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Abstract
In today’s rapidly evolving technological landscape and increasing impact of cybersecurity threats
and attacks, the development and utilization of cyber ranges have become paramount in enhancing
people’s knowledge of cybersecurity. Even if multiple of these tools simulating terrestrial communication
networks are already in use, a cyber range focused on satellite communication networks is still missing.
This paper describes the ongoing work about the design and development of OpenSatRange (OSR), a
cyber range able to simulate/emulate satellite communication networks. Details are provided about the
similarities and differences between this tool and the main other cyber ranges, the considered reference
scenarios, the defined training exercises, the designed OSR framework and its components, and the
planned roadmap to conclude this research project’s funded work.
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1. Introduction

Cybersecurity is an indispensable pillar in today’s interconnected digital world, encompassing
the protection of systems, networks, and data from malicious cyber threats. Its importance
cannot be overstated, given the pervasive nature of cyber attacks that threaten individuals,
businesses, governments, and critical infrastructure globally [1]. Effective cybersecurity mea-
sures are essential for safeguarding sensitive information, preserving privacy, maintaining trust
in digital transactions, and upholding the integrity of systems and services. Moreover, in an
era marked by increasing reliance on digital technologies and the proliferation of connected
devices, cybersecurity serves as a linchpin for ensuring the resilience and stability of the digital
ecosystem. As cyber threats continue to evolve in sophistication and frequency, investing
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in robust cybersecurity measures becomes paramount to mitigate risks, fortify defences, and
sustain the functionality of our digital infrastructure and way of life.

One of the first steps to strengthen digital systems making them less vulnerable to cyber
attacks is to properly train all people involved in the design, build, configuration, and use of
these systems. Cyber ranges are pivotal tools to achieve this goal [2]. They provide controlled,
virtual environments where individuals can undergo immersive training to effectively learn
how to combat cyber threats. Their significance lies in their ability to simulate diverse scenarios,
ranging from basic cybersecurity hygiene practices to advanced threat response strategies [3].
By replicating real-world cyber threats in a safe setting, cyber ranges offer a hands-on learning
experience crucial for developing practical skills and critical thinking abilities. Participants can
engage in various exercises, including incident response simulations, penetration testing, and
malware analysis, enabling them to comprehensively understand and mitigate cyber risks [4].

Cyber ranges offer a versatile toolkit for enhancing cybersecurity knowledge and skills across
a broad spectrum of applications and disciplines. Vast is typically the set of offered functionalities
and the plethora of considered use cases, as much as the different kinds of systems that can be
prone to cyber-attacks in the real world. One example is satellite systems. The risk of cyber
attacks on satellite systems is a growing concern in our increasingly interconnected world [5].
These systems play critical roles in various sectors, including telecommunications, navigation,
weather monitoring, and national security. However, these systems are not immune to cyber
threats. Cyber attackers may target satellite networks to disrupt communication channels,
compromise sensitive data, or even sabotage critical infrastructure. The repercussions of such
attacks could be severe, potentially leading to widespread disruptions in essential services and
compromising national security [6]. Additionally, as satellite technology advances and becomes
more integrated with other systems, the attack surface expands, presenting new vulnerabilities
that can be exploited by malicious actors.

However, investigating the available cyber ranges, we found that a cyber range dedicated
to satellite systems is missing. In this paper, we present OpenSatRange (OSR), an under-
development cyber range focused on satellite communication systems. This tool aims to train
satellite network operators and users about cyber security practises and principles in order to
make them more aware about the cybersecurity aspect and contribute in making these systems
more robust against cyber attacks. OSR simulates/emulates satellite communication systems
offering ad-hoc training pathways and practice exercises. It allows personalising the scenarios
to simulate/emulate allowing users to set multiple network parameters, such as the number of
nodes, their position, and the main communication link parameters. Its system architecture has
been designed to be scalable and modular in order to allow possible future development and
inclusion of additional elements, such as further communication protocols and algorithms.

The paper is structured as follows: Section 2 describes the main cybersecurity frameworks
and available cyber ranges in order to offer a description of the current situation on this topic;
Section 3 describes the reference scenarios that the OSR platform will focus on; Section 4 details
the considered exercises to test the skills of the OSR platform’s users tailored on the reference
scenarios; Section 5 illustrates the OSR framework structure describing its components into the
detail. Conclusions are drawn in Section 6.



2. Open cyber range platforms

In this section, we will describe the characteristics of Nautilus [7] and Kypo [8] cyber range
platforms we have studied as a starting point for designing OSR. We will highlight their
respective strengths and weaknesses, analyze the functionalities they offer, and identify any
missing functionalities needed to support our vision and scenarios.

2.1. Nautilus

Nautilus is a Cyber Range developed within the European H2020 SPARTA project that enables
the creation, execution, and automatic sharing of scenarios for cybersecurity exercises. It
utilizes advanced cloud technologies to simplify the configuration of vulnerable virtualized
environments. It offers a graphical interface and a descriptive language for scenarios and
integrates features for data and knowledge sharing. Nautilus aims to foster collaboration
among training teams, allowing less experienced trainers to access and reuse advanced exercises
prepared by others.

Nautilus consists mainly of three elements: the web application, the deployment framework,
and the database. Both the web application and the framework interact with the database to
retrieve and update information: the framework has read-only access and does not directly
access the database but through an authenticated HTTP endpoint.

The Nautilus database contains all the components of training scenarios, as well as user and
information sharing. The deployment framework is a key component as it handles all phases of
distributing and provisioning a training scenario. The web application is the main interface
of the Nautilus cyber range, allowing the creation, modification, and distribution of scenarios,
both locally and remotely; the web application also implements knowledge-sharing logic.

The entire Nautilus architecture can be self-hosted. A scenario can be deployed remotely,
from the web application, or locally, interacting with the framework’s command-line interface.
The Deployment Framework, if configured to perform this operation, provides an authenticated
HTTP endpoint used to specify the scenario to be launched. In the remotely distributed scenario,
the framework collects all scenario information from the database and distributes it. In the local
scenario, however, scenario information can be loaded directly into the Deployment Framework
and used to start the virtual environment without any connection to the Nautilus database, thus
keeping the information on the test bench private.

2.2. Kypo

Kypo is an open-source cyber range accessible via a web interface that emulates, within a virtual
environment, an IT infrastructure for educational purposes. It is designed to conduct exercises,
simulations, and training in the field of cybersecurity. It consists of a dedicated infrastructure
that allows cybersecurity experts, students, and industry professionals to practice in realistic
scenarios without risking damage to real systems or networks. Like any other cyber range,
Kypo offers the possibility to design the infrastructure on which to conduct an attack and to
establish guidelines to follow during its execution.
The platform is also centred around some essential concepts:



Sandbox An isolated test environment containing virtual networks that allow trainees to
connect to a VM and communicate with the remaining components of the network. A
sandbox is described by a set of configuration files called sandbox-definition or sandbox-
descriptor.

Sandbox-definition A set of configuration files that define the internal structure of the sand-
box. It describes the network topology and VM configurations. The sandbox-definition is
created by instructors.

Training An exercise that requires interaction between trainees and the virtualized infras-
tructure defined in a sandbox definition. Trainees are required to perform activities
sequentially: if an activity is performed correctly, access to the next one is allowed.

Training-definition A configuration file that defines a training. It describes the actions a
trainer must perform. The training-definition is entirely defined by instructors.

Pool A group of instantiated sandboxes described by the same sandbox definition.

Conceptually, the architecture of Kypo involves a series of components that make it possible
to allocate a sandbox and subsequently interact between trainees and the virtual infrastructure:

Git repositories Once a sandbox definition is created, it can be uploaded to a remote Git
repository. This repository, at a later time, can be imported into Kypo through a particular
service of the Kypo portal to be instantiated and give life to a sandbox instance.

Kypo portal A set of services that allow users to use the cyber range. It consists of an Angular
front-end and a back-end based on the microservices architectural paradigm.

OpenStack A platform that controls, monitors, and manages virtual resources that can be
allocated to build a sandbox instance.

Kypo portal is the heart of the cyber range, hosting the logic to store sandbox descriptors and
modify and instantiate training. Specifically, it consists of two entities: Kypo head and Kypo
proxy. Kypo head hosts the server running the Kubernetes controller which in turn manages
the execution of all other services each in a separate docker container. Kypo proxy is instead
the server that allows access to the sandboxes only via SSH. Both servers are connected to a
management network called kypo-base-network that interfaces them with the sandbox VMs.

Kypo head hosts both the backend and the frontend that allow user interaction with the cyber
range. The frontend is implemented in Angular. The backend consists of a series of microservices
implemented both in Java and Python executed in isolated containers and orchestrated by
Kubernetes.

Some of the most important services are:

User and group service Provides functionalities to manage users and roles and register other
microservices with specific responsibilities.

Training service Provides functionalities to create, manage, and launch training.

Sandbox service Provides functionalities to manage the lifecycle of a sandbox. It includes
creating a sandbox definition and creating and removing an instance.



2.3. Strenght and Weekness

We identified three main strengths of Kypo: i) Kypo boasts a robust system architecture that
supports multi-step training paths and facilitates the use of Capture The Flag (CTF) challenges.
This architecture enables seamless integration of various training modules and ensures scalability
for handling complex scenarios. ii) Kypo provides a structured environment for conducting
training exercises utilizing formalism to define scenarios within a sandboxed environment.
Kypo offers advanced training management features, allowing instructors to easily organize and
monitor training sessions. iii) Kypo leverages Git as a distributed storage solution, providing a
reliable and flexible platform for storing training materials, code repositories, and collaboration
among users. This enables version control, collaboration, and easy access to training resources
across distributed teams. The main strength of Nautilus is the Marketplace which allows users
to access a wide range of training modules, challenges, and resources. The marketplace fosters
community collaboration, allows for the sharing of best practices, and encourages continuous
improvement in cybersecurity skills.
However, both have some weaknesses:

Lack of support for variable network topologies Both Nautilus and Kypo fall short in pro-
viding adequate support for scenarios involving variable network topologies. This limi-
tation restricts the realism and applicability of training exercises in simulating diverse
network environments.

Absence of support for georeferenced scenarios Neither Nautilus nor Kypo offer support
for georeferenced scenarios, which limits their effectiveness in simulating real-world
cybersecurity challenges that involve geographical constraints or location-specific threats.
This gap hinders the development of skills relevant to cyber defence in specific geographic
contexts.

Absence of student action monitoring Both platforms lack robust mechanisms for moni-
toring and analyzing student actions during training sessions. This deficiency may hinder
trainers’ ability to provide targeted guidance and feedback, as well as evaluate learners’
progress accurately.

3. Reference scenarios

We decided to consider the two reference scenarios shown in Figures 1 and 2.

In Scenario 1, the satellite segment is composed of one Geostationary (GEO) satellite. Given
the vast extension of the Earth’s surface covered by one GEO satellite, the ground segment is
composed of a high number of user devices (at least 1000) and a high number of ground stations
(at least 100). Each user device accesses the network directly via satellite. The ground stations
are assumed to be all interconnected with each other via a high-speed terrestrial network. Each
user terminal generates/receives data destined to / coming from a Point-of-Presence (PoP) of the
network and will be routed through the bidirectional path <user device-GEO satellite-ground
station(s)-PoP>.
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Figure 1: Scenario 1: Single GEO satellite network
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Figure 2: Scenario 2: LEO satellite constellation network

In Scenario 2, the satellite segment is composed of a Low Earth Orbit (LEO) satellite con-
stellation. This segment is composed of a sufficiently high number of satellites (at least 100)
to simulate/emulate a satellite network able to cover a significant portion (at least 80%) of the
Earth’s surface. The satellites are interconnected through Inter-Satellite Links (ISLs) in the
classic four-neighbours “mesh” scheme.

In both scenarios, the geographical distribution (initial position and movement model) of
the user terminals and the channel model of the user-satellite links can be set to simulate the

following environments:

Dense urban (metropolis) A high number of user devices are located very close to each other
(within an area of size < 10km?), with fixed or variable position over time following



certain movement patterns (e.g., pedestrians and vehicles in city traffic) and with a channel
model including attenuation factors representing the presence of numerous tall buildings
that could potentially even block the signals.

Urban (city) Conditions similar to the dense urban environment but more relaxed both in
terms of user density and attenuation factors due to buildings in the channel model.

Suburban (town) Compared to the urban environment, lower user density and smaller size
of the area within which they move in order to simulate more sparse user terminals and
with different user mobility models (e.g., devices with vehicular movement model can
move at greater speeds than in the urban environment).

Rural (small town) Compared to the suburban environment, further lower user density and
smaller size of the movement area in order to simulate user terminals that are even more
sparse and with different user mobility models (e.g., devices onboard ships or aircraft).

The user devices in the scenario can differ from the data application running onboard and gen-
erating data with different traffic volumes and statistical distributions. The aim is to emulate/sim-
ulate different applications with different performance requirements that generate/receive data
streams with different statistics. Different user devices can also have different hardware/soft-
ware configurations in order to simulate/emulate different kinds of terminals (e.g., smartphones,
single sensors, or hubs that aggregate traffic flows generated by / destined to nodes not equipped
with a satellite interface).

Beyond the validation tests and reference scenarios, we are designing the OSR platform to
also allow users to personalise the scenarios they want to consider, allowing them to set a
wide range of parameters related to the scenario’s general configuration. This list includes
parameters related to:

Satellites The number of satellites in the scenario and, for each satellite: (i) Orbital parameters:
a set of orbital parameters used to specify the satellite’s orbit and its initial position within
the orbit; (ii) Hardware configuration: the amount of computational and data storage re-
sources (CPU, RAM memory, data disk memory) available to manage data communication
aspects (data reception, transmission, and processing); (iii) Software configuration: details
about the operating system and application services running onboard.

Ground Stations The number of ground stations in the scenario and, for each station: (i)Position:
assumed fixed; (ii) Hardware configuration; Software configuration.

User devices The number of user devices in the scenario and, for each device: (i) Initial position:
assumed fixed or variable depending on the device’s movement model; (ii) Movement
model: specify how the device’s position changes (or not) over time following a specific
movement model (e.g., pedestrian, road vehicle, train, ship, and aircraft); (iii) Hardware
configuration; (iv) Software configuration.

Links For each link: (i) Central frequency; (ii) Bandwidth; (iii) Channel model: the model of the
communication channel that depends on the kind of link (user device - satellite, satellite -
satellite, and satellite - ground station) and environment (dense urban, urban, suburban,
and rural).



4. Exercises for testing student skills

In light of the diverse and dynamic landscape of satellite technologies, understanding potential
cybersecurity challenges is of paramount importance.

The following exercises have been designed to immerse students in simulated scenarios
reflective of real-world satellite communication environments.

Ground Station Attacks This exercise explores potential vulnerabilities in ground stations
used for satellite communication. Participants will learn how attackers could target
ground stations to compromise satellite communications or gain unauthorized access to
satellite systems.

Satellite Protocol Attacks Participants will examine vulnerabilities in satellite protocols and
their implications. The focus will be on direct attacks targeting protocols used for satellite-
to-ground communications.

Intermittent Channel Attacks (LEO Sat) This exercise involves analyzing attacks on LEO
satellites that communicate via intermittent channels. Participants will learn to exploit
communication windows for hijacking or interception attacks.

Satellite network routing hacking Participants will explore vulnerabilities in routing pro-
tocols used in satellite networks. They will learn to conduct attacks to modify the path of
satellite data traffic.

Sniffing satellite broadcast protocols + DoS This exercise focuses on intercepting broad-
cast protocols used in satellite communications, such as DVB-SAT. Participants will
conduct amplified Denial-of-Service (DoS) attacks to overwhelm satellite networks.

Satellite Key Distribution Participants will analyze vulnerabilities in the distribution and
management of encryption keys in satellite systems. They will learn to conduct key
distribution hacking attacks.

Hacking Satellite Apps This exercise involves exploring applications running on satellites.
Participants will learn to identify and exploit vulnerabilities in these apps, conducting
attacks to compromise them.

Satellite network flooding on return links Participants will analyze techniques for flood-
ing satellite networks, focusing on the return link. They will learn to conduct flooding
attacks to overload satellite communication capacity.

Satellite PEP hacking This exercise explores vulnerabilities in the Performance Enhancement
Protocol (PEP) used in satellite communications. Participants will learn to conduct various
attacks against the PEP, such as HTTP prefetching, TCP spoofing, the use of proxies, and
DosS attacks.

By engaging in these exercises, students will not only deepen their understanding of cyberse-
curity threats in satellite systems but also develop practical skills to mitigate risks and safeguard
critical.



5. OpenSatRange framework

OSR will extend the Kypo platform by integrating new features and components to enable
exercises in satellite training scenarios. The system architecture is depicted in Figure 3.

OPENSATRANGE ol

MARKETPLACE

=
SIMULATION -
COMPONENT

[ EMULATION COMPONENT

GRAFICAL USER
INTERFACE (GUI)

3 openstack o
} )

>
Q N3 MONITORING
- \/ - COMPONENT

o

Figure 3: OSR platform architecture

The OSR platform comprises the following components:

Graphical User Interface (GUI) allows users to select already defined scenarios or define
new ones.

Network Component Dedicated to create training scenarios containing the desired satellite
network.

Marketplace Provides resources and materials for exercises and training, operating as a market
for scenarios and courses.

Simulation Component Dedicated to simulate the desired scenario to collect and process
data necessary for instantiating the scenario within the emulative environment.

Emulation Component Dedicated to create and manage the satellite scenario within an
emulative environment based on OpenStack.

Monitoring Component Focuses on monitoring exercises, ensuring data collection and feed-
back on the performed activities.

These modules constitute the core of OSR, extending the functionalities of the Kypo cyber
range within the OpenStack cloud environment. They exploit the previously introduced concepts
of sandbox, sandbox-definition, training, and training-definition, while also maintaining the
division of user roles into trainees, instructors, and administrators. Additionally, OSR includes
a marketplace that facilitates instructors in creating new attack scenarios to simulate and offers
additional functionalities for creating satellite scenarios.



5.1. Marketplace

The marketplace can be described as a platform where scripts, configuration files, sandbox
definitions, and training descriptors present in various git repositories are maintained in a
hierarchical and organized structure, already fully configured and ready to be instantiated. OSR
not only offers the possibility to download and use such configurations but also to upload new
ones. The presence of a marketplace and the ability to upload/download new configurations
pave the way for three possible usage scenarios primarily involving the figure of instructors in
the creation and modification of sandbox and training descriptors.

At the implementation level, the marketplace can be viewed as a single database containing
other data categories:

« Network Nodes: configurations for terrestrial network nodes;
« Satellite Nodes: configurations for satellite constellations;

« OpenSAND: configurations of OpenSAND nodes;

« Sandbox Descriptor;

 Training Descriptor.

Each category consists of many sub-repositories, one for each node/constellation/entity to be
configured.

Each repository of the network nodes category must have a well-defined structure allowing
integration with a sandbox descriptor. Each repository should contain only two folders, named
files and tasks, which hold all the files and scripts needed to configure a VM. In the files
directory, any type of file can be placed regardless of its format. In the tasks directory, a YAML
file describing the set of ansible scripts necessary to configure the VM must be placed.

The satellite nodes category will have a similar structure, formed by many repositories, one
for each constellation. Each repository will consist of only the files folder. In particular, the
files folder will contain text files that will be used later to emulate the constellation. These
text files must describe the number of satellites in the constellation, the number and names of
the terrestrial nodes of the satellite constellation, and the evolution over time of the coordinates
of the satellites and terrestrial nodes of the constellation.

The OpenSAND category should be structured in the same way. It will be formed by many
repositories, each of which will maintain the two files and tasks folders. Each repository
represents a node of the terrestrial satellite component (Gateway or user terminal) capable
of communicating with a satellite constellation. In the files folder, XML files necessary to
activate and configure the OpenSAND satellite emulator will be kept. In the tasks folder, a
YAML file describing the ansible scripts necessary to configure the network and thus allow
communication between the emulated entities will be kept.

The Sandbox descriptor category is also an aggregate of repositories where each repository
is a sandbox descriptor. A sandbox descriptor must be structured as previously described and
therefore maintain the provisioning, roles, files, and tasks folders.

Finally, the Training descriptor category will be an aggregate of repositories where each
repository is a training descriptor. In practice, it is a single folder containing a JSON file whose
name must suggest the association with a sandbox descriptor to which that training can be



associated. It is recalled that the association between an instantiated sandbox and a training
descriptor occurs only at the graphical interface level. It is therefore necessary to define a method
that allows to logically associate, within the marketplace, which training can be associated with
which sandbox descriptor.

5.2. Simulation component

The main purpose of the simulation component is to instantiate the entire chosen scenario within
a simulation environment and carry out preliminary calculations on how certain parameters
will evolve over time. These calculations will contribute to the creation of data traces which will
be stored and available to the emulation component. The simulation component will be based
on Network Simulation 3 (NS3), an open-source software for discrete-time and discrete-event
simulation of communication networks. NS3 will be used within the simulation component to
create the network simulation environment, populate it with the basic network components
according to the scenario chosen by the user, and calculate how the network topology and some
specific communication parameters change within the considered time window. The modular
approach of NS3 and its offered features are the main reasons why we decided to start the
development of the simulation component starting from this software. However, given that the
official release of NS3 (at least up to NS3.40, the latest version released before the preparation
of this paper) does not allow simulating satellite communication networks, we have decided to
proceed with the implementation of two additional modules that will implement the following
two aspects:

1. Satellite Motion Model: NS3 includes several mobility models that aim to simulate moving
nodes, such as people walking and vehicles changing their position randomly or with
constant direction and speed. However, a suitable mobility model to simulate how LEO
satellites change their position along defined orbital planes has not been included yet. Also
considering the satellite version of NS3 (SNS3 - https://www.sns3.org/content/home.php),
it focuses only on the protocol and physical layer aspects of satellite communications in
GEO orbit. We decided to implement the equations of the NORAD Simplified General
Perturbations 4 (SGP4) mathematical model, widely considered suitable for modelling the
movements of LEO satellites with high precision, and define an ad-hoc NS3 module for
this purpose. This module requires as input the initial position and orbital parameters
of each satellite formatted as Two-Line Element (TLE) data and the initial position of
each ground node (ground station and user devices) formatted in Latitude, Longitude
and Altitude (LLA) coordinates. Both the positions of the satellites and the ground nodes
are set in the Earth Centered Earth Fixed (ECEF) coordinate system, a three-dimensional
Cartesian system with origin in the center of mass of the Earth, positive z axis passing
through the North Pole and positive x axis passing through for the crossing point between
the Equator and the Greenwich meridian. With this coordinate system, the positions of
the moving nodes must be updated periodically while those of the fixed nodes (including
the GEO satellites which, although moving, are fixed for the ECEF coordinate system)
remain constant.

2. Satellite link channel model: NS3 includes several channel models in order to calculate
different parameters, such as Signal-to-Noise Ratio (SNR), set other link communication



parameters accordingly, such as achievable data rate and packet loss rate, and use them
to simulate different link conditions. However, a channel model for satellite links (both
satellite-to-ground and inter-satellite) has not been included yet. We decided to implement
an ad-hoc NS3 module for this purpose considering the channel model defined by 3GPP in
the technical report TR 38.811 [9]. This channel model is valid for satellite-ground links,
both LEO and GEO satellites, frequency range between 0.5 and 100 GHz, and includes the
following attenuation factors:

« Basic path loss: basic attenuation factor made up of the three main components Free
Space Loss, Shadow Fading, and Clutter Loss.

« Atmospheric absorption: attenuation factor due the presence of the Earth’s atmo-
sphere. The value of this attenuation depends on various parameters, such as
the humidity rate, the water vapor density, the air pressure, and the transmission
frequency and band.

o Scintillation: attenuation factor due the presence of the Earth’s atmosphere. It causes
rapid fluctuations in the phase and amplitude of the signal due to inhomogeneities
in the structure and composition of the various layers of the atmosphere.

For inter-satellite links among LEO satellites, only the Free Space Loss will be considered
as the conditions of visibility (Line-of-Sight) and absence of obstacles between a satellite
and the four adjacent satellites (two on the same orbital plane, two on the two adjacent
orbital planes) are always assumed to be true.

Once the scenario to be considered has been set, it is implemented within the simulation
component which simulates its behaviour for the entire set duration of the simulation. Once
the simulation is finished, in order to interface the simulation component with the emulation
one, various configuration files will be generated. These files will be properly used by the
emulation component to set the emulation environment and allocate the needed resources.
These configuration files can be described as traces that indicate the following information for
each time instant (for example, for each second):

« for each ground node (ground station and user terminal), which satellites are in visi-
bility, i.e. which can be used to send and receive data, depending on the value of the
corresponding elevation angle compared with a pre-established threshold.

« the propagation time and the maximum data rate for each pair of satellite-ground and
satellite-satellite nodes in visibility, i.e., for each active satellite link. These values depend
on the distance between pairs of nodes and the link’s SNR, respectively.

« the end-to-end path that a data packet should follow to reach a specific destination starting
from a specific source.

The emulation component will use these files to set the initial conditions of the emulated
scenario and update them periodically.



5.3. Emulation component

The introduction of satellite emulation into OSR will be done through OpenSAND (Open Source
Satellite Network Simulator), an open-source software designed to emulate and analyze satellite
communication networks. It allows modelling complex networks composed of GEO satellites,
ground stations and user terminals, as shown in Figure 4.
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Figure 4: Use of OpenSAND within the emulation component

From an implementation viewpoint, the goal is to create a VM for each entity of the satellite
component. Each VM must be configured through configuration files in XML format that
describe the characteristics of the physical layer but also the activation of certain services within
each entity. To allow multiple VMs to communicate with each other, the underlying network
infrastructure must be properly configured.

OpenSAND enables the emulation of satellite entities based on real traffic, recreating the
same protocol stack used in real communication, i.e., the DVB-S2 protocol. It also allows setting
time-varying delays in communication links. This allows simulating the mobility of both satellite
and user terminals. It is also possible to change the attenuation factor and communication
bandwidth for each satellite-terminal or satellite-ground station link.

In particular, it is necessary for each ground station or terminal to configure three network
interfaces. Considering Figure 4 as a reference, it can be seen that one interface (eth1) will be
used to receive/send traffic from/to nodes that do not belong to the simulation component, for
example these nodes could be servers that expose services, or multimedia content. Another
interface (eth0) will be used to exchange packets in a control network for satellite emulation
management, and yet another will be used to create an IP tunnel connecting the ground stations
and terminals via the satellite (opensand_tap). These three interfaces, in each virtual machine,
are then connected to a bridge. The effect of this configuration is that traffic coming in from the
ethl interface, will be replicated to the opensand_tap interface through the use of the bridge. In
this way, traffic traverses an IP tunnel that simulates delays in receiving and sending packets.
These delays are configurable according to the scenario to be simulated.

Since OpenSAND was born to emulate only GEO satellite networks, some modifications are
needed to emulate LEO satellite scenario. The features offered by OpenSAND will be combined
with some precise routing indications dedicated to each VM in order to simulate the movement



of the satellites and thus the change of topology of the constellation. These indications will be
contained in proper configuration files that will describe, for each entity, which satellites are in
visibility and how their positions evolve over time. In addition, it will have to specify what path
a packet in the constellation must follow to reach its destination given a specific source. These
routing rules will need to be described at regular, discrete time intervals. This configuration
file will be particularly useful for simulating ISLs and the communication that occurs between
satellites.

In particular, the idea is to create a virtual machine for each terminal or ground station.
Instead, the satellite constellation will be modelled through container networks inside a single
virtual machine. Each container will maintain within it an Opensand process that emulates a
satellite. All containers simulating the satellite constellation are connected to each other via
a docker network. In order to simulate the movement of the satellites and thus the change of
topology of the constellation, the routing policies of incoming packets will be changes in each
container. The routing policies for each node will depend directly on static configuration files
created by the simulation component before instantiating the infrastructure.

In a LEO scenario, it is preferable to emulate a satellite by using a container instead of a VM
for scalability reasons. Since the goal is to create constellations of at least a hundred satellites,
it becomes complicated and expensive to use all the hardware needed to support a virtual
machine-based emulation. To have an idea of the computational resources consumed by the
implementation of a constellation, Figure 5 shows some measurements about the amount of
used RAM memory related to the number of instantiated containers (up to 300).
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Figure 5: Required RAM memory depending on the number of instantiated containers

After observing a linear trend, subsequent measurements were inferred by regression. For
example, to allocate a constellation of 1000 containers, a VM with at least 6 GB of RAM is
required.



5.4. Monitoring component

The monitoring component aims to collect all useful information to monitor the exercise during
its execution, process it, and provide reports that highlight the path followed to complete the
assigned tasks. This component, whose structure is shown in Figure 6, will be pervasively
installed in the different network instances and virtual machines installed in the sandbox where
the learners perform the exercises.
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Agent Analysis
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Figure 6: Structure of the monitoring component

The main modules of the monitoring component are the agents, which are distributed in the
VMs and networks, and two central modules: the collector module and the analysis module.

The Collector module collects logs and events, interprets and transforms them, saving them
in an external data store outside the sandbox. The analysis module acts as a full-text search
and analysis engine, indexing and storing the logs from the collector. Monitoring agents are
installed on virtual devices such as laptops, desktops, servers, etc., and provide detection of
local actions. The collector can also be integrated with agentless devices capable of monitoring
devices such as firewalls, switches, and routers.

6. Conclusion

The increasing number and impact of cyber threats and attacks is leading to an increased
awareness of the cybersecurity principle and the importance of protecting the interconnected
systems against these attacks. The development and use of cyber ranges to effectively train all
the people involved both in the management and use of these systems is of primary importance.
These tools can let the users experience cyber attacks within a controlled environment offering
a practical view of the possible outcomes of these attacks and teaching possible strategies
to increase the system’s robustness and successfully counteract malicious activities. Satellite
systems are among the scenarios to protect against cyber attacks.

In this paper, we describe OpenSatRange, a cyber range focused on satellite communica-
tion systems. It aims to increase the consciousness of satellite operators and users regarding
cybersecurity, cyber threats, and cyber attacks that could affect satellite systems. Even if the



development work is still ongoing, some choices have been already made in terms of the consid-
ered reference scenarios, training exercises, and framework structure. The following planned
steps involve the full development and consequent integration of the system components in
order to subsequently test and validate the cyber range through the planned training exercises.
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