasiuk@edu.wunu.ua (V. Panasyuk);
dmytro.karpyn@gmai.com (D. Karpyn); liubomyr@inoxoft.com (L. Pohreliuk); shykh.nadiya@gmail.com (N.
Shykh)

 0000-0001-6417-3689 (V. Vysotska); 0000-0001-8653-1520 (Y. Burov); 0000-0002-9448-1751 (L.
Chyrun); 0000-0002-2829-0164 (S. Chyrun); 0000-0002-9886-3589 (O. Brodyak); 0000-0002-5133-6431 (V.
Panasyuk); 0000-0002-0476-3406 (D. Karpyn); 0000-0003-1482-5532 (L. Pohreliuk); 0000-0003-0059-7137
(N. Shykh)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

Due to the high complexity of subject area (SA), it is impossible to display all the concepts

and dependencies of this area in the ontology. Therefore, as a rule, it is advisable to include

in the ontology only concepts and dependencies that are necessary for presenting and

solving problems that are planned to be solved in the subject area. This approach has a lot

in common with well-known software design methodologies, such as RUP [1] or object-

oriented using UML [2], because the first stage of program design is also the analysis and

formalization of SA, the definition of program usage scenarios. At the same time, for a

certain SA, as a rule, a significant number of various problems are solved. Each of these tasks

uses part of the entities of the ontology. At the same time, the ontology generally plays the

role of a single formal model, a set of concepts, and a common language for presenting all

tasks and creates a foundation for a unified understanding of the concepts underlying the

essences of the ontology by various tasks. All this leads to an increase in the number of

ontology components and their connections. Known higher-level ontologies (general

ontologies) reflect a significant number of concepts, for example, CYC contains 2 million,

and Wordnet - has about 207 thousand entities [3, 4].

Complexity creates significant problems in solving ontology management problems. This

class of tasks includes the creation, updating, modification, visualization and validation of

the ontology, documenting the origin of its elements. It is known [4, 5] that a person can

keep a relatively small number of objects in focus at the same time (4-7). Therefore, with

the increase in the size of the ontology, it becomes increasingly difficult to solve the tasks of

its management manually. One of the consequences of this is the contradiction between the

number of entities (ontology width) and the amount of information provided for each

element (ontology depth). It is not surprising that, for example, Wordnet is currently used

mainly only as an extremely developed linguistic resource - a dictionary [3, 4]. Difficulties

in the management of ontologies ultimately lead to a deterioration in the quality of the

ontology. In [6], the quality of the ontological model is determined by fulfilling the

requirements for its completeness, correctness, and stability. Errors by an expert during the

processing of a complex ontology lead to the failure to take into account essential concepts

and software relationships in the ontology, which in turn leads to the creation of an

incomplete and incorrect ontology [4].

Research on the problem of management of complex ontologies is carried out in several

directions. In particular, metrics and ways of measuring ontology complexity are being

developed. In [7], by analogy with the definitions of the concept of software complexity,

ontology complexity is defined as difficulties in performing such tasks as development,

reuse, and modification of ontology. In this work, a multidimensional set of metrics was

developed that reflects both the complexity of the ontology in general and its complexity at

the level of classes and relations [4].

The work [8] proposed the O2 meta-ontology, which defines an ontology as a semiotic

object. Using this ontology, three metrics of ontology complexity were developed: structural

metrics, functional metrics, and usability profiling metrics. In addition, a significant number

of potential metrics are analysed in this work. Some of these metrics are qualitative and

cannot be automatically calculated. Metrics for a previously normalized ontology are

proposed in [9]. Normalization of the ontology includes such steps as naming classes, facts,

materialization of the hierarchy of inheritance, unification of names, and normalization of

attributes. Such normalization aims to transform different ontologies into a semantically

equivalent form to subsequently create semantic complexity metrics [4].

Ontology management functions are integrated into ontology development and

conceptual modelling tools, such as Protégé [10] and TopBraid [11]. There are ontology

management systems focused on industrial use [4, 12].

The development of ontology visualization tools is aimed at increasing the efficiency of

the work of an ontology management expert. The work of many of these tools boils down to

displaying and bringing into focus a certain part of the ontology with which the expert

works. Existing data visualization tools (Information Visualization) allow you to apply

visual metaphors to a defined set of data, analyse multidimensional data, time slices, etc.

They use combinations of textual, tabular, diagrammatic, and graphical data display [13]

Ontology tools have capabilities for visualizing ontologies and facts from an information

base. For example, Protégé has an OntoViz application that allows you to display ontology

entities and relations in the form of a graph, the commercial ontology modelling tool

TopBraid can display not only the structure of ontology classes but also geoinformation

data. At the same time, the existing means of visualization of ontologies, for example, do not

allow to graphical display of complex relationships or to display of the ontology and facts in

the context of problems that are solved using the ontology. An important task in ontology

management is tracking the origin of ontology elements and facts. Completion of this task

is necessary to validate and ensure the correctness of the ontology, because the subject area

changes, and to maintain the correctness of the ontology, it is necessary to monitor the

dependencies between the elements and facts of the ontology and the corresponding

objects of the subject area. Today, four levels of origin are defined [14]: static (permanent

data), dynamic (variable data), unclear (the origin of this data is by its very nature unclear,

unclear), expert (expert assessment is required to obtain information about the origin). In

[15], it is proposed to track the origin of facts by recording the history of their changes, as

well as a more detailed description of the events that led to the changes. At the same time,

the task of finding the elements of the ontology scheme, which depend on a certain fact of

the software, remains largely unsolved [4].

The use of such knowledge presentation models to solve the management problems of

complex ontologies is a promising direction in the development of ontology management

systems and will increase the efficiency of the expert's work. We will demonstrate ways of

using knowledge models to solve the problems of ontology management, in particular,

creating, tracking the origin of elements, and validating the ontology.

2. Related works

2.1. Use of executable models of ontology management

2.1.1. Using models to create, modify and validate ontologies

One of the problems faced by the SA-defined ontology developer is the multivariate

construction of the ontology [4]. Due to the complexity and vagueness of SA, it is generally

not possible to represent all aspects of this domain in an ontology. The choice of concepts

to be included in the ontology is influenced by both the developer's experience and his

subjective ideas about the importance of certain concepts in SA. As a result, concepts that

will never be used may be included in the ontology, and some important concepts, on the

contrary, are not included. Moreover, mistakes made during the conceptualization of SA can

significantly complicate the further development of the ontology. Under these conditions, it

is important to define the decision-making criteria regarding the inclusion of SA concepts

in the ontology. A similar problem in the field of software design is solved by constructing

and analysing software use-cases. It is appropriate to use a similar approach to the creation

of an ontology - to build an ontology in the process of analysing problems that are solved

using the ontology. At the same time, the problem is formalized in the form of a model. In

the model, the entities participating in the solution of the problem, their attributes, and all

relations and restrictions necessary for solving the problem are displayed. We will consider

any of its constituent parts to be a component of the Cm ontology. Ontology components

form the CmOn set:

𝐶𝑚𝑂𝑛 = {𝑥|𝑇𝑦𝑝𝑒(𝑥) ∈ {𝐶𝑙, 𝑆𝑙𝐶𝑙, 𝐿𝑛𝐶𝑙, 𝑅𝑢𝐶𝑙, 𝐶𝑠𝐶𝑙}}.

Thus, by analysing the ontology components included in the ScMd problem model

scheme, it is possible to determine those components that need to be added to the ontology.

At the same time, the following components 𝐶𝑚′ are added to the ontology, for which: 𝐶𝑚′ ∉

𝑂𝑛, 𝐶𝑚′ ∈ 𝑆𝑐𝑀𝑑 [4].

In [5] such requirements for the quality of the ontology as the requirement of

completeness and correctness are given. In particular, the requirement of completeness is

formulated as follows: "all aspects of SA relevant for the defined task code must be reflected

in the ontology." An ontology is considered correct if the knowledge defined in it is correct

for the defined SA and relevant to the functions performed by the IS using the ontology. By

analogy with these definitions, we will consider a complete model if it contains all the

entities, relations, restrictions and operations necessary to solve the given problem. We will

consider the model that solves the task according to the specified efficiency criteria to be

correct. Let the set of complete and correct models M(Md) be defined for a given SA. Then

the ontology built based on this set is complete if: ∀𝐶𝑚𝑖 ∈ 𝑂𝑛: 𝐶𝑚𝑖 ∈ 𝑀𝑑𝑖 ∈ 𝑀(𝑀𝑑). An

ontology is correct if it is built based on correct models. Solving the task of tracing the origin

of ontology components is important for maintaining the correctness of the ontology over

time. A change in the facts of the subject area, on which the ontology is based, leads to the

need for its modification. At the same time, a model containing a reference to a changed fact

immediately points to all components of the ontology dependent on this fact and thus will

simplify the process of its modification [4].

2.1.2. Adaptive ontologies

To be able to build metrics on ontologies, it is proposed to expand the ontology model by

introducing two scalar values - the weight of the importance of knowledge (KB) concepts

and the semantic connections between them [16]. These weights allow us to adapt the

ontology of the knowledge base to the specifics of the subject field, and determine the

elements embedded in its structure and the mechanisms of its optimization (more precisely,

adaptation) with the help of self-learning during operation. Coefficients of the importance

of concepts and connections must meet the following basic requirements [17, 18, 19]:

 reflect the semantic importance of SA concepts, in which this intellectual system will

be applied;

 to be formed during KB filling and to be adjusted according to defined rules;

 ensure KB integrity control;

 meet the requirements of the metric when they are used to compare the semantic

and characteristic proximity of concepts.

There is a task to formulate an appropriate set of rules for assigning important

coefficients (informational importance) to concepts and statements in the KB model, which

will ensure an assessment of the actual value of its information content and the current

situations under investigation (for example, the inclusion of text documents in classes

according to the UDC).

We will show the possibility of carrying out the formulated task by introducing some

simplifications and assumptions. Let's present the knowledge base in the form of a weighted

conceptual graph, the numerical semantic characteristics of vertices and edges which are

determined according to certain rules. It is an oriented weighted multigraph with the

following properties [18, 19]:

 each element (vertex) can have any number of links;

 each element can have a connection with any number of other elements;

 each connection (edge) in the model corresponds to a certain direction and

coefficient of the importance of the connection of the corresponding statement, each

concept (vertices) - coefficients of the importance of the concept.

The coefficient of importance of a concept (connection) is a numerical measure that

characterizes the importance of a certain concept (connection) in a specific subject area and

dynamically changes according to certain rules during system operation [18-21]. Our

approach to the presentation of knowledge in the form of weighted conceptual graphs is

that any possible generalization, that is, a complex, complex concept is always clearly

articulated, named and appears as a separate concept in the knowledge base. Therefore, if

some generalization has common properties or ways of functioning, they can be physically

implemented through the properties and processing of events of the corresponding

generalizing concept. So, let's expand the concept of ontology by introducing coefficients of

importance of concepts and relations into its formal description. Then such an ontology is

defined as 𝑂 = ⟨𝐶 ′, 𝑅′ , 𝐹⟩, where 𝐶′ = ⟨𝐶, 𝑊⟩, 𝑅′ = ⟨𝑅, 𝐿⟩, where, in turn, W is the importance

of concepts C, L is the importance of relations R. Generally speaking, W is the vector of the

dimension of the number of different precedents if the ontology is used for an intelligent

system of searching for a relevant precedent or the dimension of the number of tasks that

are solved by the AI of activity planning. The ontology defined in this way will be called

adaptive, i.e. one that adapts to SA due to modification of concepts and coefficients of

importance of these concepts and connections between them [21]. The methods of

determining the coefficients of the importance of concepts will be considered at the end of

this section, and the values of the coefficients of the importance of relations and the

development of weights for the entire ontology will be considered in detail in the third

section when we will analyse the structure of the ontology and the types of relations

between concepts. Here we only note that the change of these coefficients occurs by the

modification of knowledge by the methods of intellectual data analysis or knowledge

engineering, which are aimed at extracting knowledge. The goal of data mining technology

is the production of new knowledge that the user can further apply to improve the results

of their activities. The following methods of identifying and analysing knowledge can be

distinguished: classification; regression; clustering; association analysis; forecasting of

temporal sequences (series); aggregation (generalization); detection of deviations;

processing of text documents; and dialogue with an expert. The first seven belong to the

methods of intelligent data analysis, and the last two to the methods of knowledge

engineering.

2.1.3. Concepts and properties of the knowledge base ontology graph

The hierarchical multi-link structure of the semantic network of the KB ontology frames

of the intelligent system can be represented as a directed weighted multigraph. Since KB is

a semantic network of frames, each vertex C of the graph of the network G contains some

set of elements characterizing the object corresponding to this vertex. The edges of the

graph that correspond to connections (statements in the KB itself) are defined by ordered

pairs of vertices ⟨𝑖, 𝑗⟩. A path is a sequence of arcs (oriented edges) such that the end of one

arc is the beginning of another arc, and we will use it to find the distance between two

graphs. A graph is called connected if, for any pair of vertices, there is a path between them.

The connectivity of an ontology's semantic network graph is a property that means that all

elements of the network are within the reach of the ISBA and can be involved when

generating a response to an appeal to it.

We will describe the relationship between the structure of the ontology links and the

reasoning implementation mechanisms. The model should contain reasoning mechanisms,

which will act as attached frame procedures using established relationships (assertions) to

produce the necessary decision. According to the object paradigm and the frame model of

knowledge representation, the parent frame class contains attached procedures for setting

specific values of its property slots and slots of new instances/subclasses during their

generation. The term "contains" means the presence of corresponding instances of the class

of attached procedures (event handlers) in the corresponding slots of the address frame.

These attached procedures for the newly created class/object are generated by the attached

procedures class in response to a signal from the parent class, returning the address of the

generated procedure instances. Therefore, each instance of a class contains only a basic

procedure for generating calls to other instances, all other procedures are placed externally

as instances of the procedure class, and their addresses are placed in the slots of the instance

that can call this procedure. The procedure responds to the call with the parameters known

to it, processes them and returns the result, which can be, in particular, the address of a new

class generated by this procedure or an instance of an existing class. Therefore, the

connections in the semantic network of frames are implemented through the exchange of

messages between their attached procedures. Our approach to the presentation of

knowledge in the form of a weighted semantic network (conceptual graphs) is that any

possible generalization, that is, a complex, complex concept is always clearly articulated,

named and appears as a separate concept in the KB. Therefore, if some generalization has

common properties or ways of functioning, they can be physically implemented through the

properties and event handlers of the corresponding generalized concept, according to the

principle of inheritance.

2.2. Presentation of knowledge in tasks of verification of ontological models

Models for solving problems are created by a specialist in the subject area, who must not

only reflect in the model all the essences and relationships of the subject area that are

essential for the given task, but also determine the limitations on the use of models, the

necessary conditions regarding the availability of input data, and determine the range of

problems for which the method is implemented by the model is relevant and display

relevance conditions through properties of domain entities. Accuracy, non-contradiction

and completeness of models is a key factor that determines the quality of decisions made

using models. The development of knowledge models requires a high level of developer

competence and is a difficult formalized task. On the other hand, an error in the model will

lead to errors in solving all problems in which this model is used. Therefore, an important

stage in the development of models is their verification, both initial, which is carried out by

the author of the model, and additional, which is carried out by a commission of experts in

the subject area. The introduction of redundancy, that is, the use of a group of experts for

additional verification of the model serves as a means of increasing the reliability of the

knowledge reflected in the model at the expense of some increase in the cost of

development. A certain problem is that the experts themselves can make mistakes, and even

the usual expert voting, that is, identifying the position of the majority of experts, also does

not guarantee against error. The credibility of experts' decisions can be improved by

introducing an additional stage in decision-making, which consists of comparing expert

opinions to identify obvious errors and removing from the decision-making process expert

opinions in which errors are found.

The proposed approach is based on the introduction of the phase of expert verification

of the developed knowledge models. For model verification, a group of experts (reviewers)

is organized, each of whom checks the model and makes a reasonable assessment,

indicating the advantages and disadvantages of the model. We will assume that there is no

conflict of interest among the experts. The reviewer can make mistakes during model

verification. A reviewer who made a mistake may be removed from the expert group, with

a further reduction in his rating, which is used when creating new expert groups. The task

of the expert group is to reach a consensus on the model being evaluated.

Consensus is defined as obtaining an agreed estimate, which is based only on estimates

that do not contain errors. It is worth noting that the task of obtaining consensus was solved

within the framework of the approach to building fault-tolerant computing systems. Two

approaches can be distinguished here [22]. The first approach is developed within the

framework of building fault diagnosis models at the system level (system-level fault

diagnosis [23]) and is based on the classic work [24]. The second approach is developed

within the analysis of the possibility of achieving the so-called "Byzantine agreement" and

comes from classical works [25]. Both approaches have a similar goal - to determine the

correct result in conditions of failures due to the introduction of redundancy. The first

approach is based on the detected defective components of the system due to the

organization of mutual checks. At the same time, it is believed that each functional module

of the system correctly determines the failure of the module it is testing, and each defective

module gives an unpredictable result about the state of the module being tested. The

obtained results of mutual checks (syndrome) are analysed by a global arbiter (global

observer or centralized arbiter [22]). To determine the conditions for centralized decoding

of the syndrome, the parameter t is introduced - the maximum number of defective modules

[26]. The article shows that to decipher the syndrome, the condition n2t+1 must be

fulfilled, where n is the number of intelligent system (IS) modules.

The second approach is based on decentralized decision-making about the correctness

of calculation results. Here, communication and protocol redundancy are introduced, which

makes it possible to achieve a "Byzantine agreement" under the condition n3t+1, where t

is the number of system components that distort the results of calculations [27]. It should

be noted that the assumption of the presence of a centralized deciphering of the syndrome

is quite acceptable for the case of organizing the verification of the knowledge model of an

intelligent information system since such a task can be integrated into the decision support

model itself by consensus.

Let's consider the method of verification of knowledge models of an intelligent system,

which is based on reaching a consensus of a group of experts and determining how to use

this method as a separate knowledge model - a component of an intelligent system.

3. Models and methods

We define the ontology On as a set of symbols of entities 𝐸̄ and relations between them 𝑅̄:

𝑂𝑛 = {𝐸̄, 𝑅̄}. Each relation 𝑅 ∈ 𝑅̄ is defined on the set of roles {𝑃1, 𝑃2, . . . , 𝑃𝑛}: 𝑅(𝑃1, 𝑃2, . . . , 𝑃𝑛)

[28-30]. In the general case, an initialization function 𝐹𝑖𝑛
𝑘 is defined for each role 𝑃𝑘 , which

defines a subset of entities whose elements are allowed to initialize the role: 𝐹𝑖𝑛
𝑘: 𝑃𝑘 →

𝐸𝑖𝑛
𝑘 ⊆ 𝐸̄. In the simplest case, when ∀𝑘: |𝐸𝑖𝑛

𝑘| = 1 for each role, there is only one entity

type that can be initialized. In this case, it is possible to replace the roles with the

corresponding entities of the ontology in the notation of the relationship: 𝑅(𝐸1, 𝐸2, . . . , 𝐸𝑛).

Entities of the ontology form a hierarchical structure (taxonomy) using the inheritance

relationship (ISA-relation) 𝑅𝑖𝑠𝑎 . The binary relation 𝑅𝑖𝑠𝑎 is defined on an ordered pair of

Descendant-Ancestor roles: 𝑅𝑖𝑠𝑎(𝑃𝑐ℎ, 𝑃𝑝𝑟). The inheritance relation is transitive, so that if

𝑅𝑖𝑠𝑎(𝐸1, 𝐸2) and 𝑅𝑖𝑠𝑎(𝐸2, 𝐸3) then 𝑅𝑖𝑠𝑎(𝐸1, 𝐸3) is valid. We define the function 𝐹𝑝𝑟 which for

each entity 𝐸𝑗 determines the ordered list of its ancestors (𝐸1, 𝐸2, . . . , 𝐸𝑘), so that

𝑅𝑖𝑠𝑎(𝐸𝑖 , 𝐸𝑖+1) and 𝑅𝑖𝑠𝑎(𝐸𝑗, 𝐸1) are fulfilled. We also define the function 𝐹𝑝𝑟
1(𝐸𝑗) which

returns the immediate ancestor of the entity 𝐸𝑗 or the empty set ∅. An important type of

relation is the Has-Parts relation: 𝑅ℎ𝑎𝑠(𝑃𝑤ℎ , 𝑃𝑝𝑡), where 𝑃𝑤ℎ is the role of the whole, and 𝑃𝑝𝑡

is the role of the parts of this whole. The subtype of this relation 𝑅ℎ𝑎𝑠
′ defines specific entities

for the whole and sets of allowed entities for parts [28-30]: 𝑅ℎ𝑎𝑠
′ (𝐸𝑤ℎ

′ , {𝐸𝑝𝑡
1 , 𝐸𝑝𝑡

2 , . . . , 𝐸𝑝𝑡
𝑛 }′).

For simplicity, when presenting such a relation, we will use the notation: 𝐸𝑤ℎ =

{𝐸𝑝𝑡
1 , 𝐸𝑝𝑡

2 , , 𝐸𝑝𝑡
𝑛 } [28-30]. Let us define an algebraic system (set) of abstract data types 𝑇̄,

in which for each element of T there is a mutually unique correspondence with a certain

entity of the ontology: ∀𝑖∃1𝑗: 𝑇𝑖 → 𝐸𝑗, ∀𝑗∃1𝑖: 𝐸𝑗 → 𝑇𝑖 . The TypeEn() function returns for each

data type 𝑇𝑖 from 𝑇̄ the corresponding ontology entity 𝐸𝑗: 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑖) = 𝐸𝑗 and thus

determines the semantic interpretation of this data type. According to the approach from

[31], the abstract data type is algebraically represented by a triple [28-30]:

𝑇 = (𝑁𝑎𝑚𝑒, 𝛴, 𝐸𝑥), (1)

where Name is the name of the type, Σ is the signature of the multivariate algebra, Ex is

the set of equations in the signature Σ that specifies the defining relations of the abstract

data type. The signature is as Σ=(S, OP), where S is the set of names of basic sets, and OP is

the set of names of operations [28-30].

𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑛}, 𝑂𝑃 = {𝐹1, 𝐹2 , . . . , 𝐹𝑘}.

Each operation 𝐹𝑖 defines a mapping [28-30]:

𝐹𝑖: 𝑆𝑎(1,𝑖) ×. . .× 𝑆𝑎(𝑛,𝑖) → 𝑆𝑚(𝑖).

The relation R is a type of algebraic operation that acts on a defined set of argument types

and defines a mapping into a Boolean set: 𝑅𝑖: 𝑆𝑎(1,𝑖) ×. . .× 𝑆𝑎(𝑛,𝑖) → 𝑆𝐵𝑂𝑂𝐿 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.

The Md model can also be considered as a kind of operation that acts on a certain set of

argument types and defines a mapping into a set of results, which in general have different

types [28-30]:

𝑀𝑑𝑖: 𝑆𝑎(1,𝑖) ×. . .× 𝑆𝑎(𝑛,𝑖) → {𝑆𝑟(1,𝑖), . . . , 𝑆𝑟(𝑙,𝑖)}.

On the other hand, relations and models at the ontology level are separate entities. These

entities in the algebraic system of types 𝑇̄ correspond to data types whose instances store

data about these relationships and models (metadata) [32]. An important component of the

definition of relations in ontology is the integrity constraints imposed on the entities

connected by the relation. In the defined system of types, this restriction corresponds to a

set of Boolean expressions 𝐶𝑠𝑇𝑅𝐸𝐿
 for each type of relation 𝑇𝑅𝐸𝐿 , which must be true:

∀𝑐𝑠𝑖
𝑇𝑅𝐸𝐿

∈ 𝐶𝑠𝑇𝑅𝐸𝐿
: 𝑒𝑣(𝑐𝑠𝑖

𝑇𝑅𝐸𝐿
) = 𝑡𝑟𝑢𝑒, where ev() is an expression value evaluation

function. Expressions that define integrity constraints are a component of the set of defining

relations of the abstract data type: 𝐶𝑠𝑇𝑅𝐸𝐿
⊆ 𝐸𝑥𝑇𝑅𝐸𝐿

 [28-30]. In some cases, restrictions are

also imposed on the values of entity attributes [28-30]. Consider such constraints as

integrity constraints for unary relations. Similarly to ontology entities, data types from 𝑇̄

form a type hierarchy in which the subtype 𝑇𝑝𝑖𝑑 inherits the properties of the supertype

𝑇𝑠𝑢𝑝 if and only if the relation 𝑅𝑖𝑠𝑎 is defined between the ontology entities corresponding

to the subtype and the supertype, i.e.:

∃𝑅𝑖𝑠𝑎(𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑝𝑖𝑑), 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑠𝑢𝑝)).

Similar to ontology entities, data types are built on top of other, simpler types. At the

same time, these more complex types are structures containing elements of simpler types.

We denote the type-structure as 𝑇𝑤ℎ , and the types – constituent parts as 𝑇𝑝𝑡
𝑖 . Then 𝑇𝑤ℎ =

{𝑇𝑝𝑡
1 , 𝑇𝑝𝑡

2 , . . . , 𝑇𝑝𝑡
𝑛 }, if the ontology entities corresponding to the data types are connected by

the relation 𝑅ℎ𝑎𝑠
′ [28-30]:

∃𝑅ℎ𝑎𝑠
′ (𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑤ℎ), {𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑝𝑡

1), 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑝𝑡
2), . . . , 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑝𝑡

𝑛)}′).

Let's define the TypeParents() function, which for each type T will return an ordered set

of its supertypes and is a transitive closure of the inheritance relation: 𝑇𝑦𝑝𝑒𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑇) =

{𝑇1 , 𝑇2 . . . , 𝑇𝑛}, where 𝑇𝑖+1 is a supertype relative to 𝑇𝑖 . Let's define the function

TypeName(), which for each type of data T returns a unique identifier (description, name)

of this type [28-30]. For example, for a 𝑇𝑀𝐷 data type corresponding to a model:

𝑇𝑦𝑝𝑒𝑁𝑎𝑚𝑒(𝑇𝑀𝐷) = "𝑀𝑜𝑑𝑒𝑙". For instances t of an arbitrary type T, we define the functions

that return the type and the corresponding entity of the ontology:

𝑇𝑦𝑝𝑒(𝑡) = 𝑇, 𝐸𝑛𝑡𝑖𝑡𝑦(𝑡) = 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑦𝑝𝑒(𝑡)) = 𝐸.

We denote the multi-set of all instances of type T by 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑇).

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑇) = {𝑡|𝑇𝑦𝑝𝑒(𝑡) = 𝑇}.

We denote the multi-set of instances of a certain type 𝑇𝑖 as 𝑡̂𝑖:

𝑡̂𝑖|∀𝑡𝑖 ∈ 𝑡̂𝑖: 𝑇𝑦𝑝𝑒(𝑡𝑖) = 𝑇𝑖 , 𝑡̂𝑖 ⊆ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑇𝑖).

We denote the abstract data type corresponding to the multiset of instances 𝑡̂𝑖 by 𝑇̂𝑖 . In

the general case, an arbitrary software object o can be identified as an object of many types.

Let's define the TypeId() function, which will return a set of types that can be used to identify

the object [28-30].

𝑇𝑦𝑝𝑒𝐼𝑑(𝑜) = {𝑇𝑜
1, 𝑇𝑜

2 , . . . , 𝑇𝑜
𝑚}.

Since there is an isomorphic mapping between ontology entities and data types, it is

appropriate to name data types in the same way as the corresponding ontology entities.

Thus: 𝑇𝑦𝑝𝑒𝑁𝑎𝑚𝑒(𝑇) = 𝑁𝑎𝑚𝑒. In those cases when it is necessary to emphasize the

semantic interpretation of a certain type of data, we will indicate the abbreviated name of

the type in the form of an index. For example, let's denote the model data type as 𝑇𝑀𝐷 , a

specific element of this type as 𝑡𝑀𝐷 , or a multiset of model elements as 𝑡̂𝑀𝐷 [28-30]. Given

the given notation, we define the knowledge base type as an abstract data type 𝑇𝐵𝐾𝑁 ,

represented by a set (structure) containing the fact base type 𝑇𝐵𝐹𝐶 , the ontology type 𝑇𝑂𝑁 ,

and the multiset type of models 𝑇̂𝑀𝐷: 𝑇𝐵𝐾𝑁 = {𝑇𝐵𝐹𝐶 , 𝑇𝑂𝑁 , 𝑇̂𝑀𝐷}. An instance of the knowledge

base 𝑡𝐵𝐾𝑁 at each moment is represented by the structure: 𝑡𝐵𝐾𝑁 = {𝑡𝐵𝐹𝐶 , 𝑡𝑂𝑁 , 𝑡̂𝑀𝐷}, in which

𝑡𝐵𝐹𝐶 , 𝑡𝑂𝑁 , 𝑡̂𝑀𝐷 correspond to instances of the fact base, ontology, and multiset models. The

𝑡𝐵𝐹𝐶 fact base is a set of facts about objects and events of the external world and the

relationship between them, i.e., 𝑡𝐵𝐹𝐶 = {𝑡̂𝐹𝐶 , 𝑡̂𝑅𝐹}. Elements of the multiset 𝑡̂𝐹𝐶 are data

instances having the fact type 𝑇𝐹𝐶 , 𝑇𝑦𝑝𝑒𝑁𝑎𝑚𝑒(𝑇𝐹𝐶) = "𝐹𝑎𝑐𝑡" [28-30]. On the other hand,

these elements also have one of the types 𝑇𝑝𝑖𝑑 , which is derived from 𝑇𝐹𝐶 [28-30]: that is,

∃𝑅𝑖𝑠𝑎(𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑝𝑖𝑑), 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝐹𝐶)). Each fact and relation is semantically interpreted, that

is, its type is defined in the On ontology: ∀𝑡𝐹𝐶
𝑖 : 𝐸𝑛𝑡𝑖𝑡𝑦(𝑡𝐹𝐶

𝑖) ≠ ∅, ∀𝑡𝑅𝐶
𝑖 : 𝐸𝑛𝑡𝑖𝑡𝑦(𝑡𝑅𝐶

𝑖) ≠ ∅.

The ontology type contains the types of the multiset of class definitions 𝑇̂𝐶𝐿 , and the

relations between them – 𝑇̂𝑅𝐶𝐿 , i.e. 𝑇𝑂𝑁 = {𝑇̂𝐶𝐿 , 𝑇̂𝑅𝐶𝐿}. Each class 𝑇𝐶𝐿 is defined by a set of

attributes 𝑇̂𝑆𝐿 , rules 𝑇̂𝑅𝑈 , restrictions 𝑇̂𝐶𝑆 defined on these attributes: 𝑇𝐶𝐿 = {𝑇̂𝑆𝐿 , 𝑇̂𝑅𝑈 , 𝑇̂𝐶𝑆}.

At the ontology level, the j-th attribute 𝐴𝑖
𝑗
 of the entity 𝐸𝑖 is given by an attribute relation

connecting this attribute with another entity 𝐸𝑘: 𝑅𝑎𝑡𝑟(𝐴𝑖
𝑗
, 𝐸𝑘) so that for each instance of the

attribute 𝑎𝑖
𝑗
 its value is determined by the instance 𝑒𝑘. Each attribute is specified by the type

of its values 𝑇𝑉𝑆𝐿 , multisets of rules and restrictions acting at the attribute level – 𝑇̂𝑅𝑈𝑆, 𝑇̂𝐶𝑆𝑆 ,

i.e., 𝑇𝑆𝐿 = {𝑇𝑉𝑆𝐿 , 𝑇̂𝑅𝑈𝑆, 𝑇̂𝐶𝑆𝑆}. The value of the 𝑡𝑆𝐿 attribute belongs to the set of valid RgVSL

values: ∀𝑖: 𝑡𝑆𝐿
𝑖 ∈ 𝑅𝑔𝑆𝐿. The constraint 𝑇𝑐𝑠 determines the mapping of a set of attribute

values into a set of Boolean values {true, false}: 𝑇𝑐𝑠: 𝑇̂𝑆𝐿 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} [28-30]. The 𝑇𝑅𝑈 rule

defines one subset mapping of attribute values to another. Each rule 𝑇𝑅𝑈
𝑗

 is associated with

two non-intersecting subsets 𝐴𝑏𝑎𝑠
𝑗

, 𝐴𝑑𝑒𝑟
𝑗

 of class attributes [28-30]:

𝑇𝑅𝑈
𝑗 : 𝐴𝑏𝑎𝑠

𝑗 → 𝐴𝑑𝑒𝑟
𝑗 , 𝐴𝑏𝑎𝑠

𝑗 ∩ 𝐴𝑑𝑒𝑟
𝑗 = ∅.

The type of relationship between 𝑇𝑅𝐶𝐿 classes are set on the ordered sequence of class

types that connect: (𝑇𝐶𝐿
1 , 𝑇𝐶𝐿

2 , . . . , 𝑇𝐶𝐿
𝑛) [28-30].

The relationship between classes is itself a class in the sense that it is defined by a set of

attributes, rules and restrictions [28-30]:

𝑇𝑅𝐶𝐿 = {(𝑇𝐶𝐿
1 , 𝑇𝐶𝐿

2 , . . . , 𝑇𝐶𝐿
𝑛), 𝑇̂𝑆𝐿 , 𝑇̂𝑅𝑈 , 𝑇̂𝐶𝑆}.

This approach allows you to consider relations as separate types of data and predict the

possibility of forming relational structures. The KB fact type 𝑇𝐹𝐶 is a supertype for the class

types 𝑇𝐶𝐿 and relations 𝑇𝑅𝐶𝐿 [28-30]:

∃𝑅𝑖𝑠𝑎(𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝐶𝐿), 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝐹𝐶)), ∃𝑅𝑖𝑠𝑎(𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑅𝐶𝐿), 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝐹𝐶)).

The models form a network of type 𝑇𝑁𝑀𝐷 , which is defined as a set that includes multisets

of the type of models 𝑇̂𝑀𝐷 and their relation 𝑇̂𝑅𝑀𝐷 , i.e. 𝑇𝑁𝑀𝐷 = {𝑇̂𝑀𝐷 , 𝑇̂𝑅𝑀𝐷}. Unlike ontology

classes, models do not form a clear hierarchy but form a dynamic network in which

connections and the models themselves can change, reflecting learning processes, changes

in the external world, or the process of solving a certain problem [28-30].

Each model can be in one of two states - active or passive. Accordingly, we divide the set

of model instances into subsets of active and passive models that do not intersect [28-30]:

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑇𝑀𝐷) = 𝑡̂𝑀𝐷
𝑎𝑐 ∪ 𝑡̂𝑀𝐷

𝑝𝑠 , 𝑡̂𝑀𝐷
𝑎𝑐 ∩ 𝑡̂𝑀𝐷

𝑝𝑠 = ∅,

where 𝑡̂𝑀𝐷
𝑎𝑐 , 𝑡̂𝑀𝐷

𝑝𝑠 are multisets of instances of active/passive models.

An active model is a model initialized with information from a certain context. Models

enter the active state at the request of other models or when certain events occur. Active

models are used to solve current problems of the system and to interpret knowledge in the

system. If the need for the model has disappeared (a result has been obtained, the goal has

been achieved), then the model leaves the active state. Model interaction 𝑇𝑅𝑀𝐷 is a data type

that represents the activation relationship used to decide whether to activate the model(s).

Let's consider the process and structure of interaction and activation of models in more

detail. The activator model acts as the initiator of establishing a connection between models.

The need to establish a connection does not always arise, but only when to solve the main

problem, it is necessary to solve auxiliary problems presented in other models. For example,

if the input data received by the activator from the context is incomplete it is necessary to

activate other models to define the data. Such a determination may consist of searching for

the necessary information in a database, the Internet, contacting a consultant, etc. [28-30].

Each type of 𝑇𝑅𝑀𝐷
𝑖 corresponds to a class of problems that must be solved by 𝑇𝑃𝑅

𝑗
 as a

result of interaction [28-30]. In turn, the class of problems 𝑇𝑃𝑅
𝑗 corresponds to a set of

models 𝑇̂𝑀𝐷
𝑗

 that can be applied to solve problems in this class. During the interaction of

models, the tasks of determining relevance, optimal selection among relevant models, and

initialization of the selected model are successively solved. The relevance function is a

mapping of the current context 𝑡𝐶𝑂𝑁 and the set of alternatives 𝑡̂𝑀𝐷 into the set {true, false},

i.e. 𝐹𝑟𝑒𝑙: 𝑡𝐶𝑂𝑁 , 𝑡̂𝑀𝐷 → (𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒). Determining the relevance of models allows you to select

only relevant models for the selection procedure: 𝑡̂𝑀𝐷
𝑟𝑒 ⊆ 𝑡̂𝑀𝐷 , i.e. models 𝑡𝑀𝐷

𝑟𝑒 for which

𝐹𝑟𝑒𝑙 (𝑡𝐶𝑂𝑁 , 𝑡𝑀𝐷
𝑟𝑒) = 𝑡𝑟𝑢𝑒. In the absence of relevant models, the modelling system returns a

message to the activator about the impossibility of solving the problem [28-30]. The

problem of optimal selection determines one 𝑡𝑀𝐷
𝑜𝑝

 from a set of relevant models, the

application of which maximizes the selection function 𝐹𝑐ℎ taking into account the selection

criteria 𝑡̂𝐶𝑅 and the context 𝑡𝐶𝑂𝑁 , i.e. 𝐹𝑐ℎ(𝑡𝑀𝐷
𝑜𝑝 , 𝑡̂𝐶𝑅 , 𝑡𝐶𝑂𝑁) → 𝑚𝑎𝑥 [28-30]. The initialization

function 𝐹𝑖𝑛 maps the current context 𝑡𝐶𝑂𝑁 into a set of attribute values of the selected

model – 𝑡𝑉𝑆𝐿 , where 𝐹𝑖𝑛: 𝑡𝐶𝑂𝑁 → 𝑡𝑉𝑆𝐿 . Summarizing, we define 𝑇𝑅𝑀𝐷 as a set [28-30]: 𝑇𝑅𝑀𝐷 =

{𝑇𝑃𝑅 , 𝑇̂𝑀𝐷 , 𝐹𝑟𝑒𝑙,𝐹𝑐ℎ, 𝐹𝑖𝑛}. The model type 𝑇𝑀𝐷 consists of the schema types 𝑇𝑆𝐶𝑀 and the

implementation 𝑇𝐼𝑀𝐷: 𝑇𝑀𝐷 = {𝑇𝑆𝐶𝑀 , 𝑇𝐼𝑀𝐷 }.

The model scheme describes its structure, and constituent elements, defines rules and

restrictions on the use of the model, as well as a list of possible operations and requests. A

schema is a component of a model that is visible to the outside world. It is used to interact

with the model. The model scheme consists of slots 𝑇̂𝑆𝐿𝑀 , relations between them 𝑇̂𝑅𝑆𝑀 , rules

𝑇̂𝑅𝑈𝑀 , constraints 𝑇̂𝐶𝑆𝑀 , and operations 𝑇̂𝑂𝑃𝑀 : 𝑇𝑆𝐶𝑀 = {𝑇̂𝑅𝑂 , 𝑇̂𝑅𝑅𝑂 , 𝑇̂𝑅𝑈𝑀 , 𝑇̂𝐶𝑆𝑀 , 𝑇̂𝑂𝑃𝑀}.

A model slot is an attribute – role. For each slot, the function 𝐹𝑅𝐺 is defined, which

specifies the set of classes 𝑇̂𝐶𝐿
𝑅𝐺 , the objects which are allowed to initialize the slot:

𝐹𝑅𝐺: 𝑇𝑆𝐿𝑀 → 𝑇̂𝐶𝐿
𝑅𝐺 . In addition, the rules and restrictions operating at the slot level are

defined for the model slot – 𝑇̂𝑅𝑈𝑆𝑀 , 𝑇̂𝐶𝑆𝑆𝑀 , operations on the 𝑇̂𝑂𝑃𝑆𝑀 slot values: 𝑇𝑆𝐿𝑀 =

{𝑇̂𝐶𝐿
𝑅𝐺 , 𝑇̂𝑅𝑈𝑆𝑀 , 𝑇̂𝐶𝑆𝑆𝑀 , 𝑇̂𝑂𝑃𝑆𝑀}. The slot relation 𝑇𝑅𝐸𝑆𝑀 is specified by the set of slots that it

connects 𝑇̂𝑆𝐿𝑀
𝑟𝑒𝑠𝑚 , by the set of ontology classes used for semantic interpretation of the

relation – 𝑇̂𝐶𝐿
𝑟𝑒𝑠𝑚 , by the set of models used to understand and carry out operations with the

relation – 𝑇̂𝑀𝐷
𝑟𝑒𝑠𝑚 [28-30]: 𝑇𝑅𝐸𝑆𝑀 = {𝑇̂𝑆𝐿𝑀

𝑟𝑒𝑠𝑚 , 𝑇̂𝐶𝐿
𝑟𝑒𝑠𝑚 , 𝑇̂𝑀𝐷

𝑟𝑒𝑠𝑚}. At the same time, for each instance

of the relation, the slots connected by it belong to the slots of the model: 𝑡̂𝑆𝐿𝑀
𝑟𝑒𝑠𝑚 ⊆ 𝑡̂𝑆𝐿𝑀 . The

relation of models corresponds to one of the types of relations defined in the On ontology

[28-30]: 𝑇𝑦𝑝𝑒𝐸𝑛(𝑇𝑅𝐸𝑆𝑀) = 𝐸𝑅𝐸𝑆𝑀 ∈ 𝐸̄.

The model describing the relationship is an element of the general set of models: 𝑡𝑀𝐷
𝑟𝑒𝑠𝑚 ∈

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑇𝑀𝐷). Let 𝑡𝐵𝐹𝐶
′ be a certain situation, state, or snapshot of the fact base. Let's

define the goal data type 𝑇𝐺𝐿 , each instance of which is a specification of a certain set of

states of the fact base, each of which corresponds to the achieved goal: 𝑡𝐺𝐿 = 𝑡̂𝐵𝐹𝐶
𝐺𝐿 . To

determine the goal, it is useful to set the goal function, which allows you to determine

whether in a certain state 𝑡𝐵𝐹𝐶
′ , the goal GL is achieved:

𝐹𝑔𝑙(𝑡𝐵𝐹𝐶
′) = {

𝑡𝑟𝑢𝑒|𝑡𝐵𝐹𝐶
′ ∈ 𝑡𝐺𝐿

𝑓𝑎𝑙𝑠𝑒|𝑡𝐵𝐹𝐶
′ ∉ 𝑡𝐺𝐿

One of the possible ways of assigning the objective function is its assignment in the form

of an ordered list of statements-requirements 𝑡̂𝐴𝑆𝑅 regarding objects of the information base

that can be checked: 𝐹𝑔𝑙(𝑡𝐵𝐹𝐶
′) = 𝑡̂𝐴𝑆𝑅(𝑡𝐵𝐹𝐶

′), where 𝑡𝐴𝑆𝑅(𝑡𝐵𝐹𝐶
′) is a requirement - assertion

regarding the values of properties of objects and their connections in the situation 𝑡𝐵𝐹𝐶
′ .

Each statement 𝑡𝐴𝑆𝑅 (𝑡𝐵𝐹𝐶
′) is a function defined on the set {true, false} [28-30]:

𝑅𝑎𝑛𝑔𝑒(𝑡𝐴𝑆𝑅(𝑡𝐵𝐹𝐶
′)) = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒},

where the function Range(f) specifies the value range of the function f. So,

𝐹𝑔𝑙(𝑡𝐵𝐹𝐶
′) = 𝑡𝑟𝑢𝑒 ⇔ ∀𝑡𝐴𝑆𝑅(𝑡𝐵𝐹𝐶

′) ∈ 𝑡̂𝐴𝑆𝑅(𝑡𝐵𝐹𝐶
′): 𝑡𝐴𝑆𝑅 (𝑡𝐵𝐹𝐶

′) = 𝑡𝑟𝑢𝑒.

Executed ontological models are designed to solve specific problems specified in the

form of a goal [28-30]. For the convenience of finding the necessary models, it is advisable

to organize information about models in the form of the OnGlOn ontology, with entities

and relations. In the ontology, we will define categories of models according to the classes

of problems they solve. For example, we will separately define classification models,

algorithmic models, object and service models, access control models, and situational

models. Information about objects that describe individual implementations of models is

used by the intelligent system (IS) modelling service. The model interaction broker uses the

target ontology to search for the model needed to solve the given task.

4. Experiments, results and discussions

4.1. Knowledge models verification tools for an intelligent system

4.1.1. Method and algorithm for obtaining a consensus decision in the process of

model verification

Let each expert (reviewer) evaluate the verified knowledge model using an integer

positive scale of the form S = {imin, ..j,.. imax}. Then each grade j corresponds to an integral

review (positive or negative), which we obtain using the expression rj= |(imax - imin)/2| -j. The

result of this expression translates the expert's assessment into an integral review (or

simply a review), which is represented by a Boolean variable with a value of 1 for negative

rj, and 0 otherwise. We represent the set of reviews by a weighted graph G(V, E) without

cycles, the set of vertices of which represents the set of reviews, and each edge eijE

corresponds to the operation of comparing reviews vi, vj. The weight of such an edge

(Boolean variable aij) gives the result of the comparison of reviews. Let's call it a review

comparison graph. Let's call the vertex of this graph workable if the corresponding review

is not erroneous, and unworkable otherwise. The algorithm for comparing reviews is

presented in [33].

4.1.2. Construction of knowledge models for verification of conceptual models of

decision support

Solving the problem of model verification is a repetitive business procedure in an

intelligent model-based system. For its implementation, it is important to follow uniform

approaches, recommendations and rules, which will ensure uniform requirements for the

set of models used. Such approaches reflect the technical policy of the organization in the

issue of model verification and are a component of the corporate standards of this

organization. The task of model verification is complex and difficult to formalize and is

therefore solved by expert evaluation. At the same time, the model evaluation system

should be flexible enough and provide the opportunity to use different evaluation methods.

The use of one or another method depends on the content and purpose of the model, and

available resources. To develop such a unified approach, it is necessary to solve some

problems, in particular:

 ensure the formalization of a set of knowledge models and, thus, create the

possibility of their automated execution;

 to provide the possibility of using different methods of evaluating models and for

this purpose create a taxonomy (ontology) of types of models, united by a common

task – verification of models through their evaluation;

 provide the manager managing the process of implementation and use of the models

with the means to control and manage the evaluation process;

 implement the possibility of reuse of models and knowledge provided by models,

avoid duplication of knowledge in models.

4.1.3. Hierarchy of verification methods and models

Evaluation models form a hierarchy, at the root of which is the evaluation model,

presented in the most general, abstract form - the general model. This model is used in the

modelling system to form a request to solve a problem and to present the most general

parameters of this request. Based on these parameters, the component of the modelling

system - the model interaction broker - chooses a method of solving the given task that is

adequate to the request, provided by one or another model.

The Md model consists of the ScMd circuit and the RlMd implementation:

𝑀𝑑 = (𝑆𝑐𝑀𝑑, 𝑅𝑙𝑀𝑑).

The scheme of the model is directly visible to the user and the designer of the model - a

specialist in the specified subject area. The designer can modify the scheme by creating

derivative models. The implementation of the model is created by a specialist programmer

and ensures the execution of the model. The general model acts only as a scheme, that is, it

has no implementation. Thus, each model is considered an integral part of a certain

hierarchical system of models that implement different methods of solving similar

problems, complementing or replacing each other depending on the specifics of a specific

problem. Let's consider the method of using the expert consensus model on the example of

the model hierarchy, which includes the general model, the voting decision-making model,

and the expert consensus model. We present the general Evaluation model as a set of the

following entities and relationships (Fig. 1):

 Entity EvaluatedObject. Defines the evaluated subject. In general, any subject can be

evaluated.

 Type(EvaluatedObject) = Thing, where Type() is a function that returns the ontology

type to which the entity argument corresponds, and Thing is the root element of the

ontology.

 Evaluator entity. Defines the entity that forms the assessment of the subject of

assessment.

 Evaluate relationship. Defines the evaluation operation itself and combines the

subject and the evaluation object (Evaluator and EvaluatedObject). An important

attribute of the Evaluate relation is the entity Value, the definition of which is the

result of the execution of the model.

As can be seen from the definition of the Evaluation model, it corresponds to a wide class

of tasks. At the same time, the problem of model evaluation is a partial case of the general

evaluation problem. For it, we will define additional restrictions on the elements of the

general model, which are transferred when accessing it during the activation process. So,

the subject of evaluation is the model, i.e. Type(EvaluatedObject) = Model. In addition, it is

assumed that the rating of the model is chosen from a discrete rating scale (true, false). So,

𝑅𝑎𝑛𝑔𝑒(𝑉𝑎𝑙𝑢𝑒) = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}, where Range() is a function that returns a range of values

for the Value attribute entity.

Evaluator EvaluatedObjectEvaluate

Value
Evaluation

Figure 1: Scheme of the general evaluation model

A sufficient condition for the activation of the general model is the determination of the

Evaluator and EvaluatedObject roles. If the evaluation request does not explicitly specify an

evaluator, it can be determined by the model interaction broker based on the available

information about the evaluation subject and evaluation requirements. A condition for the

successful execution of the model is the definition of the attribute entity Value. The model

of consensus assessment has two successive stages of implementation (Fig. 12).

ExpertBoard

Model

Evaluate

OrderedValueSet

Model review

Analysis of review results

AnalysisOperation

ExpertBoard

(changed)

Value

OrderedValueSet

Figure 2: Outline of the consensus assessment model

In the first stage, an initial review of the evaluated object provided by the Model entity is

performed. The prerequisite for activating the model and starting the first stage is the

determination of the evaluation object (model) and the expert commission. As a result of

the first stage, an ordered set of OrderedValueSet values is formed. The condition for the

completion of the first stage of model execution is the completion of the formation of its

results (rectangles with grey filling). The first phase of the model may take longer to

complete, as experts need time to analyse the model and create estimates. IS modelling

monitors the completion of individual stages and informs the manager about their status

and completion. The second stage is performed automatically, without the participation of

experts. The operation of analysing the results determines the group of experts who did not

make mistakes in the assessments and determines the decision made by the consensus of

the experts. As a result of the execution of the stage, a consensus decision of Value is formed

and the rating of the experts who participated in the evaluation is updated.

4.2. Analysis and research of knowledge presentation methods in tasks of controlling

access to information resources

Due to the constantly growing number of information systems, the problem of managing

user identification information and access rights to information resources for them arises.

This problem inevitably affects the information security of the enterprise and creates some

complications and risks in various spheres of activity [34].

The world's leading consulting companies recognize that the topic of managing access

rights to corporate information resources is fundamental in companies' information

security strategies and is most relevant in enterprises with a developed IT infrastructure

and a large number of employees, such as banks and financial organizations,

telecommunications companies, large holdings, oil and gas and energy companies. In the

absence of mechanisms for centralized automated management of employee access rights,

large companies may face many problematic factors, including a low level of information

protection, long-term coordination and provision of access rights to information resources,

and significant labour costs for changing employee access rights. The desired behaviour of

the automated module of the system, which is responsible for making automatic decisions

about granting or denying access rights to information objects to the user, can be described

using an object-oriented approach and UML notation, giving the example of a system state

diagram that describes important aspects of functioning system and possible sequences of

states and transitions, which collectively characterize the dynamic behaviour of the system

module during its life cycle (Fig. 3) [34].

entry/ Identify the user's request
do/ Check user authority

Checking access rights

entry/ Notify the user
do/ Send request to admin for consideration
exit/ Get a response from the admin

Expectation

entry/ Notify the user
do/ Allow user access
exit/ View user rights and roles again

Granting access

entry/ Notify the user
do/ Reserve user access
exit/ View user rights and roles again

Denied access

The decision has been made
[The result is positive]

The decision has been made
[The result is positive]

The administrator's answer is considered
[The result is positive]

The administrator's answer is considered
[The result is negative]

No decision has been made
[Insufficient data]

Consider the following request from the user
[Request received]

Figure 3: Status diagram of the access rights management module

From the initial formal state, the system switches to the state of checking access rights.

This state involves the identification of the received user request, and its consideration. In

this state, the access rights management system checks the user's authority and makes

certain decisions based on this check. This state is characterized by reflexivity, that is, it can

pass into itself. This happens when the next request is received from some user and

therefore needs to be considered and checked. The verification decision can be made

independently by the system or with the participation of the administrator. If the decision

is not made independently, it means that the knowledge base of the system has little or not

enough data about decision-making, that is, its informational component is incomplete in

some aspects. As a result, the system goes into a waiting state, notifies the user about this

and sends a request to the administrator so that he can make a decision. The main feature

of this state is it’s a priori indefinite duration. This does not mean that the system is stuck

on processing one request. In parallel, it processes other requests, that is, there are as many

established sessions with users to process their requests as necessary (a kind of multi-

session). To exit this state (in the context of some session), the system must receive and

consider a response from the administrator [34].

If the administrator, by his decision, allows the user to gain access, the system goes into

the state of granting access, notifies the user about this and allows unhindered use of the

granted access rights [34]. If the administrator, by his decision, has forbidden the user to

gain access, the system goes into the state of access denial, again notifies the user about this

and does not allow the use of certain information resources requested by the user. However,

the access rights management system can independently decide whether to grant or deny

access. These actions are similar to those described above. The only difference is that the

waiting state is bypassed and the administrator does not participate in the decision. The

system can make a positive decision and grant access, or a negative decision and deny

access. This model (diagram) does not take into account (does not show) the fact that access

may not be full, but limited, that is, the user may be allowed to perform only some

operations on information objects (for example, only viewing and reading operations). This

fact significantly improves access control methods based on RBAC roles. The considered

behaviour of the system leads to the implementation of the system in the form of a

demonstration prototype of the expert system, based on which it will be possible to decide

the suitability of the expert system for solving the tasks set before it. In this situation, the

expert can be an administrator who is well aware of the process of granting or revoking

access rights to the company's information resources. That is, this is a highly qualified

specialist in the problem area who can determine the knowledge characterizing the

problem area, as well as ensure the completeness and correctness of the knowledge entered

into the system [34]. The developed implementation of the process of expert

communication with the expert system is as follows [34]. The expert (here - the

administrator) describes the problem area in the form of a set of facts and rules. Facts define

the objects (files, users, roles, etc.), their characteristics and values that exist in the domain

of expertise. The rules define methods of data manipulation that are specific to the problem

area. The expert, using the knowledge acquisition component, fills the system with

knowledge that allows the expert system in decision mode to independently (without an

expert) solve problems in the problem area, as well as to self-learn (in this context, it means

to derive new knowledge according to certain rules, using already existing in the knowledge

base) and thus go on the path to a certain automation, which will eliminate the routine

participation of the administrator in interaction with users when granting or denying access

rights to the organization's network resources.

Since it is about the creation of a method of automating the work of an administrator (an

expert in his field) regarding the management of access rights, the question of the

application of expert systems in their classical sense is appropriate. That is, in this sense, an

expert system is a computer system that contains the knowledge of specialists from a

certain problem area and is capable of making independent expert (in this case,

administrative) decisions within this area. The structural diagram of the intelligent access

rights management information system is shown in Fig. 4. The knowledge base is the central

part of the expert system. In our case, the knowledge base will be stored separately from

the expert system (on disk or other media) in XML format. Saving and describing the

knowledge base in XML format is relevant and perhaps the best option among all others

today. Still, the preservation and description of the knowledge base in Prolog today is far

from the optimal option compared to the past decades [34]. A possible disadvantage of the

system can be considered the fact that the initial significant knowledge is acquired by the

system implicitly by modifying the file with the knowledge base by an expert or engineer of

knowledge through a third-party XML editor of the knowledge base. To present knowledge

in the knowledge base, a production model is selected, an element of which is a production

rule. Since the task completion time is not a critical indicator of the development of a given

system and the generic hierarchy of concepts, although difficult, can be presented, and the

modularity and ease of modification are the best fit for the delivered system, the production

model is a fairly good option to choose. As an alternative, you can choose a frame model. For

the inference algorithm to be able to operate with facts, and values of facts, take into account

their relationship in a certain rule and draw conclusions corresponding to this set of facts,

the KB of the expert system is presented in the form of certain structures [34]: list of targets

<Targets>, an array of variables (objects) <Objects>, the array of questions <Questions>,

and a set of rules <Rules>.

Interface
subsystem

(dialog
component)

Logical deduction
machine

Working list
of rules

Dispatcher

Solver
(interpreter)

Knowledge
base

Rules

General
facts

System core

Working
memory

(Database)

Explanation
subsystem

Knowledge acquisition
subsystem

The subject for which
the decision is made

Expert system

End user

Knowledge
engineer

Requests
Explanation,

solution

Knowledge,
tests

Expert
(experienced

administrator)

Question Knowledge

Users

Figure 4: Structural diagram of IR access rights management

The list of goals is those goals that are set before the system for their solution [34]. For

example, in KB, the goal can be written as follows:
<Targets>
 <Target name="Ability_to_grant_access_rights" />
</Targets>

Due to the ease of making changes to the knowledge base, adding new goals is not

difficult [34]. The main thing is to ensure appropriate processing and sequence of actions in

the system to achieve the entered goal. The main variables (objects) that appear in the

knowledge base include employees, their positions, which can be associated with roles in

the production unit, information resources (important files and directories that need

protection from unwanted intervention), operations on resources, as well as duplicate

goals, which structurally store possible alternative responses when the given goals occur.

All these variables are separated from each other. For example, an employee can be entered

in the KB using the following construction:
<Object name="Workers"> <Value> Brenych_Andrii </Value> </Object>

Employee last names and all possible values of other variables are written in alphabetical

order, which identifies the value entries in the KB. For example, the set of positions in the

knowledge base is described as follows [34]:
<Object name="Positions (roles)">
 <Value> Designer </Value>
 <Value> Engineer </Value>
 <Value> Project_Manager </Value>
</Object>

In all systems based on expert technologies, there is a dependency between the input

data stream and the data in the KB [34]. During consultation with the system, input data is

compared with data in the knowledge base. The result of the comparison is a negative or

positive answer. In a rule-based system, an affirmative response is the result of one of the

production rules. These production rules are determined by the input data. So, the main

variables are divided into input (or explicit, which is set by the system user) and hidden (or

implicit, which are initialized by the system based on input variables). Input variables

include employee selection, information resources, and resource operations. And to the

hidden - the choice of position (role). It is obvious that the person who will use the created

system, or the system itself, when making independent decisions in the future, does not

need to know the position of the employee. The system independently determines his

position (role) based on the established production rules in KB. The question array

<Questions> stores questions for the system user, which are related to the purpose of

obtaining the necessary input knowledge from the user. These questions are: "Select an

employee", "Select an object to access", "Select possible operations on the object" and a special

question designed to select a target. The products are stored in the <Rules> array. It is

determined in advance that the number of conditions in the rule is not limited. Let there be

N rules of a similar structure. Each i-th rule in the knowledge base has the following

structure [34]:
<Rule id="i"> <Condition name="Variable ID (name)" value1="Value of variable"/>
 [<Condition name=" Variable ID (name)" value2=" Value of variable " /> , …]
 <Consequence name=" Variable ID (name)" value3=" Value of variable " />
 <Reason text=" comment (explanation) to the rule " />

Here, Rule id is the number of the rule, Condition name is the facts of the i-th rule, value1,

value2 is the values of the facts, square brackets mean optionality (since the rule can contain

from one to m facts), Consequence name is the name of the i-th output rules, value3 - the

content or value of the output, Reason text - an explanation that indicates the existing rule.

Now we will show how the system automatically recognizes the employee's position. Let's

take for example some rule, which is recorded in the KB as follows [34]:
<Rule id="1">
 <Condition name="Selection_employee" value="Brenych_Andrii" />
 <Consequence name="Select_position" value="Programmer" />
 <Reason text="the first explanation" />
</Rule>

This rule uniquely identifies an employee's position (role) based on his or her last name

and first name. That is, if the input value when selecting an employee is Andriy Brenych,

then this rule will work and as a result, a fact will be obtained that certifies that his position

is a programmer. Since the user is only asking about one person (i.e. himself), there is no

need to worry about the position not being explicitly tied to an employee. Working memory

will store copies of facts that are related to each other. This is possible by creating a separate

session for each user request. We will demonstrate how the KB uniquely identifies the

denial of access to a file. Let us take as a basis the following rule [34]:
<Rule id="13">
 <Condition name="Select_position" value="Designer" />
 <Condition name="Select_object" value="ClassDiagram.uml" />
 <Consequence name="Ability_to_grant_access_rights" value="No, it should_not_be given" />
 <Reason text="explanation thirteen - the designer has nothing to do with UML diagrams" />
</Rule>

Suppose that the IS has determined the position of the employee and received knowledge

from the user about the consideration of the ClassDiagram.uml object. Then, regardless of

the possible operation on the file received from the user (without even resorting to

considering the operation), the IS uniquely identifies the prohibition to obtain the requested

rights, since the designer has nothing to do with the diagrams. This is how unambiguous

permission to access a file and perform the necessary operations on it is implemented. The

developed rules also provide the possibility of access control distributed by operations. Let

us show this using the example of the following rule [34]:
<Rule id="22">
 <Condition name="Select_position" value="Designer" />
 <Condition name="Select_object" value="Readme.txt" />
 <Condition name="Select_operation" value="reading (viewing)" />
<Consequence name="Ability_to_grant_access_rights" value="Yes, it can_be provided" />
<Reason text="explanation 22 temporary file with instructions for each"/>
</Rule>

Thus, the developed logical structure of the knowledge base is quite flexible and easily

amenable to modifications. As for the logical inference machine, it uses a deductive

algorithm with a direct chain of reasoning (it corresponds to a data-to-goal strategy or a

data management strategy) with the option of searching for a solution broadly or deeply.

The logical inference machine (rule interpreter) in the developed expert system performs

two functions [34]. First, review the rules from the knowledge base. Secondly, the

application of the rules. In the created IS, the interpreter of production rules works

cyclically. In each cycle, it reviews all the rules to find those conditions that match the known

and current facts. Once selected, the rule is triggered, its output is stored in working

memory, and then the cycle is repeated from the beginning [34]. During each cycle, many

rules can be activated and placed in the working rule list. In addition, in the working list of

rules, the results of the activation of rules from previous cycles remain, if there is no

deactivation of these rules because their left parts are no longer executed [34]. In this way,

during the execution of the program, the number of activated rules in the working list of

rules changes. Only one rule can work in one cycle. If several rules are successfully matched

with facts, then such a situation is called a conflict. The interpreter performs conflict

resolution by choosing a single rule based on a certain criterion, depending on the choice of

conflict resolution strategy (wide or deep). A significant advantage of the system is that it

explains all its administrative decisions thanks to the built-in explanation subsystem. This

is how events are logged [34]. The problem solved mathematically with the help of the

developed system can be described through sets of relevant entities [34]: Users – multiple

users u, Roles – multiple roles r, and Permissions– multiple sets of access rights p. Then the

user-role relation (UR relation) is mathematically represented as follows [34]:

𝑈𝑅 ⊆ 𝑈𝑠𝑒𝑟𝑠 × 𝑅𝑜𝑙𝑒𝑠. (1)

The formal presentation of the role-legal relation (RP relation) is as follows:

𝑅𝑃 ⊆ 𝑅𝑜𝑙𝑒𝑠 × 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (2)

The access control relation (AC relation) can be presented as a composition of relations

(1) and (2) [34]:

𝐴𝐶 = 𝑈𝑅 ∘ 𝑅𝑃, (3)

In other words, AC is defined as the set of corresponding pairs:

AC = {(u, p)  Users × Permissions |  r  Roles, (u, r)  UR  (r, p)  RP}

In addition, you must specify access rights sets for specific files (F) and directories (D).

This maximizes the scalability of the system and brings a certain novelty effect to the

modern RBAC model. The set of files and directories (F  D) should be considered as a set

of constituent elements of some workspace, which requires "vigilant", specifically specified

supervision, and not as a set of all files and directories of the file system since this would be

a significant redundancy from the administrator's point of view or access rights

management systems. Therefore, it is worth correcting (4) and presenting it as follows:

𝐴𝐶 = 𝑈𝑅 ∘ 𝑅𝑃 ∘ (𝐹  𝐷). (4)

From the point of view of the system, the self-learning process in (5) can be depicted as

a reverse arrow, the essence of which is that the system will eventually be able to

independently derive new knowledge and make adequate decisions based on existing rules

and knowledge, thereby replenishing its knowledge base with new one's knowledge and

carrying out effective control and management of access to files and their content

depending on user requests and their real access rights. So [34]:

(5)

The developed IS of access rights management contains several subsystems that ensure

the proper functioning of the system. Such subsystems include access control,

administration and knowledge engineering subsystems. It is convenient to display

subsystem data in the form of an object (package) diagram. This diagram is shown in Fig. 5

[34].

Access rights
management

system based on
the RBAC model

Administration
subsystem

Access rights
control subsystem

Subsystem of
knowledge
engineering

1 2 3

Figure 5: Object diagram of the developed access rights management system

A significant difference of IS from all others is that it can self-learn and over time can

become automated (in the sense that it will be deprived of the routine participation of the

administrator in the processes of its functioning, related to the decision-making on granting

or denying the rights of access of employees to informational corporate resources) [34]. The

implementation of this access rights management system will allow for solving several

problems, such as unauthorized access to corporate resources, as well as significant labour

costs for granting and changing employees' temporary access rights to information objects.

AC = (UR RP (F D)) 

4.3. Models and methods of presenting knowledge in tasks of automated testing of

software products

One of the most important problems in the software industry is the high level of

complexity of software systems and the related problems of complexity and high cost of

administration, development and modification, a significant level of defects in such systems

[35-36]. The National Institute of Standards and Technology (NIST) estimates that the

annual cost of software defects to the US economy is $59.6 billion [37]. Product testing using

a defined set of usage scenarios is traditionally used to detect defects [38]. Today, the cost

of testing occupies a significant part of the total cost of product production. At the same

time, the complexity of the software makes its exhaustive testing impossible [39]. To

increase the efficiency of testing and reduce costs, automated testing is used [40].

Performing the task of automated testing involves performing various operations related to

the preparation of the test environment, obtaining and installing software products, and

configuring the operating system and testing tools. This task is usually performed by an

automated testing expert and is a complex task because it requires careful consideration of

a large number of interdependent factors. An error that occurs due to improper preparation

of the test environment is expensive because then the test results have to be cancelled and

the time (sometimes several hours) spent on such erroneous testing is lost. At the same

time, time constraints are a significant requirement for automated testing itself, as

developers and employees of the quality control department need to receive test results as

soon as possible. In many firms that develop software products, the practice of nightly

product layouts is adopted. At the same time, the code changes made by the developers

during the day are integrated into the new version of the product at the end of the working

day. This product is tested with a minimum set of tests to detect violations of basic

functionality caused by new code. At the beginning of a new day, developers receive a list of

defects that need to be fixed. As a rule, automated test sets are used to conduct such night

testing. The testing system requires high reliability, the maximum level of automation, and

- if possible - fully automatic execution. On the other hand, the automated testing system

works in conditions of constant changes both in the tested product itself and in the testing

environment. Testing specialists have to constantly adapt the testing code, and reconfigure

the testing system under strict time constraints [35].

Organizing and conducting automated testing requires taking into account a large

number of interdependent details and requirements [35]. At the same time, non-fulfilment

of even one requirement, or the appearance of even one failure during testing, leads to a

stop and rejection of test results. This places increased demands on the automation

engineer. The constant change of the tested product, the change of its interface, and the

appearance of new features and capabilities require constant changes and retesting of the

test code itself to achieve compliance with the tested product. At the same time, there are

strict time frames for completing these tasks.

To solve the above-mentioned problems for building the test code itself, such

architectural solutions as using a test library, building tests based on keywords, a tabular

approach, or data-driven tests [41], and tests based on models [42] are proposed. At the

same time, existing architectural solutions do not allow automating the task of setting up

and preparing the testing environment and conducting the testing itself, which is complex

and performed manually [35]. The specified features of automated testing of software

systems implement intelligent, knowledge-oriented methods for building a testing system

promising [43-48]. At the same time, SA testing entities and dependencies provided in the

relevant ontology are taken into account. The central place in such systems is occupied by

algorithmic models because the testing process itself takes place as a sequence of

operations given by a certain algorithm [49-54]. We will consider ways of presenting and

using algorithmic models using the example of an intelligent system for automated testing

of software products [35].

4.3.1. The architecture of the automated testing system

The second part of this work presents the architecture and principles of operation of an

intelligent system that uses executable conceptual models [35]. Support for algorithmic

models adds new components to the proposed modelling system (Fig. 6). The central

element of the modelling system is the ontology of the subject area, which provides a

semantic interpretation of all the facts of the information base [55-72]. Models are also built

based on this ontology.

Code access

services

Email

service

Network

services

Ontology

Ontology

semanticall

y interprets

the facts in

the fact

baseInformation

base

Models

receive the

information

necessary for

execution

from the fact

base Knowledge base

OS services

СхемиOther models
Service

models

Testing model

Models repository

Other

services

Testing environment

Displays test logic

and related

parameters

Figure 6: Architecture of an intelligent automated testing system

The information base is constantly updated with new facts reflecting the state of the

subject area [35]. Such facts are information about the product under test and the state and

configuration of the simulation environment. An essential fact is the protocol of the current

testing, which displays the status and results of the execution of all intermediate test results.

External services are an important element of the system. The purpose of the system is

achieved by generating a sequence of commands by the testing system and their execution

by external services. Among such important external services, we can mention operating

system command services, file download services (FTP, HTTP), source code retrieval

services (VSS), etc. Access to external services is provided through models of these services.

Service models encapsulate entities that describe service configuration parameters,

commands executed by the service, service states, dependencies between them, restrictions

and operating conditions [35].

4.3.2. Formal specification of an algorithmic model

The central component of the intelligent automated testing system is the testing model,

which belongs to the class of algorithmic models. The task of an algorithmic model is to

represent a sequence of operations so that the execution of this model is the execution of

this sequence of operations. Such a sequence of operations describes the algorithm for

solving a certain problem, which explains the name of the model. Formally, an algorithmic

model, like any other model, consists of a scheme and an implementation [35]:

𝐴𝑙𝑔𝑀𝑑 = (𝑆𝑐𝐴𝑙𝑔𝑀𝑑, 𝑅𝑒𝐴𝑙𝑔𝑀𝑑).

The model diagram displays the parts of the model and the dependencies between them.

The model implementation provides model execution. If conditions, requirements, or the

test environment change, the SA changes the model schema, leaving its implementation

unchanged. This approach provides flexibility and the ability to quickly adapt the model to

changes. The model schema contains metadata sections, model bodies, and some other,

auxiliary sections that allow you to initialize the model, verify it, define the necessary

prerequisites for its execution, etc. The body of the algorithmic model is represented by an

unordered set of operation models and an execution logic model: 𝐵𝑜𝑑𝐴𝑙𝑔𝑀𝑑 =

(𝑀(𝑂𝑝𝑀𝑑), 𝐹𝑙𝑀𝑑). The FlMd execution logic model, depending on the current state of the

testing process and test environment, activates operation models, changes values in the

information base, or deactivates the algorithmic model itself. This model is a set of

situational models, each of which corresponds to a specific identified situation, and consists

of signature and action specifications [35]:

𝐹𝑙𝑀𝑑 = 𝑀(𝑆𝑖𝑡𝑀𝑑), 𝑆𝑖𝑡𝑀𝑑 = (𝑆𝑔𝑆𝑖𝑡, 𝐴𝑐𝑆𝑖𝑡).

If the signature of the situation given by the set of conditions is true, then the actions

specified in the model are performed. The execution of each action corresponds to one step

of the algorithm [35]. Operation models are activated during an action. We believe that each

operation after completion analyses the success of its execution, updates the testing status

and enters appropriate messages in the test protocol. After the execution of the operation,

the execution logic model is executed again. Execution of the OpMd operation model

involves sequential execution of tasks: initialization and verification of prerequisites;

operating (applying to a model or service); analysis of the results and update of the test

protocol: 𝑂𝑝𝑀𝑑 = (𝐼𝑛𝑂𝑝𝑀𝑑, 𝐸𝑥𝑂𝑝𝑀𝑑, 𝐴𝑛𝑂𝑝𝑀𝑑). The initialization and validation of

InOpMd prerequisites are specified in the model initialization section, and the execution of

the ExOpMd operation and the analysis of the AnOpMd results are specified in the body of

the operation model. During initialization, all the facts necessary for the operation are

determined. They analyse the sufficiency of the facts and the necessary prerequisites. For

example, in the case of downloading a file from a remote FTP server, check the availability

of this server in the network, and the availability of all the data necessary to establish a

connection. At the same time, the FTP service model can be used. If the prerequisites of the

operation are not fulfilled, a message about the detected error is entered in the test protocol

and the test is stopped or postponed, depending on the detected error. The execution of the

operation consists of contacting an external service through the model of this service, or in

the execution of another model that processes data in the information base, for example,

classifies the state of the testing process. As a result of the operation, there is a change in

the testing environment [35]. At the stage of analysing the results of the operation, changes

in the testing environment [35] are analysed, for example, the presence of downloaded files,

installed programs, and success (or failure) in the operation. To obtain the data necessary

for analysis, it is often necessary to contact external services again with requests to perform

operations and display their results in the test protocol of the information base.

4.3.3. Essences and models of the automated testing system

Let's consider in more detail the models and entities of the ontology used in the testing

system, their interdependence and interaction. Basic information about testing is stored in

the AutomatedTesting entity instance as attributes or references to other entities. Such

information includes a reference to the entity, (server, role) of the test server, and sources

of installers [35]. There is also a link to the general algorithmic model of automated testing.

The general algorithmic model of testing is presented as a set of problems that must be

solved in the process of automated testing. It contains links to general models of relevant

operations that reflect the process of solving each problem. Such operations, for example,

will be GetInstaller, InstallProduct, Test, and UninstallProduct. Each general model, in

addition to the specification of entities and operations, contains the definition of methods

for checking the success of the task [35]. For example, after the GetInstaller task ends, the

model provides a check for the presence of the installer file in the specified directory and, if

it is, determines the result of the model execution as successful. Otherwise, the model

execution result is defined as unsuccessful with an additional specification of the reasons

for the error. In addition to general operation models, the general algorithmic model

contains references to the next operation determination model and error handling models.

The model for determining the next operation, depending on the result of the previous

operation, determines the next or one of the error handling models. At the same time, the

classification of errors adopted in the system can be used. Let's take a closer look at the

GetInstaller operation model. The purpose of this pattern is to retrieve the installer in the

specified directory. The execution of the model consists of checking the availability and

copying the installer file from the remote server to the local test server using a certain file

copying service. The general model of such an operation (Fig. 7) contains entities such as

RemotePlacement, LocalPlacement, and CopyService.

Local

Accommodation

Remote

Placement
Copy

Copy service

Get Installer - Common Model

Copy task
Success

conditions

Figure 7: The general model of the GetInstaller task

The use of such a general model, which presents the task in the most general form, gives

the system the necessary flexibility. With the use of such a general model, the task can be

solved in various ways, simply by defining another specification of the general model. For

example, this general model corresponds to the operation of downloading the installer

using FTP, and http protocols, from VSS or another local network computer. To change the

method of solving the given problem, it is enough to simply replace the detailed model [35].

Let's consider as a specification of the general GetInstaller model the model of getting a

file using the FTP protocol - the GetInstallerThroughFtp model (Fig. 8). The RemoteHosting

entity in this model corresponds to the FTPServer entity, and the LocalHosting entity to

TestServer. The attributes of the ServerFtp entity are the network address (URL) of the

server and authentication parameters. Similarly, for the test server, its URL is defined.

Working directories are defined for both entities. The CopyService entity corresponds to the

FtpService entity. Restrictions are associated with this entity that reflects the specifics of

using this service for copying files [35]. In the GetInstallerByFtp model, additional

prerequisites for the operation are defined (for example, network availability of the FTP

server and the test server) and additional procedures for checking the success of the

operation. So, in addition to checking the presence of the file on the test server, the hash

sum of the received file is additionally checked.

Test server
Remote FTP

Server

Copy

FTP - service

Get the Installer via FTP

Copy task
Success

conditions

FTP Server URL

Working directory
of the FTP server

URL of the test
server

Working directory
of the test server

File received

Correct CS
Calling

parameters

A pointer to a
specific FTP

service

Prerequisites

Server availability

FTP - Service
accepts requests

Figure 8: Scheme of the model GetInstallerViaFTP

The FtpService entity contains a reference to the FTP service model – FtpModel. This

model reflects the current state of a specific FTP service, and the commands it accepts, and

contains a model of the functioning of this service, which is used to organize interaction and

make decisions [35]. The model of the functioning of the FTP service will be defined by a

finite state machine with the definition of states and transitions between them. Based on

the knowledge reflected in this model, the user of the service can decide to wait for the

release of the service if this service is currently downloading, decide to establish a

connection if it is not established, or, conversely, use an already established connection.

4.3.4. Presentation of the algorithmic model in the XML language

Algorithmic models, models of operations and services are created using the "Model

Editor" tool and saved in XML format. Let's consider examples of presentation of the

algorithmic model of automated testing and the model of the operation of obtaining the

installer via the FTP service. For the sake of simplicity and clarity, we will skip sections [35]

that are not important for illustrating the working principles of the model.
<Model>
 <ModelMetadata>
 <GeneralInfo>
 <ModelId> id </ModelId>
 <ModelType> AlgorithmicModel </ModelType>
 <ModelName>OvernightAutomatedTestingModel</ModelName>
 <OntologyURI>
www.acme.org/AutomatedTestingOntology</OntologyURI>
 <ModelRepositoryURI>www.acme.org/ModelRepository</ModelRepositoryURI>
 </GeneralInfo>
 <ActivationInfo>
 <Condition>
 <ConditionBd> Was not active during</ConditionBd>
 <ConditionParameter>15 min<ConditionParameter>
 </Condition>
 <StartState>InstallerChecking</StartState>
 </ActivationInfo>
 </ModelMetadata>
 <ModelBody>
 <Operations>
 <Operation>
 <OperationName>CheckInstallerAvailabilty<OperationName>
 <OperationModel>ModelId1<OperationModel>
 </Operation>
 <Operation>
 <OperationName>GetInstaller<OperationName>
 <OperationModel>ModelI2d<OperationModel>
 </Operation>
 <Operation>
 <OperationName>Install<OperationName>
 <OperationModel>ModelId3<OperationModel>
 </Operation>
 <Operation>
 <OperationName>Test<OperationName>
 <OperationModel>ModelId4<OperationModel>
 </Operation>
 <Operation>
 <OperationName>UnInstall<OperationName>
 <OperationModel>ModelId5<OperationModel>
 </Operation>
 <Operation>
 <OperationName>FinishAndClean<OperationName>

 <OperationModel>ModelId5<OperationModel>
 </Operation>
 <Operation>
 <OperationName>InformByEmail<OperationName>
 <OperationModel>ModelId6<OperationModel>
 </Operation>
 </Operations>
 <ProcessFlow>
 <Signature>
 <Condition>
 <IB_Entity Type="Test_Status">ReadyForTesting<IB_Entity>
 </Condition>
 <Execute>
<SetIB_InstanceValue Type="Test_Status">
CheckingInstallerAvailability<SetIB_InstanceValue>
 <ExecuteModel>CheckInstallerAvailabilty<ExecuteModel>
 </Execute>
 </Signature>
 </ProcessFlow>
 </ModelBody></Model>

A model consists of metadata sections and a model body. The metadata section contains

information about the ontology, model identifier and name, and model repository address.

The model activation information is used by the simulation service – the Model Launch

Manager – and determines that the model is automatically activated 15 minutes after the

previous activation ends [35]. In the body of the model, the operations performed in the

algorithmic model are specified and the execution logic model is defined. At the beginning,

they check the availability of the installer for download. If the installer is not ready, the

model is deactivated. Otherwise, the testing process is started, in particular the next

operation - obtaining the installer. Before deactivating the model, the test environment

cleaning operation is performed. The model of receiving the installer via the FTP service

looks like this [35]:
<Model>
 <ModelMetadata>
 <GeneralInfo>
 <ModelId> id </ModelId>
 <ModelType> OperationModel </ModelType>
 <ModelName>GetInstallerFromFtp</ModelName>
 <OntologyURI>
www.acme.org/AutomatedTestingOntology</OntologyURI>
 <ModelRepositoryURI>www.acme.org/ModelRepository</ModelRepositoryURI>
 <GenericModel>GetInstaller</GenericModel>
 </GeneralInfo>
 <ActivationInfo>
 <Condition>
 <ConditionBd> Server accessible</ConditionBd>
 <ConditionParameter Name= "ServerAddress">Server Ip address<ConditionParameter>
 <ConditionParameter Reference= "ServerAccessibilityCheckModel">Model Id<ConditionParameter>
 </Condition>
 <Condition>
 <ConditionBd> Service available</ConditionBd>
 <ConditionParameter Name= "Service name">FtpService<ConditionParameter>
 <ConditionParameter Reference= "Service model">FtpServiceModel
Id<ConditionParameter>
 </Condition>
 </ActivationInfo>
 </ModelMetadata>
 <ModelBody>
 <Entities>
 <Entity>

 <EntityName>RemoteFtpServer</EntityName>
 <EntityType>FtpServer</EntityType>
 <GenericEntityRef>RemoteLocation</GenericEntityRef>
 <DefineParametersFromEntity Name="InstallSource">
 …… </DefineParametersFromEntity>
 </Entity>
 <Entity>
 <EntityName>LocalTestServer</EntityName>
 <EntityType>TestServer</EntityType>
 <GenericEntityRef>LocalLocation</GenericEntityRef>
 </Entity>
 </Entities>
 <Relations>
 <RelationName>GetFromFtp</RelationName>
 <RelationType>GenericRelation</RelationType>
 <GenericRelationRef>CopyFile</GenericRelationRef>
 <OperationRef>CopyFtpOperation</OperationRef>
 </Relations>
 <Operations>
 <Operation Name ="CopyFtpOperation">
 <ServiceRef>FtpServiceModelId</ServiceRef>
 <Command>GetFile</Command>
 </Operation>
 <Operations>
 <SuccessConditions>
 <Condition>
 <ConditionType>FileExists</Condition>
 <DefineParametersFromEntity Name="LocalTestServer">
 <IpAddr>ipaddr<IpAddr>
 <AccessCredentials>Credentials</AccessCredentials>
 <FilePath>FilePath<FilePath>
 </DefineParametersFromEntity>
 </Condition>
 </SuccessConditions>
 <IB_Update>…</IB_Update>
 </ModelBody>
</Model>

The prerequisites for its activation are specified in the metadata of the model - checking

the network availability of the server and the readiness of the FTP service. In the body of

the model, separate sections define entities, relations, operations, success conditions of

execution and determination of the next operation. Some attributes of entities contain

references to attributes of other entities. Each entity and relationship contain a reference to

the corresponding elements of the general model. The execution of the operation model

consists of the execution of the operation specified in the operations section. After the

operation, the success conditions defined in the relevant section of the model are checked.

The operation is considered successful if all success conditions are met. In the last section

of the body, the model updates the testing protocol in the information base [35].

5. Conclusions

Algorithmic models are created in the "Model Editor" software tool [35]. Ready models

in XML format are stored in the model repository of the modelling system. In an automated

testing system, the launch order of the models is monitored by the Launch Manager, which

periodically checks the launch conditions and, if the conditions are met, activates the model.

The activated algorithmic model is interpreted by a component of the modelling system –

the Model Interpreter. The implementation of such an interpreter is a fairly simple task, it

performs parsing of the XML file of the model, checks the truth of the situation signatures

and initializes the activation of the corresponding operation models. The interpreter of the

operation model checks the prerequisites for the execution of the operation and, if they are

met, initiates the execution of the operation. After an operation is executed, the execution

logic model checks the status of the test process and, depending on it determines and

activates the next operation. From the description of the testing system, it is clear that the

overall goal of the system is achieved through the interaction of many models. So, the

algorithmic model uses the situational model to define the execution logic. The situation

model, in turn, activates the operation models. Each model in the process of execution

displays the results of the execution in the information base in such a way that the status of

the information base reflects the status of the testing process. Using a situational model to

specify test logic allows you to use the general state of the subject area, not just the objects

represented in the model, to test conditions. Compared to alternatives, for example, finite-

automatic representation of execution logic, this method provides flexibility and ease of

expanding the list of situations.

Using the described approach, an automated system for testing software products was

created, tested and successfully functions [35]. The VBScript scripting language was chosen

for the IS implementation. As a software tool for automated testing, HP QuickTest

Professional is used, which also uses VBScript as a programming language. Automated

testing IS periodically checking for a new installer file on the FTP site of the product

developer. If it is available, the installer file is downloaded and unzipped to the specified

test directory. After that, the installation process starts in automatic mode, which does not

require user input. After its completion, the IS checks the success of the installation and

configures and restarts some system services. If the product is successfully installed, the

automated testing tool is launched to run the selected tests. The results of the testing are

recorded in the protocol, which is forwarded by e-mail to the developer's representatives

after the testing is completed. Employees of the quality control department are also

informed by e-mail in the event of a failure of the testing process. After testing is completed,

the tested software product is uninstalled, the test directory is cleaned, and the

environment is prepared for new testing. The developed IS made it possible to

systematically retest several software products of considerable size (installer file size 500-

700 Mbytes) in one night. Operation of the testing system proved its high reliability,

flexibility, ease of modification and development. The use of algorithmic models for

automating the testing of software products allows you to create IS testing that can quickly

adapt to changes in the functionality of the tested product, as well as take into account and

adequately react to changes in the hardware and software test environment.

References

[1] M. Alexandrou, Fundamentals Unified Process (RUP) Methodology, Risk Management,

2009, pp. 1-3.

[2] UML specification. URL: http://www.omg.org/spec/UML.

[3] O. Medelyan, C. Legg, Integrating Cyc and Wikipedia: Folksonomy meets rigorously

defined common-sense, WIKIAI Wikipedia and AI Workshop 8 (2008) 13-18.

[4] Y. Burov, Knowledge Based Situation Awareness Process Based on Ontologies, CEUR

Workshop Proceedings 2870 (2021) 413-423.

[5] O. Oborska, V. Andrunyk, L. Chyrun, R. Hasko, A. Vysotskyi, S. Mushasta, O. Petruchenko,

I. Shakleina, The Intelligent System Development for Psychological Analysis of the

Person's Condition, CEUR Workshop Proceedings 2870 (2021) 1390-1419.

[6] V. Lytvyn, A. Dmytriv, A. Berko, V. Alieksieiev, T. Basyuk, J. Rainer Noennig, D. Peleshko,

T. Rak, V. Voloshyn. Conceptual model of information system for drone monitoring of

trees’ condition, CEUR Workshop Proceedings, 2604 (2020) 695–714.

[7] V. Hryhorovych, Analysis of Scientific Texts by Semantic Inverse-Additive Metrics for

Ontology Concepts, CEUR Workshop Proceedings 3171 (2022) 801-816.

[8] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann, A theoretical framework for

ontology evaluation and validation, Semantic Web Applications and Perspectives 166

(2005) 16.

[9] D. Vrandečić, Y. Sure, How to design better ontology metrics, in: Proceedings of the

Semantic Web: Research and Applications: 4th European Semantic Web Conference,

ESWC 2007, Innsbruck, Austria, June 3-7, 2007. Proceedings 4, pp. 311-325. Springer

Berlin Heidelberg.

[10] The Protégé Ontology Editor and Knowledge Acquisition System, URL:

http://protege.stanford.edu.

[11] TopBraid Composer, URL:

http://www.topquadrant.com/products/TB_Composer.html.

[12] A. Das, W. Wu, D. L. McGuinness, Industrial Strength Ontology Management, The

Emerging Semantic Web 75 (2001).

[13] M. Lanzenberger, J. Sampson, M. Rester, Visualization in Ontology Tools, in:

Proceedings of the International Conference on Complex Intelligent and Software

Intensive Systems, 2009, pp. 705-711.

[14] J. Huang, M. S. Fox, Dynamic knowledge provenance, in: Proceedings of Business Agents

and Semantic Web Workshop, 2004, pp. 11-20.

[15] S. Ram, J. Liu, Understanding the semantics of data provenance to support active

conceptual modeling, Active Conceptual Modeling of Learning: Next Generation

Learning-Base System Development 1 (2007) 17-29.

[16] Y. Burov, K. Mykich, I. Karpov, Intelligent systems based on ontology representation

transformations, in: Proceedings of the Conference on Computer Science and

Information Technologies, 2020, September, pp. 263-275. Cham: Springer

International Publishing.

[17] V. Lopez, V. Uren, E. Motta, M. Pasin, AquaLog: An ontology-driven question answering

system for organizational semantic intranets, Journal of Web Semantics 5(2) (2007)

72-105.

[18] Y. Burov, V. Vysotska, V. Lytvyn, L. Chyrun, Software Based on Ontological Tasks

Models, in: Proceedings of the International Scientific Conference “Intellectual Systems

of Decision Making and Problem of Computational Intelligence”, 2022, May,pp. 608-

638). Cham: Springer International Publishing.

[19] V. Lytvyn, V. Vysotska, D. Dosyn, Y. Burov, Method for ontology content and structure

optimization, provided by a weighted conceptual graph, Webology 15(2) (2018) 66-85.

[20] E. Kaufmann, A. Bernstein, R. Z. Querix, A Natural Language Interface to Query

Ontologies Based on Clarification Dialogs, in: Proceedings of the 5th International

Semantic Web Conference (ISWC 2006), Athens, GA, November, 2006, pp. 980–981.

[21] V. Lytvyn, V. Vysotska, D. Dosyn, O. Lozynska, O. Oborska, Methods of Building

Intelligent Decision Support Systems Based on Adaptive Ontology, in: Proceedings of

the 2nd International Conference on Data Stream Mining and Processing, DSMP, 2018,

pp. 145-150. doi: 10.1109/DSMP.2018.8478500.

[22] M. Barborak, A. Dahbura, M. Malek, The consensus problem in fault-tolerant computing,

ACM Computing Surveys (CSur) 25(2) (1993) 171-220.

[23] A. D. Friedman, L. Simoncini, System-level fault diagnosis, Computer 13(03) (1980) 47-

53.

[24] F. P. Preparata, G. Metze, R. T. Chien, On the Connection Assignement Problem of

diagnosible systems, IEEE transactions on electronic computers 6 (1967) 848-854.

[25] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM Books:

Concurrency: the works of leslie lamport (2019) 203-226. doi:

10.1145/3335772.3335936 10.1145/3335772.3335936.

[26] P. Kravets, V. Vysotska, V. Lytvyn, L. Chyrun, Adaptive decision-making strategies in the

game with environment, Lecture Notes on Data Engineering and Communications

Technologies 149 (2023) 286–301.

[27] M. Pease, R. Shostak, L. Lamport, Reaching agreement in the presence of faults, Journal

of the ACM (JACM) 27(2) (1980) 228-234.

[28] P. Kravets, Y. Burov, V. Lytvyn, V. Vysotska, Gaming Method of Ontology Clusterization,

Webology 16(1) (2019) 55-76.

[29] Y. Burov, The Introduction of Attentional Mechanism in the Situational Awareness

Process, CEUR Workshop Proceedings 3171 (2022) 1076-1086.

[30] P. Kravets, V. Lytvyn, V. Vysotska, Y. Burov, I. Andrusyak, Game Task of Ontological

Project Coverage, CEUR Workshop Proceedings 2851 (2021) 344-355.

[31] E. Bertino, B. Catania, G.P. Zarri, Intelligent Database Systems, Addison-Wesley, 2001.

[32] K. Mykich, Y. Burov, Algebraic model for knowledge representation in situational

awareness systems, in: Proceedings of the Computer Sciences and Information

Technologies Conference, CSIT, 2016, pp. 165-167.

[33] Y. Burov, K. Mykich, I. Karpov, Building a versatile knowledge-based system based on

reasoning services and ontology representation transformations, in: Proceedings of the

IEEE 15th International Conference on Computer Sciences and Information

Technologies (CSIT), vol. 2, 2020, September, pp. 255-260.

[34] Y. Burov, K. Mykich, The approach of granular computing and rough sets for identifying

situations, Econtechmod: An International Quarterly Journal on Economics of

Technology and Modelling Processes 6(2) (2017) 45-50.

[35] E. Burov, Complex ontology management using task models, International Journal of

Knowledge-Based and Intelligent Engineering Systems 18(2) (2014) 111-120.

[36] K. Mykich, Y. Burov, Algebraic framework for knowledge processing in systems with

situational awareness, Advances in Intelligent Systems and Computing 512 (2017)

217-227.

https://dl.acm.org/acmbooks
https://doi.org/10.1145/3335772.3335936

[37] Software Bugs Cost U.S. Economy $59.6 Billion Annually, RTI Study Finds, URL:

http://www.nist.gov/director/prog-ofc/report02-3.pdf.

[38] T. Badgett, G. J. Myers, The Art of Software Testing. Wiley-Blackwell, 2023.

[39] W. E. Lewis, G. Veerapillai, Software Testing and Continuous Quality Improvement,

Auerbach publications, 2004.

[40] E. Dustin, J. Rashka, J. Paul, Automated software testing: introduction, management, and

performance, Addison-Wesley Professional, 1999.

[41] Kelly M Choosing test automation framework. URL:

http://www.ibm.com/developerworks/rational/library /591.html.

[42] P. Baker, Z. R. Dai, J. Grabowski, I. Schieferdecker, C. Williams, Model-driven testing:

Using the UML testing profile, Springer Science & Business Media, 2007.

[43] V. Vysotska, V. Lytvyn, Y. Burov, P. Berezin, M. Emmerich, V. B. Fernandes, Development

of Information System for Textual Content Categorizing Based on Ontology, CEUR

Workshop Proceedings 2362 (2019) 53-70.

[44] Y. Burov, I. Karpov, Contextual Concept Meaning Alignment Based on Prototype Theory,

CEUR Workshop Proceedings 3403 (2023) 137-146.

[45] V. Lytvyn, Y. Burov, V. Vysotska, Y. Pukach, O. Tereshchuk, I. Shakleina, Abstracting Text

Content Based on Weighing the TF-IDF Measure by the Subject Area Ontology, in:

Proceedings of the IEEE International Conference on Smart Information Systems and

Technologies (SIST) 2021, pp. 1-7.

[46] V. Lytvyn, D. Dosyn, V. Vysotska, A. Hryhorovych, Method of ontology use in OODA, in:

Proceedings of the IEEE 3rd International Conference on Data Stream Mining and

Processing, DSMP, 2020, pp. 409-413. doi: 10.1109/DSMP47368.2020.9204107.

[47] Y. Burov, V. Lytvyn, V. Vysotska, I. Shakleina, The Basic Ontology Development Process

Automation Based on Text Resources Analysis, in: Proceedings of the IEEE 15th

International Scientific and Technical Conference on Computer Sciences and

Information Technologies, CSIT, 2020, 1, pp. 280-284. Gg\doi:

10.1109/CSIT49958.2020.9321910.

[48] V. Lytvyn, V. Vysotska, Y. Burov, V. Hryhorovych, Knowledge novelty assessment during

the automatic development of ontologies, in: Proceedings of the IEEE 3rd International

Conference on Data Stream Mining and Processing, DSMP, 2020, pp. 372-377. doi:

10.1109/DSMP47368.2020.9204124.

[49] O. Pashchetnyk, V. Lytvyn, V. Zhyvchuk, L. Polishchuk, V. Vysotska, Z. Rybchak, Y.

Pukach, The ontological decision support system composition and structure

determination for commanders of land forces formations and units in Ukrainian armed

forces, CEUR Workshop Proceedings 2870 (2021) 1077-1086.

[50] V. Vysotska, V. Lytvyn, M. Bublyk, A. Demchuk, L. Demkiv, Y. Shpak, Method of ontology

quality assessment for knowledge base in intellectual systems based on ISO\IEC 25012,

in: Proceedings of the IEEE 15th International Scientific and Technical Conference on

Computer Sciences and Information Technologies, CSIT, 2020, 1, pp. 109-113. doi:

10.1109/CSIT49958.2020.9321871.

[51] V. Lytvyn, D. Dosyn, V. Vysotska, A. Demchuk, L. Demkiv, I. Lytvyn, Intellectual agent

construction method based on the subject field ontology, in: Proceedings of the IEEE

15th International Scientific and Technical Conference on Computer Sciences and

Information Technologies, CSIT, 2020, 1, pp. 40-46. DOI:

10.1109/CSIT49958.2020.9322032.

[52] V. Lytvyn, M. Bublyk, V. Vysotska, V. Panasyuk, O. Brodyak, M. Luchkevych, Modelling

of the Intelligent Agent’s Behavior Scheduler Based on Petri Nets and Ontological

Approach, in: Proceedings of the IEEE International Conference on Smart Information

Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 2021.

https://ieeexplore.ieee.org/document/9465994.

[53] A. Berko, I. Pelekh, L. Chyrun, M. Bublyk, I. Bobyk, Y. Matseliukh, L. Chyrun, Application

of ontologies and meta-models for dynamic integration of weakly structured data, in:

Proceedings of the IEEE 3rd International Conference on Data Stream Mining and

Processing, DSMP 2020, 2020, pp. 432–437. doi: 10.1109/DSMP47368.2020.9204321.

[54] V. Lytvyn, V. Vysotska, Y. Burov, O. Brodyak, Approach to Automatic Construction of

Interpretation Functions during Ontology Learning, in: Proceedings of the IEEE 15th

International Scientific and Technical Conference on Computer Sciences and

Information Technologies, CSIT, 2020, 1, pp. 267-271. doi:

10.1109/CSIT49958.2020.9321920.

[55] O. Oborska, M. Teliatynskyi, D. Dosyn, V. Lytvyn, S. Kostenko, An Intelligent System

Based on Ontologies for Determining the Similarity of User Preferences, CEUR

Workshop Proceedings 3403 (2023) 283-292.

[56] V. Hryhorovych, Calculation of the Semantic Distance between Ontology Concepts:

Taking into Account Critical Nodes, CEUR Workshop Proceedings 3396 (2023) 206-

216.

[57] V. Hryhorovych, Construction of Semantic Metric for Measuring the Distance between

Ontology Concepts, CEUR Workshop Proceedings 2870 (2021) 498-510.

[58] T. Batiuk, L. Chyrun, O. Oborska, Ontology Model and Ontological Graph for

Development of Decision Support System of Personal Socialization by Common

Relevant Interests, CEUR Workshop Proceedings 3171 (2022) 877-903.

[59] T. Basyuk, A. Vasyliuk, Approach to a subject area ontology visualization system

creating, CEUR Workshop Proceedings 2870 (2021) 528–540.

[60] D. Dosyn, Y. Ibrahim Daradkeh, V. Kovalevych, M. Luchkevych, Y. Kis, Domain Ontology

Learning using Link Grammar Parser and WordNet, CEUR Workshop Proceedings 3312

(2022) 14-36.

[61] N. Khairova, A. Kolesnyk, O. Mamyrbayev, G. Ybytayeva, Y. Lytvynenko, Automatic

Multilingual Ontology Generation Based on Texts Focused on Criminal Topic, CEUR

Workshop Proceedings 2870 (2021) 108-117.

[62] T. Basyuk, A. Vasyliuk, Approach to a Subject Area Ontology Visualization System

Creating, CEUR Workshop Proceedings 2870 (2021) 528-540.

[63] V. Shynkarenko, L. Zhuchyi, Ontological Harmonization of Railway Transport

Information Systems, CEUR Workshop Proceedings 2870 (2021) 541-554.

[64] N. Kunanets, H. Matsiuk, Use of the Smart City Ontology for Relevant Information

Retrieval, CEUR Workshop Proceedings 2362 (2019) 322-333.

[65] J. Chen, D. Dosyn, V. Lytvyn, A. Sachenko, Smart data integration by goal driven ontology

learning, Advances in Intelligent Systems and Computing 529 (2017) 283-292.

https://ceur-ws.org/Vol-3312/paper2.pdf
https://ceur-ws.org/Vol-3312/paper2.pdf

[66] M. Davydov, O. Lozynska, Mathematical method of translation into Ukrainian sign

language based on ontologies, Advances in Intelligent Systems and Computing 871

(2018) 89-100.

[67] O.H. Lypak, V. Lytvyn, O. Lozynska, R. Vovnyanka, Y. Bolyubash, A. Rzheuskyi, D. Dosyn,

Formation of Efficient Pipeline Operation Procedures Based on Ontological Approach,

Advances in Intelligent Systems and Computing 871 (2019) 571-581.

[68] V. Lytvyn, The similarity metric of scientific papers summaries on the basis of adaptive

ontologies, in: Proceedings of the 7th International Conference on Perspective

Technologies and Methods in MEMS Design, MEMSTECH, 2011, p. 162.

[69] V. Pasichnyk, et al., Ontological approach in the formation of effective pipeline

operation procedures, in: Proceedings of the 13th International Scientific and

Technical Conference on Computer Sciences and Information Technologies, CSIT, 2018,

pp. 80-83.

[70] V.V. Lytvyn, An approach to intelligent agent construction for determining the group of

bank risk basing on ontology, Actual Problems of Economics (7) (2011) 314-320.

[71] N. Schahovs'ka, Y. Syerov, Web-community ontological representation using intelligent

dataspace analyzing agent, in: Proceedings of the Experience of Designing and

Application of CAD Systems in Microelectronics, CADSM, 2009, 479-480.

[72] O. Veres, O. Oborska, A. Vasyliuk, Y. Brezmen, I. Rishnyak, Problems and peculiarities of

the IT project managment of ontological engineering for person psychological state

diagnosing, CEUR Workshop Proceedings 2565 (2020) 162–177.

https://www.scopus.com/record/display.uri?eid=2-s2.0-80052153843&origin=resultslist&sort=plf-f&src=s&sid=df12a53e4d9b7c7a71f293fc4155a3ae&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2856446930100%29&relpos=13&citeCnt=12&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-80052153843&origin=resultslist&sort=plf-f&src=s&sid=df12a53e4d9b7c7a71f293fc4155a3ae&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2856446930100%29&relpos=13&citeCnt=12&searchTerm=

	1. Introduction
	2. Related works
	2.1. Use of executable models of ontology management
	2.1.1. Using models to create, modify and validate ontologies
	2.1.2. Adaptive ontologies
	2.1.3. Concepts and properties of the knowledge base ontology graph

	2.2. Presentation of knowledge in tasks of verification of ontological models

	3. Models and methods
	4. Experiments, results and discussions
	4.1. Knowledge models verification tools for an intelligent system
	4.1.1. Method and algorithm for obtaining a consensus decision in the process of model verification
	4.1.2. Construction of knowledge models for verification of conceptual models of decision support
	4.1.3. Hierarchy of verification methods and models

	4.2. Analysis and research of knowledge presentation methods in tasks of controlling access to information resources
	4.3. Models and methods of presenting knowledge in tasks of automated testing of software products
	4.3.1. The architecture of the automated testing system
	4.3.2. Formal specification of an algorithmic model
	4.3.3. Essences and models of the automated testing system
	4.3.4. Presentation of the algorithmic model in the XML language

	5. Conclusions
	References

