
Some decidability issues concerning 𝐶𝑛 real functions
Gabriele Buriola

1,*
, Domenico Cantone

2
, Gianluca Cincotti

2
, Eugenio G. Omodeo

3
and

Gaetano T. Spartà
4

1Dept. of Computer Science, University of Verona, Italy
2Dept. of Mathematics and Computer Science, University of Catania, Italy
3Dept. of Mathematics, Informatics and Geosciences, University of Trieste, Italy
4Pontifical Gregorian University, Rome, Italy

Abstract
This paper adapts preexisting decision algorithms to a family ℛ𝒟ℱ = {RDF𝑛 | 𝑛 ∈ N} of languages regarding

one-argument real functions; each RDF𝑛
is a quantifier-free theory about the differentiability class 𝐶𝑛

, embodying

a fragment of Tarskian elementary algebra. The limits of decidability are also highlighted, by pointing out that

certain extensions of RDF𝑛
are undecidable. The possibility of extending RDF𝑛

into a language RDF∞
regarding

the class 𝐶∞
, without disrupting decidability, is briefly discussed.

Two sorts of individual variables, namely real variables and function variables, are available in each RDF𝑛
.

The former are used to construct terms and formulas that involve basic arithmetic operations and comparison

relators between real terms, respectively. In contrast, terms designating functions involve function variables,

constructs for addition of functions and scalar multiplication, and—outermost—𝑖-th order differentiation 𝐷𝑖[]
with 𝑖 ⩽ 𝑛. An array of predicate symbols designate various relationships between functions, as well as function

properties, that may hold over intervals of the real line; those are: function comparisons, strict and non-strict

monotonicity / convexity / concavity, comparisons between a function (or one of its derivatives) and a real term.

The decidability of RDF𝑛
relies, on the one hand, on Tarski’s celebrated decision algorithm for the algebra

of real numbers, and, on the other hand, on reduction and interpolation techniques. An interpolation method,

specifically designed for the case 𝑛 = 1, has been previously presented; another method, due to Carla Manni, can

be used when 𝑛 = 2. For larger values of 𝑛, further research on interpolation is envisaged.

MS Classification 2020: 03B25, 26A06, 20F10.

Keywords
Decidable theories, Tarski’s elementary algebra, Functions of a real variable

Introduction

This paper addresses the decision problem for a fragment of real analysis exploiting the renowned

decidability result for elementary real algebra due to Tarski [22, 23]. The Tarskian algebra being referred

to here is the first-order theory of the ordered field (R, 0, 1,+, ·,=,⩽) of real numbers: within its

context, unlike with other first-order theories about numerical domains—most prominent, among those,

the Dedekind–Peano integer arithmetic (see, e.g., [16, Chapter 3])—, an algorithm can establish whether

or not any given sentence is true. This motivates one in seeking extensions of elementary real algebra

where this decidability result is preserved: e.g., the decidability of Tarskian algebra enriched with the

exponential function resists, since long, as an unsolved issue [14]. We undertook years ago a systematic

study on enhancements of the Tarskian language, or fragments thereof, endowed with provisions

regarding real functions.

The language, dubbed RDF𝑛
, to be discussed in this paper is devoid of quantifiers but embodies,

in addition to the algebraic operators and relators, predicate symbols expressing strict and nonstrict

CILC 2024: 39th Italian Conference on Computational Logic, June 26–28, 2024, Rome, Italy
*
Corresponding author.

$ gabriele.buriola@univr.it (G. Buriola); domenico.cantone@unict.it (D. Cantone); cincotti@dmi.unict.it (G. Cincotti);

eomodeo@units.it (E. G. Omodeo); g.sparta@unigre.it (G. T. Spartà)

� https://www.dmi.unict.it/cantone (D. Cantone); https://sites.units.it/eomodeo/index.html/ (E. G. Omodeo)

� 0000-0002-1612-0985 (G. Buriola); 0000-0002-1306-1166 (D. Cantone); 0000-0001-8460-1708 (G. Cincotti);

0000-0003-3917-1942 (E. G. Omodeo); 0000-0002-8993-5851 (G. T. Spartà)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gabriele.buriola@univr.it
mailto:domenico.cantone@unict.it
mailto:cincotti@dmi.unict.it
mailto:eomodeo@units.it
mailto:g.sparta@unigre.it
https://www.dmi.unict.it/cantone
https://sites.units.it/eomodeo/index.html/
https://orcid.org/0000-0002-1612-0985
https://orcid.org/0000-0002-1306-1166
https://orcid.org/0000-0001-8460-1708
https://orcid.org/0000-0003-3917-1942
https://orcid.org/0000-0002-8993-5851
https://creativecommons.org/licenses/by/4.0

monotonicity, concavity, and convexity of 𝐶𝑛
functions of one real variable, as well as strict and

non-strict comparisons ‘>’ and ‘⩾’ between functions, over bounded or unbounded intervals. Further

primitive constructs available in the language are: operators designating pointwise addition of functions,

multiplication of a function by a scalar, and differentiation operators (up to the 𝑛-th derivative).
1

We

reduce the satisfiability problem regarding the formulas of RDF𝑛
to the truth problem for purely

existential sentences of the elementary algebra of reals; we can thus rely upon improved versions of

Tarski’s original method.
2

This paper is a sequel of [2] and [1]—hence, indirectly, of their antecedents [3, 5, 8]. As for semantics,

RDF𝑛
deals with functions endowed with continuous derivatives (up to the 𝑛-th order): in consequence

of this, a satisfiable RDF𝑚
formula might cease to be satisfiable in RDF𝑛

when 𝑚 < 𝑛.
3

Our present

language RDF𝑛
differs from the language RDF*

studied in [1] in that its syntax is richer: now we

have a batch of differentiation constructs only one of which was available in RDF*
; this calls for an

enhancement of the decision algorithm, to wit, an enhanced reduction to Tarskian algebra.

Another novelty of the subject matter of this paper, with respect to its antecedents, is greater attention

bestowed to assessing where the boundary between decidable and undecidable fragments of analysis

precisely lies.

The ongoing is organized as follows. In Sec. 1, we introduce syntax and semantics of the language of

interest, and illustrate its expressive power through a gallery of small examples. Before providing the

detailed specification of our decision algorithm in Sec. 3, in Sec. 2 we exemplify its use by manually

working out an emulation of how it would process a specific, valid formula. Then Sec. 4 provides clues

on the correctness of the proposed decision algorithm, specifying the role of an ad hoc interpolation

method. Sec. 5 explores the other side of the problem in asking which further enrichments lead to

undecidability. To end, we outline possible connections with related work, and draw conclusions.
4

1. The interpreted RDF 𝑛 language

The augmented version RDF𝑛
of the theory RDF*

of Reals with Differentiable Functions [1] is an

unquantified first-order theory dealing with reals and with real functions of class 𝐶𝑛
of one real

variable, namely functions with continuous 𝑛-th derivative. The function symbols of RDF𝑛
designate

the basic operations of real arithmetic and pointwise addition, scalar multiplication, and differentiation

(up to the 𝑛th order) of functions. Its predicate symbols designate: comparisons between reals, pointwise

comparisons of functions; strict and non-strict monotonicity, convexity, and concavity; comparisons

between functions, and comparison between their derivatives (up to the 𝑛-th order), and real terms.

This section introduces the language underlying RDF𝑛
, explains the intended meanings of its con-

structs, and briefly illustrates its use.

Syntax and semantics

The language RDF𝑛
has two infinite supplies of individual variables, belonging to the respective sorts:

numerical variables 𝑥, 𝑦, 𝑧, . . . and function variables 𝑓, 𝑔, ℎ, . . . Numerical and function variables are

supposed to range, respectively, over the set R of real numbers and over the collection of functions

which interests us. Four constants are also available:

• the symbols 0 and 1;

• the distinguished symbols +∞ and −∞, occurring as ends of interval specifications (see below).

1

Usage of the differentiation operators 𝐷𝑖[] must be reasonably restrained, e.g., each of them can only appear as lead operator

in a function term g (which will then coincide with a term of the form 𝐷[f]).
2

To make an example, polynomial methods for existential formulas with a fixed number of variables are available [19].

3

Partial evidence of this emerges from an example provided in [1, p. 128].

4

To ease the comparison between RDF𝑛
and similar previous theories, mainly RDF+

and RDF*
, the first three sections follow

much the same structure as the companion papers [2] and [1].

We next specify the syntax of terms, atoms, and formulas for RDF𝑛
.

Definition 1.1. Function terms, numerical terms, and interval specs are so defined:

a.1) Function variables are function terms;

a.2) if f and g are function terms, then f+ g is a function term;

a.3) if f is a function term, then any “scalar multiple” 𝑠 f, with 𝑠 a numerical term, is a function term.

b.1) Numerical variables and the constants 0, 1 are numerical terms;

b.2) if 𝑠 and 𝑡 are numerical terms, the following also are numerical terms:

𝑠+ 𝑡 , 𝑠− 𝑡 , and 𝑠 · 𝑡 ;

b.3) if 𝑡 is a numerical term, 𝛼 a natural number between 1 and 𝑛, and f is a function term, then

f(𝑡) and 𝐷𝛼[f](𝑡)

are numerical terms.5

c.1) An interval spec 𝐴 is an expression of any of the forms

[𝑒1, 𝑒2] , [𝑒1, 𝑒2[,]𝑒1, 𝑒2] , and]𝑒1, 𝑒2[,

where 𝑒1 stands for either a numerical term or −∞, and 𝑒2 for either a numerical term or +∞;

c.2) we dub the “extended” numerical terms 𝑒1, 𝑒2 of such an 𝐴 the ends of 𝐴 . ⊣

Throughout, f and g stand for function terms, 𝑠 and 𝑡 for numerical terms, and 𝐴 stands for an

interval spec.

Definition 1.2. An atom of RDF𝑛
is an expression of one of the forms

𝑠 = 𝑡, 𝑠 > 𝑡, f(𝑠) = 𝑡, 𝐷𝛼[f](𝑠) = 𝑡,
(f = g)𝐴, (f > g)𝐴, (f ◁▷ 𝑡)𝐴, (𝐷𝛼[f] ◁▷ 𝑡)𝐴,
Up(f)𝐴, Down(f)𝐴, Convex(f)𝐴, Concave(f)𝐴,

S_Up(f)𝐴, S_Down(f)𝐴, S_Convex(f)𝐴, S_Concave(f)𝐴,

where ◁▷ ∈ {=, <, >, ⩽, ⩾ } and 𝛼 is a natural number between 1 and 𝑛. ⊣

Definition 1.3. A formula of RDF𝑛
is any truth-functional combination of RDF𝑛

atoms. ⊣

For definiteness, we will construct the RDF𝑛
formulas from RDF𝑛

atoms by means of the usual

propositional connectives ¬,∧,∨,→,↔.

The semantics of RDF𝑛
revolves around the designation rules listed in our next definition, with which

any truth-value assignment for the formulas of RDF𝑛
must comply.

Definition 1.4. An assignment for RDF𝑛
is a mapping 𝑀 whose domain consists of all terms and

formulas of RDF𝑛
, satisfying the following conditions:

0. 𝑀0 and 𝑀1 are the real numbers 0 and 1.

5

As for the syntax, the availability of 𝐷𝛼[] with 𝛼 > 1 is the only novelty with respect to [1]. We will signal in the body

of the decision algorithm which changes this enrichment entails. The true challenge, with this enrichment, is the need to

redesign the algorithm correctness proof.

1. For each numerical variable 𝑥, 𝑀𝑥 is a real number.

2. For each function variable 𝑓 , (𝑀𝑓) is an everywhere defined real function of one real variable

of class 𝐶𝑛
, i.e., with all the first 𝑛-th derivatives continuous.

3. For each function term of the form f + g, the image

(︀
𝑀(f + g)

)︀
(𝑟) of any real number 𝑟 is

(𝑀 f)(𝑟) + (𝑀g)(𝑟).

4. For each function term of the form 𝑠 f, the function 𝑀(𝑠 f) is defined to be 𝑀𝑠 (𝑀 f).
Namely, the image

(︀
𝑀(𝑠 f)

)︀
(𝑟) of any real number 𝑟 is 𝑀𝑠

(︀
(𝑀 f)(𝑟)

)︀
.

5. For each numerical term of the form 𝑡1 ⊗ 𝑡2 with ⊗∈{+,−, ·}, 𝑀(𝑡1 ⊗ 𝑡2) is the real number

𝑀𝑡1 ⊗𝑀𝑡2.

6. For each numerical term of the form f(𝑡), 𝑀(f(𝑡)) is the real number (𝑀 f)(𝑀𝑡); for each

numerical term 𝐷𝛼[f](𝑡), 𝑀(𝐷𝛼[f](𝑡)) is the real number 𝐷𝛼[(𝑀 f)](𝑀𝑡), where 𝐷𝛼[(𝑀 f)]
denotes the 𝛼-th derivative of (𝑀 f).

7. For each interval specification𝐴,𝑀𝐴 is an interval of R of the appropriate kind, whose endpoints

are the evaluations via 𝑀 of the ends of 𝐴.
6

For example, when 𝐴 =]𝑡1, 𝑡2], then 𝑀𝐴 =]𝑀𝑡1,𝑀𝑡2].

8. Truth values are assigned to formulas of RDF𝑛
according to the following rules, where 𝑠 and 𝑡

stand for numerical terms and f, g for function terms:

a) 𝑠 = 𝑡 (respectively 𝑠 > 𝑡) is true iff 𝑀𝑠 =𝑀𝑡 (resp. 𝑀𝑠 > 𝑀𝑡) holds;

b) (f = g)𝐴 is true iff (𝑀 f)(𝑥) = (𝑀g)(𝑥) holds for all 𝑥 in 𝑀𝐴;

c) (f > g)𝐴 is true iff (𝑀 f)(𝑥) > (𝑀g)(𝑥) holds for all 𝑥 in 𝑀𝐴;

d) (f ◁▷ 𝑡)𝐴, with ◁▷ ∈ {=, <,>,⩽,⩾}, is true iff (𝑀 f)(𝑥) ◁▷ 𝑀𝑡 holds for all 𝑥 in 𝑀𝐴;

e) (𝐷[f] ◁▷ 𝑡)𝐴, with ◁▷ ∈ {=, <,>,⩽,⩾}, is true iff 𝐷[(𝑀 f)](𝑥) ◁▷ 𝑀𝑡 holds for all 𝑥 in

𝑀𝐴;

f) Up(f)𝐴 (respectively S_Up(f)𝐴) is true iff (𝑀 f) is a monotone nondecreasing (resp. strictly

increasing) function in 𝑀𝐴;

g) Convex(f)𝐴 (respectively S_Convex(f)𝐴) is true iff (𝑀 f) is a convex (resp. strictly convex)

function in 𝑀𝐴;

h) the truth values of Down(f)𝐴, Concave(f)𝐴, S_Down(f)𝐴, and S_Concave(f)𝐴 are defined

in close analogy with items f) and g);
i) the truth value which 𝑀 assigns to a formula whose lead symbol is any of ¬,∧,∨,→,↔

complies with the usual semantics of the propositional connectives.

An assignment 𝑀 is said to model a set Φ of formulas when 𝑀𝜙 is true for every 𝜙 in Φ. ⊣

Note that RDF𝑛
coincides with RDF*

(see [1]) when 𝑛 = 1.

Definition 1.5 (Derived symbols). In light of the above semantics, we tacitly enrich our language,

much as in [2], with derived dyadic and triadic comparators involving numerical terms 𝑡1, 𝑡2, and 𝑡3;

namely 𝑡1 ◁ 𝑡2 and 𝑡1 ◁▷ 𝑡2/𝑡3, where ◁ ∈ {≠, <,⩽,⩾} and ◁▷ ∈ {=, <,>,⩽,⩾}.

Additional relators intermixing function terms and numerical terms, e.g., the construct

Linear(𝑓)𝐴 ↔
Def

Concave(𝑓)𝐴 ∧ Convex(𝑓)𝐴 ,

can also be introduced by means of shortening definitions. ⊣
6

It goes without saying what is meant when 𝑀 is undefined at either end of 𝐴 (actually, 𝑀(−∞) and 𝑀(+∞) are undefined).

Some examples

Basic facts of real analysis stateable by means of RDF𝑛
formulas, with 𝑛 > 1, are:

▶ Linear(𝑓)]−∞,+∞[↔
(︀
𝐷2[𝑓] = 0

)︀
]−∞,+∞[

.

A function 𝑓 of class 𝐶2
is linear if and only if its second derivative is constantly null.

▶
{︀
(𝑎 < 𝑥 < 𝑏) ∧

[︀
(S_Convex(𝑓)[𝑎,𝑥] ∧ S_Concave(𝑓)[𝑥,𝑏]) ∨

(S_Concave(𝑓)[𝑎,𝑥] ∧ S_Convex(𝑓)[𝑥,𝑏])
]︀}︀

→ 𝐷2[𝑓](𝑥) = 0 .

Let 𝑥 be an inflection point of a 𝐶2
function 𝑓 , then the second derivative of 𝑓 in 𝑥 is null.

▶
[︁(︀
𝐷𝑘−1[𝑓] = 𝑦

)︀
]−∞,+∞[

→
(︀
𝐷𝑘[𝑓] = 0

)︀
]−∞,+∞[

]︁
∧{︁(︀

𝐷𝑘[𝑓] = 0
)︀
]−∞,+∞[

→
[︀
𝐷𝑘−1[𝑓](𝑥) = 𝑦 →

(︀
𝐷𝑘−1[𝑓] = 𝑦

)︀
]−∞,+∞[

]︀}︁
.

Let 𝑓 be a function of class 𝐶𝑛
, and 𝑘 an integer, 0 < 𝑘 ⩽ 𝑛. Then the (𝑘 − 1)-st derivative of 𝑓

is constant if and only if the 𝑘-th derivative of 𝑓 is null everywhere. (Note: 𝐷𝑘−1[𝑓] stands for 𝑓
when 𝑘 = 1.)

▶
{︁
(𝑎 < 𝑥 < 𝑏) ∧ 𝐷[𝑓](𝑥) = 0 ∧

(︀
𝐷2[𝑓] ⩾ 0

)︀
[𝑎,𝑏]

∧ 𝑓(𝑥) = 𝑦
}︁

→ (𝑓 ⩾ 𝑦)[𝑎,𝑏];{︁
(𝑎 < 𝑥 < 𝑏) ∧ 𝐷[𝑓](𝑥) = 0 ∧

(︀
𝐷2[𝑓] ⩽ 0

)︀
[𝑎,𝑏]

∧ 𝑓(𝑥) = 𝑦
}︁

→ (𝑓 ⩽ 𝑦)[𝑎,𝑏].

Let 𝑓 be a function of class 𝐶2
, whose first derivative vanishes at some point 𝑥 and whose second

derivative is non-negative (resp., non-positive) all over a neighborhood [𝑎, 𝑏] of that 𝑥. Then

𝑥 is a relative minimum (resp., maximum) point for 𝑓 . Note that an analogous conclusion can

be drawn about any function of class 𝐶2𝑘+2
, whose first, second, . . . , and (2𝑘 + 1)-st derivative

vanish at some point 𝑥 and whose (2𝑘 + 2)-nd derivative is non-negative (resp., non-positive)

all over a neighborhood [𝑎, 𝑏] of that 𝑥.

▶ {︃
(𝑎 < 𝑥 < 𝑏) ∧ 𝐷[𝑓](𝑥) = 0 ∧ 𝐷2[𝑓](𝑥) = 0 ∧[︁(︀

𝐷3[𝑓] < 0
)︀
[𝑎,𝑏]

∨
(︀
𝐷3[𝑓] > 0

)︀
[𝑎,𝑏]

]︁ }︃
→

{︃ (︀
S_Convex(𝑓)[𝑎,𝑥] ∧ S_Concave(𝑓)[𝑥,𝑏]

)︀
∨(︀

S_Concave(𝑓)[𝑎,𝑥] ∧ S_Convex(𝑓)[𝑥,𝑏]
)︀ }︃

.

Let 𝑓 be a function of class 𝐶3
, whose first and second derivative vanish at some point 𝑥,

where the third derivative of 𝑓 assumes a nonzero value. Then 𝑥 is an inflection point of 𝑓 . (A

generalized variant of this statement is left to the insightful reader.)

2. The decision algorithm at work

Establishing that an RDF𝑛
formula 𝜙 is valid is the same as establishing that its negation ¬𝜙 is unsatis-

fiable; moreover, once ¬𝜙 has been put in disjunctive normal form, satisfying it amounts to satisfying

one of its clauses. Thus, the core task regarding the decidability of RDF𝑛
is: how to determine whether

or not a given conjunction of RDF𝑛 literals (that is, RDF𝑛
atoms and negations thereof) is satisfiable?

Main steps of the decision algorithm

Via routinary flattening techniques, and in view of some basic properties of 𝐶𝑛
functions, the said task

can be converted to the one of determining the satisfiability of an arbitrary conjunction 𝜙0 of atoms of

the forms

𝑥 = 𝑦 , 𝑥 > 𝑦 , 𝑧 = 𝑥 · 𝑦 , 𝑧 = 𝑥+ 𝑦 ,
𝑦 = 𝑓(𝑥) , (𝑓 > 𝑔)𝐴 , (𝑓 = 𝑧 𝑔)𝐴 , (ℎ = 𝑓 + 𝑔)𝐴 ,

𝑦 = 𝐷𝛼[𝑓](𝑥) , (𝐷𝛼[𝑓] ◁▷ 𝑧)𝐴 , S_Up(𝑓)𝐴 , S_Down(𝑓)𝐴 ,
Convex(𝑓)𝐴 , Concave(𝑓)𝐴 , S_Convex(𝑓)𝐴 , S_Concave(𝑓)𝐴 ,

and of literals that are the complements of atoms of these forms involving an interval spec.
7

As always,

𝑥, 𝑦, 𝑧 stand for numerical variables and 𝑓, 𝑔, ℎ stand for function variables.

Through a possibly furcating process, 𝜙0 will undergo a series 𝜙0 ↝ 𝜙1 ↝ 𝜙2 ↝ 𝜙3 ↝ 𝜙4 = ̂︀𝜙 of

transformations, with no function variables occuring in the ending formula ̂︀𝜙; thereby, the satisfiability

of ̂︀𝜙 can be tested by means of Tarski’s renowned decision algorithm [23, 9]. With a slight, harmless

ambiguity we dub “our algorithm” at times our rewriting technique alone, and at times the entire

validity test consisting of it, preceded by various preparations (e.g., flattening), and supplemented with

Tarski’s decision method.

The transformations 𝜙𝑖−1 ↝ 𝜙𝑖 (𝑖 = 1, 2, 3, 4) aim to the following purposes:

1. Behavior at the ends: For a thorough comparison between relevant values (e.g., the values of a

derivative at the endpoints of specific open or semi-open intervals), we must divide each literal

containing a function- or derivative-comparison into subcases, thus of either the form (𝑓 >𝑔)𝐴
or the form (𝐷𝛼[𝑓]◁▷𝑡)𝐴, unless 𝐴 is a closed interval. By relying on function continuity, we

split each such literal into a finite disjunction covering all possible behaviors at ends. E.g.,

(𝐷𝛼[𝑓]<𝑡)[𝑣,𝑤[becomes (𝐷𝛼[𝑓]<𝑡)[𝑣,𝑤] ∨
(︀
(𝐷𝛼[𝑓]<𝑡)[𝑣,𝑤[∧𝐷𝛼[𝑓](𝑤) = 𝑡

)︀
.

2. Negative clause removal: Each negative literal with an interval specification is replaced by an

implicit existential assertion. E.g.,¬(𝑓 = 𝑔)[𝑣,𝑤] is replaced by 𝑣⩽𝑥⩽𝑤 ∧ 𝑓(𝑥) ̸= 𝑔(𝑥), where

𝑥 is a new variable.

3. Explicit evaluation of function variables: With certain salient variables 𝑣𝑗 , dubbed “domain

variables” (e.g., the variable 𝑣 in 𝑓(𝑣) = 𝑦), associate new variables 𝑦𝑓𝑗 , 𝑡1,𝑓𝑗 , . . . , 𝑡𝑛,𝑓𝑗 (one for each

function variable 𝑓) subject to the constraints 𝑦𝑓𝑗 = 𝑓(𝑣𝑗), 𝑡
1,𝑓
𝑗 = 𝐷[𝑓](𝑣𝑗), . . . , 𝑡𝑛,𝑓𝑗 = 𝐷𝑛[𝑓](𝑣𝑗).

E.g., if in RDF2
a formula involves one function variable 𝑓 and three domain variables 𝑣1, 𝑣2, 𝑣3

altogether, then this step brings 9 new numerical variables in, along with 9 equations:

𝑦𝑓1 = 𝑓(𝑣1), 𝑡1,𝑓1 = 𝐷[𝑓](𝑣1), 𝑡2,𝑓1 = 𝐷2[𝑓](𝑣1),

𝑦𝑓2 = 𝑓(𝑣2), 𝑡1,𝑓2 = 𝐷[𝑓](𝑣2), 𝑡2,𝑓2 = 𝐷2[𝑓](𝑣2),

𝑦𝑓3 = 𝑓(𝑣3), 𝑡1,𝑓3 = 𝐷[𝑓](𝑣3), 𝑡2,𝑓3 = 𝐷2[𝑓](𝑣3).

4. Elimination of function variables: Get rid of all literals involving function variables, whose

behaviours are already mimicked by the variables 𝑦𝑓𝑗 , 𝑡1,𝑓𝑗 , . . . , 𝑡𝑛,𝑓𝑗 introduced above. This elimi-

nation is obtained by introducing new number variables subject to suitable algebraic constraints.

E.g., roughly speaking, (𝐷2[𝑓] < 𝑠)[𝑣,𝑤] becomes 𝑡2,𝑓𝑣 < 𝑠 ∧ 𝑡2,𝑓𝑤 < 𝑠 ∧ 𝑡1,𝑓𝑤 −𝑡1,𝑓𝑣
𝑤−𝑣 < 𝑠.

A worked example

Our decision algorithm for RDF𝑛
is specified in full in Sec. 3; here, to convey a feel of how it works, we

consider a paradigmatic formula 𝜓 and carry out one by one the key transformations leading from 𝜓 to

a formula directly submittable to Tarski’s algorithm for elementary real algebra.

Suppose that we want to establish whether the formula{︀
(𝑎 < 𝑥 < 𝑏) ∧ S_Convex(𝑓)[𝑎,𝑥] ∧ S_Concave(𝑓)[𝑥,𝑏]

}︀
→ 𝐷2[𝑓](𝑥) = 0,

7

Here again 𝛼∈{1, . . . , 𝑛}.

dubbed 𝜓 in the ongoing, is true under every value assignment; equivalently, we can check whether

its negation ¬𝜓 is unsatisfiable. Using classical properties of implication, the negation amounts to the

following formula 𝜙:

(𝑎 < 𝑥 < 𝑏) ∧ S_Convex(𝑓)[𝑎,𝑥] ∧ S_Concave(𝑓)[𝑥,𝑏] ∧ 𝐷2[𝑓](𝑥) ̸= 0.

Then 𝜙 undergoes the following transformations:

1. Behavior at the ends: Generally speaking, function-comparison literals of the form (𝑓 > 𝑔)𝐴
must be bestowed special care, possibly leading to a subcase analysis. Since no such literal

appears in our 𝜙, this phase produces 𝜙1 := 𝜙 .

2. Negative clause removal: This phase removes negative literals with interval specifications, such

as ¬
(︀
𝐷2[𝑓] = 𝑦

)︀
[𝑎,𝑏]

, substituting them with suitable witnesses; for example, ¬
(︀
𝐷2[𝑓] = 𝑦

)︀
[𝑎,𝑏]

would be replaced by the following conjunction:

𝑎 ⩽ 𝑥 ⩽ 𝑏 ∧𝐷2[𝑓](𝑥) = 𝑠 ∧ 𝑠 ̸= 𝑦.

Since the only negated literal in 𝜙, 𝐷2[𝑓](𝑥) ̸= 0, is pointwise, this phase produces 𝜙2 := 𝜙1 .

3. Explicit evaluation of function variables: This phase introduces a new variable to designate each

function-application term ℓ(𝑣), where ℓ stands for a function variable of 𝜙 and 𝑣 for one of its

so-called ‘domain’ variables. To describe evaluation more transparently, let us do the renaming:

𝑎↝ 𝑣1, 𝑥↝ 𝑣2, 𝑏↝ 𝑣3. From the previous formula 𝜙2 we get the following 𝜙3:

(𝑣1 < 𝑣2 < 𝑣3) ∧ S_Convex(𝑓)[𝑣1,𝑣2] ∧ S_Concave(𝑓)[𝑣2,𝑣3] ∧ 𝐷2[𝑓](𝑣2) ̸= 0 ∧
𝑓(𝑣1) = 𝑦𝑓1 ∧ 𝑓(𝑣2) = 𝑦𝑓2 ∧ 𝑓(𝑣3) = 𝑦𝑓3 ∧

𝐷1[𝑓](𝑣1) = 𝑡𝑓1 ∧ 𝐷1[𝑓](𝑣2) = 𝑡𝑓2 ∧ 𝐷1[𝑓](𝑣3) = 𝑡𝑓3 ∧
𝐷2[𝑓](𝑣1) = 𝑠𝑓1 ∧ 𝐷2[𝑓](𝑣2) = 𝑠𝑓2 ∧ 𝐷2[𝑓](𝑣3) = 𝑠𝑓3 ∧ 𝑠𝑓2 ̸= 0.

4. Elimination of function variables: This final phase removes all literals still containing function

variables. We get rid of them by suitable replacements involving algebraic conditions, such as

the difference quotient for literals regarding derivatives. At the end we obtain an equisatisfiable

formula that can be tested for satisfiability by Tarski’s algorithm.

From the previous formula 𝜙3 we get the following final formula 𝜙4:

(𝑣1 < 𝑣2 < 𝑣3) ∧ 𝑠𝑓2 ̸= 0 ∧
𝑡𝑓1 <

𝑦𝑓2−𝑦𝑓1
𝑣2−𝑣1

< 𝑡𝑓2 ∧ 𝑠𝑓1 ⩾ 0 ∧ 𝑠𝑓2 ⩾ 0 ∧

𝑡𝑓2 >
𝑦𝑓3−𝑦𝑓2
𝑣3−𝑣2

> 𝑡𝑓3 ∧ 𝑠𝑓2 ⩽ 0 ∧ 𝑠𝑓3 ⩽ 0.

In particular, the unsatisfiability of this last formula is given by the conjunction:

𝑠𝑓2 ̸= 0 ∧ 𝑠𝑓2 ⩾ 0 ∧ 𝑠𝑓2 ⩽ 0.

3. The decision algorithm, in detail

When one deals with an unquantified language such as RDF𝑛
, which is closed with respect to proposi-

tional connectives, being able to determine algorithmically whether or not a formula is valid amounts

to establishing whether the negation thereof is satisfiable or unsatisfiable. (E.g., ascertaining the validity

of the formula

{︀
(𝑎 < 𝑥 < 𝑏) ∧ S_Convex(𝑓)[𝑎,𝑥] ∧ S_Concave(𝑓)[𝑥,𝑏]

}︀
→ 𝐷2[𝑓](𝑥) = 0 amounts

to checking (𝑎 < 𝑥 < 𝑏) ∧ S_Convex(𝑓)[𝑎,𝑥] ∧ S_Concave(𝑓)[𝑥,𝑏] ∧𝐷2[𝑓](𝑥) ̸= 0 for unsatisfiability .)

We prefer to address the satisfiability problem for RDF𝑛
here, so our algorithm is supposed to produce

a yes/no answer, where ‘yes’ means that 𝜙 admits a model.

The idea is to transform, through a finite number of steps, the given RDF𝑛
formula 𝜙 to be tested

for satisfiability into a finite collection of formulas 𝜓𝑖, still devoid of quantifiers, each belonging to

elementary algebra of real numbers; this will be done so that 𝜙 is satisfiable if and only if at least one of

the resulting 𝜓𝑖’s is satisfiable. Each resulting 𝜓𝑖 can be tested via Tarski’s decision algorithm.

First we discuss how to reduce our formula 𝜙 to a particular format, called ordered form.

Normalization
Let T be an unquantified, possibly multi-sorted, first-order theory, endowed with: equality =, a

denumerable infinity of individual variables 𝑥1, 𝑥2, . . . , function symbols 𝐹1, 𝐹2, . . . , and predicate

symbols 𝑃1, 𝑃2,

Definition 3.1. A formula 𝜙 of T is said to be flat if it is a conjunction of literals of the forms:

𝑥 = 𝑦 , 𝑥 = 𝐹 (𝑥1, . . . , 𝑥𝑛) , 𝑥 ̸= 𝑦 , 𝑃 (𝑥1, . . . , 𝑥𝑛) , ¬𝑃 (𝑥1, . . . , 𝑥𝑛) ,
with 𝑥, 𝑦, and the 𝑥𝑖’s numerical variables, 𝐹 a function symbol and 𝑃 a predicate symbol.

Let S be the class of all flat formulas of T ; the following holds:

Lemma 3.1. The decision problem for T , to wit, the problem of algorithmically determining whether or
not any given formula 𝜙 in T is satisfiable, reduces to the analogous problem regarding S .

Proof. Each satisfiability algorithm for formulas in T clearly works also for formulas in the sublanguage

S of T . For the converse, suppose that an algorithmic satisfiability test for S is available, and let 𝜙
be any formula of T . Via routinary techniques, which in our case include rewriting rules such as

(ℎ > 𝑓 + 𝑔)𝐴 ↝ (ℎ > 𝑘)𝐴 ∧ (𝑘 = 𝑓 + 𝑔)]−∞,+∞[,

(𝐷𝛼[𝑓 + 𝑔] = 𝑦)𝐴 ↝ (𝐷𝛼[𝑘] = 𝑦)𝐴 ∧ (𝑘 = 𝑓 + 𝑔)]−∞,+∞[,

(S_Up(𝑓 + 𝑔))𝐴 ↝ (S_Up(𝑘))𝐴 ∧ (𝑘 = 𝑓 + 𝑔)]−∞,+∞[,

(𝑓 + 𝑔 = ℎ+ 𝑙)𝐴 ↝ (𝑘 = ℎ+ 𝑙)𝐴 ∧ (𝑘 = 𝑓 + 𝑔)]−∞,+∞[,

𝑓(𝑓(𝑥)) = 𝑦 ↝ 𝑦 = 𝑓(𝑧) ∧ 𝑧 = 𝑓(𝑥) ,
(Up(𝑓))𝐴 ↝ (𝐷[𝑓] ⩾ 0)𝐴

(‡)

(likewise, 𝐷[𝑓](𝐷[𝑓](𝑥)) = 𝑦 reduces to 𝑦 = 𝐷[𝑓](𝑧) ∧ 𝑧 = 𝐷[𝑓](𝑥), etc.), one transforms 𝜙 into an

equisatisfiable formula 𝜓 such that

(1) every term occurring in 𝜓 either is an individual variable or has the form 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛),
where 𝑥1, 𝑥2, . . . , 𝑥𝑛 are individual variables and 𝐹 is a function symbol;

(2) every atom in 𝜓 either has the form 𝑥 = 𝑡, where 𝑥 and 𝑡 are an individual variable and a term,

respectively, or has the form 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑥1, 𝑥2, . . . , 𝑥𝑛 are individual variables

and 𝑃 is a predicate symbol.

Then one brings 𝜓 to disjunctive normal form, thus obtaining a formula 𝜓1 ∨ · · · ∨ 𝜓𝜅, where all

𝜓𝑖’s are conjunctions. Additionally, we may assume that each 𝜓𝑖 is flat, because any literal of type

¬𝑥=𝐹 (𝑦1, . . . , 𝑦𝑛) within it can be replaced by the conjunction 𝑥 ̸= 𝑧 ∧ 𝑧 = 𝐹 (𝑦1, . . . , 𝑦𝑛), where 𝑧
is a brand new variable. Our claim follows, since

𝜙 is satisfiable ↔ 𝜓 is satisfiable ↔ 𝜓𝑖 is satisfiable for some 𝑖
and since all transformations used to obtain the conjunctions 𝜓1, . . . , 𝜓𝜅 are effective.

We can now proceed to define an ordered form for RDF𝑛
formulas.

Definition 3.2. A domain variable in a formula 𝜙 of RDF𝑛
is a numerical variable 𝑥 that occurs in 𝜙

either as the argument of a term of one of the forms 𝑓(𝑥) and 𝐷𝛼[𝑓](𝑥), with 𝑓 a function variable, or

as an end of some interval mentioned in 𝜙 (as exemplified by Convex(𝑓)[𝑥,+∞[).

Definition 3.3. An RDF𝑛
formula is said to be in ordered form if it is flat and has the form 𝜙 ∧⋀︀𝑛−1

𝑖=1 (𝑥𝑖 < 𝑥𝑖+1), where {𝑥1, . . . , 𝑥𝑛} is the set of all distinct domain variables in 𝜙.

The family RDF𝑛
𝑜𝑟𝑑 of all ordered formulas of RDF𝑛

is a strict subset of RDF𝑛
; notwithstanding:

Lemma 3.2. (Cf. [8, Lemma 1.4.3 on p.15]) RDF𝑛 is decidable if and only if RDF𝑛
𝑜𝑟𝑑 is decidable.

The algorithm

We describe next the decision algorithm for satisfiability of formulas of RDF𝑛
. In view of Lemma 3.2,

w.l.o.g. we assume that 𝜙 is given in ordered form. Moreover, using new function variables ℎ subject to

constraints of either the form (ℎ = 𝑓 + 𝑔)𝐴 or the form (ℎ = 𝑧 𝑔)𝐴, all literals, except those defining

these new ℎ’s have been superseded by literals where no compound function terms occur. For example,

(𝑓 + 𝑔 = 3 · 𝑘)[0,1] gets rewritten as (ℎ1 = 𝑓 + 𝑔)]−∞,+∞[∧ (ℎ2 = 3 · 𝑘)]−∞,+∞[∧ (ℎ1 = ℎ2)[0,1]
— further examples can be found in the rules in (‡). Hence, in view of some basic properties of 𝐶𝑛

functions, the algorithm will only need to consider atomic formulas of the types

𝑥 = 𝑦 , 𝑥 > 𝑦 , 𝑧 = 𝑥 · 𝑦 , 𝑧 = 𝑥+ 𝑦 ,
𝑦 = 𝑓(𝑥) , (𝑓 > 𝑔)𝐴 , (𝑓 = 𝑧 𝑔)𝐴 , (ℎ = 𝑓 + 𝑔)𝐴 ,

𝑦 = 𝐷𝛼[𝑓](𝑥) , (𝐷𝛼[𝑓] ◁▷ 𝑧)𝐴 , S_Up(𝑓)𝐴 , S_Down(𝑓)𝐴 ,
Convex(𝑓)𝐴 , Concave(𝑓)𝐴 , S_Convex(𝑓)𝐴 , S_Concave(𝑓)𝐴 ,

where ◁▷ ∈ {=, <, >, ⩽, ⩾ }. (These types form a streamlined subset of the ones seen in Def. 1.2,

since they result from the flattening process mentioned earlier.) Moreover,

Remark 1. Leaving out of consideration literals of the types (𝑓 > 𝑔)𝐴, (𝐷
𝛼[𝑓] > 𝑦)𝐴, (𝐷

𝛼[𝑓] < 𝑦)𝐴,

it suffices to take into account only closed intervals 𝐴; in fact, by continuity, the other properties are

valid in an open or semi-open interval if and only if they are valid in its closure, e.g., (𝑓 = 𝑔)]𝑤1,𝑤2[

holds iff (𝑓 = 𝑔)[𝑤1,𝑤1] holds. ⊣
We can now focus on the algorithm which takes a formula 𝜙 of RDF𝑛

and reduces it, via a series

𝜙↝ 𝜙1 ↝ 𝜙2 ↝ 𝜙3 ↝ 𝜙4 = 𝜓 of transformations, to a formula 𝜓 such that:

1. 𝜙 and 𝜓 are equisatisfiable,

2. 𝜓 is a Tarskian formula, i.e., one containing only numerical variables, the arithmetical operators

+, · and the predicate symbols =, <.

As recalled in the introduction, there exists a decision algorithm for Tarskian formulas (cf. [23, 9]). A

decision algorithm for RDF𝑛
results from integrating Tarski’s decision algorithm with the reduction

𝜙↝ 𝜓 we are about to present.

In the following, 𝑤𝑖 denotes a numerical variable, 𝑧𝑖 an “extended” numerical variable and 𝛼 a natural

number between 1 and 𝑛.

The series of transformations we need goes as follows:

1. 𝜙↝ 𝜙1: behavior at the endpoints.

a) We rewrite each atom of the form (𝑓 > 𝑔)]−∞,𝑤2[, where 𝑓, 𝑔 are function variables and

𝑤2 is a numerical variable, as the formula (𝑓 > 𝑔)]−∞,𝑤1] ∧ (𝑓 > 𝑔)[𝑤1,𝑤2[∧ 𝑤1<𝑤2 ,
where 𝑤1 is the first variable in the ordering of domain variables, if 𝑤2 is preceded by at

least one such variable; otherwise, 𝑤1 is a brand new domain variable.

We also perform the specular rewriting:

(𝑓 > 𝑔)]𝑤1,+∞[↝ (𝑓 > 𝑔)]𝑤1,𝑤2] ∧ (𝑓 > 𝑔)[𝑤2,+∞[∧ 𝑤1 < 𝑤2 .

Thanks to the rewritings just made, every comparison between functions will refer either

to a closed interval or to a bounded interval. (The rewritings to be made at step c) will

serve a similar aim.)

b) Let 𝑎, 𝑏 be real numbers such that 𝑎<𝑏, and 𝑓, 𝑔 be real continuous functions in the closed

interval [𝑎, 𝑏]; then 𝑓 >𝑔 holds in the open interval]𝑎, 𝑏[if and only if either

i. 𝑓 > 𝑔 all over [𝑎, 𝑏]; or

ii. 𝑓 > 𝑔 all over [𝑎, 𝑏[, and 𝑓(𝑏) = 𝑔(𝑏); or

iii. 𝑓 > 𝑔 all over]𝑎, 𝑏], and 𝑓(𝑎) = 𝑔(𝑎); or

iv. 𝑓 > 𝑔 all over]𝑎, 𝑏[, and 𝑓(𝑎) = 𝑔(𝑎) ∧ 𝑓(𝑏) = 𝑔(𝑏)

holds. By virtue of the previous equivalences, we perform the following actions:

b1) We rewrite a conjunct of this or of an alike form, namely an atom of one of the forms

(𝑓 > 𝑔)]𝑤1,𝑤2[, (𝑓 > 𝑔)[𝑤1,𝑤2[, (𝑓 > 𝑔)]𝑤1,𝑤2] ,

as an equivalent disjunction comprising 4 or just 2 alternatives; in particular:

(𝑓 > 𝑔)]𝑤1,𝑤2[↝ (𝑓 > 𝑔)[𝑤1,𝑤2] ∨
((𝑓 > 𝑔)[𝑤1,𝑤2[∧ 𝑓(𝑤2) = 𝑔(𝑤2)) ∨
((𝑓 > 𝑔)]𝑤1,𝑤2] ∧ 𝑓(𝑤1) = 𝑔(𝑤1)) ∨
((𝑓 > 𝑔)]𝑤1,𝑤2[∧ 𝑓(𝑤1) = 𝑔(𝑤1) ∧ 𝑓(𝑤2) = 𝑔(𝑤2)) ,

(𝑓 > 𝑔)[𝑤1,𝑤2[↝ (𝑓 > 𝑔)[𝑤1,𝑤2] ∨ ((𝑓 > 𝑔)[𝑤1,𝑤2[∧ 𝑓(𝑤2) = 𝑔(𝑤2)) ,

(𝑓 > 𝑔)]𝑤1,𝑤2] ↝ (𝑓 > 𝑔)[𝑤1,𝑤2] ∨ ((𝑓 > 𝑔)]𝑤1,𝑤2] ∧ 𝑓(𝑤1) = 𝑔(𝑤1)) ,

b2) Each such rewriting disrupts the structure of the overall formula, which we can

readily restore by bringing it again to disjunctive normal form 𝛿1∨𝛿2∨· · ·∨𝛿𝑛 (where

𝑛∈{2, 4}) by means of the distributive law (𝛼 ∨ 𝛽) ∧ 𝛾 ↔ (𝛼 ∧ 𝛾) ∨ (𝛽 ∧ 𝛾) , and

then working on each 𝛿𝑖 separately in the sequel of this algorithm.

b3) Let 𝑤1, 𝑤2 be numerical variables and 𝑓, 𝑔 be function variables. In each 𝛿𝑖 where

the literals (𝑓 > 𝑔)]𝑤1,𝑤2[, 𝑓(𝑤1)=𝑔(𝑤1), and 𝑓(𝑤2)=𝑔(𝑤2) occur together, when

𝑤1 < 𝑤2 as ordered domain variables and there are no domain variables between

𝑤1 and 𝑤2, we add the literals 𝑤1 <𝑤, 𝑤 < 𝑤2 and 𝑓(𝑤) = 𝑧, where 𝑤 and 𝑧 are

new numerical variables. Plainly, the resulting formula and the original one are

equisatisfiable.

c) We then rewrite each atom of the form (𝐷𝛼[𝑓] > 𝑦)]−∞,𝑤2[,where 𝑓 is a function variable

and 𝑦, 𝑤2 are numerical variables, as the formula (𝐷𝛼[𝑓] > 𝑦)]−∞,𝑤1] ∧ (𝐷𝛼[𝑓] >
𝑦)[𝑤1,𝑤2[∧ 𝑤1<𝑤2 , where 𝑤1 is the first variable in the ordering of domain variables if

𝑤2 is preceded by at least one such variable; otherwise, 𝑤1 is a brand new domain variable.

We also perform the specular rewriting:

(𝐷𝛼[𝑓] > 𝑦)]𝑤1,+∞[↝ (𝐷𝛼[𝑓] > 𝑦)]𝑤1,𝑤2] ∧ (𝐷𝛼[𝑓] > 𝑦)[𝑤2,+∞[∧ 𝑤1 < 𝑤2 .
We handle similarly also the two cases (𝐷𝛼[𝑓] < 𝑦)]−∞,𝑤2[and (𝐷𝛼[𝑓] < 𝑦)]𝑤1,+∞[.

By these transformations we obtain an equisatisfiable formula.

d) Let 𝑎, 𝑏, and 𝑡 be real numbers and 𝑓 a function, with 𝑓 ∈ 𝐶𝑛([𝑎, 𝑏]). Then 𝑓𝛼, the 𝛼-th

derivative of 𝑓 , is greater than 𝑡 in]𝑎, 𝑏[, 𝑓𝛼 > 𝑡, if and only if one of the following holds:

i. 𝑓𝛼 > 𝑡 in [𝑎, 𝑏],
ii. 𝑓𝛼 > 𝑡 in [𝑎, 𝑏[and 𝑓𝛼(𝑏) = 𝑡,

iii. 𝑓𝛼 > 𝑡 in]𝑎, 𝑏] and 𝑓𝛼(𝑎) = 𝑡,
iv. 𝑓𝛼 > 𝑡 in]𝑎, 𝑏[, 𝑓𝛼(𝑎) = 𝑡 and 𝑓𝛼(𝑏) = 𝑡.

The actions to be made are similar to the ones made under b):

d1) We rewrite conjuncts of the forms (𝐷𝛼[𝑓] > 𝑦)]𝑤1,𝑤2[, (𝐷𝛼[𝑓] > 𝑦)[𝑤1,𝑤2[, and

(𝐷𝛼[𝑓] > 𝑦)]𝑤1,𝑤2] , as equivalent disjunctions; for example:

(𝐷𝛼[𝑓] > 𝑦)]𝑤1,𝑤2] ↝ (𝐷𝛼[𝑓] > 𝑦)[𝑤1,𝑤2] ∨
(︀
(𝐷𝛼[𝑓] > 𝑦)]𝑤1,𝑤2] ∧ 𝐷𝛼[𝑓](𝑤1) =

𝑦
)︀
.

We proceed similarly for (𝐷𝛼[𝑓] < 𝑦)]𝑤1,𝑤2[, (𝐷
𝛼[𝑓] < 𝑦)[𝑤1,𝑤2[, (𝐷

𝛼[𝑓] < 𝑦)]𝑤1,𝑤2].

d2) We bring again the overall formula into disjunctive normal form, taking the distributive

law into account.

d3) If in a formula three literals (𝐷𝛼[𝑓] > 𝑦)]𝑤1,𝑤2[, 𝐷
𝛼[𝑓](𝑤1) = 𝑦, and𝐷𝛼[𝑓](𝑤2) = 𝑦

occur together, and they are such that 𝑤1 < 𝑤2 as ordered domain variables, and

there are no domain variables between 𝑤1 and 𝑤2, we add the following literals:

𝑤1< 𝑤, 𝑤< 𝑤2 and 𝑓(𝑤) = 𝑧. We treat (𝐷𝛼[𝑓] < 𝑦)]𝑤1,𝑤2[likewise.

By applying rules a), b), c), and d) to a formula 𝜓 in ordered form, we obtain a finite disjunction

of 𝜓𝑖 ordered formulas such that 𝜓 is satisfiable if and only if at least one of the 𝜓𝑖 is satisfiable.

To each 𝜓𝑖 we apply the rest of the algorithm.

2. 𝜙1 ↝ 𝜙2: negative-clause removal.

From 𝜙1 we construct an equisatisfiable formula 𝜙2 within which literals refferring to intervals

have no negative occurrences. The general idea applied in this step is to substitute every negative

clause involving a function symbol along with an interval spec with an implicit existential

assertion.

For the sake of simplicity, in the following:

• 𝑥, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3 will be numerical variables, new w.r.t. the formula considered;

• we use the notation 𝑥≼𝑦 as a shorthand for 𝑥⩽𝑦 when 𝑥, 𝑦 are both numerical variables;

when either 𝑥 is −∞ or 𝑦 is +∞, 𝑥≼𝑦 stands for a true literal (e.g., 0 = 0).

a) Replace each literal ¬(𝑓 = 𝑧 𝑔)[𝑧1,𝑧2] occurring in 𝜙1 by the formula (involving a new

function variable ℎ) (𝑧1 ≼ 𝑥 ≼ 𝑧2)∧𝑦1 = 𝑓(𝑥)∧𝑦2 = ℎ(𝑥)∧¬(𝑦1 = 𝑦2)∧(ℎ = 𝑧 𝑔)[𝑧1,𝑧2].

b) Replace each literal ¬(ℎ = 𝑓 + 𝑔)[𝑧1,𝑧2] occurring in 𝜙1 by the formula (involving a new

function variable 𝑙) (𝑧1 ≼ 𝑥 ≼ 𝑧2)∧𝑦1 = ℎ(𝑥)∧𝑦2 = 𝑙(𝑥)∧¬(𝑦1 = 𝑦2)∧(𝑙 = 𝑓+𝑔)[𝑧1,𝑧2].

c) Replace each literal ¬(𝑓 > 𝑔)[𝑧1,𝑧2] occurring in 𝜙1 by the formula:

(𝑧1 ≼ 𝑥 ≼ 𝑧2) ∧ 𝑦1 = 𝑓(𝑥) ∧ 𝑦2 = 𝑔(𝑥) ∧ (𝑦1 ⩽ 𝑦2).

d) Replace each literal ¬(𝐷𝛼[𝑓] ◁▷ 𝑦)[𝑧1,𝑧2] occurring in 𝜙1 by the formula:

(𝑧1 ≼ 𝑥 ≼ 𝑧2) ∧ 𝑦1 = 𝐷𝛼[𝑓](𝑥) ∧ ¬(𝑦1 ◁▷ 𝑦) , where ◁▷∈{<,⩽,=,⩾, >} .
e) Replace each literal ¬S_Up (𝑓)[𝑧1,𝑧2] (resp. ¬ S_Down (𝑓)[𝑧1,𝑧2]) occurring in 𝜙1 by the

formula Γ ∧ 𝑦1 ⩾ 𝑦2 (resp. Γ ∧ 𝑦1 ⩽ 𝑦2) , where Γ := (𝑧1 ≼ 𝑥1 < 𝑥2 ≼ 𝑧2) ∧ 𝑦1 =
𝑓(𝑥1) ∧ 𝑦2 = 𝑓(𝑥2).

f) Replace each literal ¬ Convex(𝑓)[𝑧1,𝑧2] (resp. ¬ S_Convex (𝑓)[𝑧1,𝑧2]) occurring in 𝜙1 by

Γ∧(𝑦2−𝑦1)(𝑥3−𝑥1) > (𝑥2−𝑥1)(𝑦3−𝑦1) (resp. Γ∧(𝑦2−𝑦1)(𝑥3−𝑥1) ⩾ (𝑥2−𝑥1)(𝑦3−
𝑦1)) , where Γ := (𝑧1 ≼ 𝑥1 < 𝑥2 < 𝑥3 ≼ 𝑧2) ∧ 𝑦1 = 𝑓(𝑥1) ∧ 𝑦2 = 𝑓(𝑥2) ∧ 𝑦3 = 𝑓(𝑥3).
Literals of the forms ¬ Concave(𝑓)[𝑧1,𝑧2], ¬ S_Concave (𝑓)[𝑧1,𝑧2] are handled similarly.

Analogously, with only slight changes, we can remove literals about open and semi-open intervals:

e.g., ¬(𝑓 > 𝑔)]𝑤1,𝑤2] becomes (𝑤1 < 𝑥 ⩽ 𝑤2) ∧ 𝑦1 = 𝑓(𝑥) ∧ 𝑦2 = 𝑔(𝑥) ∧ (𝑦1 ⩽ 𝑦2).

Equisatisfiability of the formulas 𝜙1 and 𝜙2 is straightforward to prove. According to Lemma 3.1

and Lemma 3.2, we can transform 𝜙2, to obtain an equivalent formula in ordered form with

domain variables 𝑣1, 𝑣2, . . . , 𝑣𝑟 .

3. 𝜙2 ↝ 𝜙3: explicit evaluation of function variables.

This step is preparatory to the elimination of the functional clauses, by explicit evaluation of

function variables over domain variables. For each such variable 𝑣𝑗 and for every function

variable 𝑓 occurring in 𝜙2, introduce 𝑛+ 1 new numerical variables 𝑦𝑓𝑗 , 𝑡1,𝑓𝑗 , . . . , 𝑡𝑛,𝑓𝑗 and add

the literals 𝑦𝑓𝑗 = 𝑓(𝑣𝑗), 𝑡
1,𝑓
𝑗 = 𝐷[𝑓](𝑣𝑗), . . . , 𝑡𝑛,𝑓𝑗 = 𝐷𝑛[𝑓](𝑣𝑗) to 𝜙2. Moreover, for each literal

𝑥=𝑓(𝑣𝑗) already occurring in 𝜙2, add the literal 𝑥=𝑦𝑓𝑗 into 𝜙3; and similarly, for each literal of

type 𝑥=𝐷𝛼[𝑓](𝑣𝑗) already occurring in 𝜙2 , insert the literal 𝑥= 𝑡𝛼,𝑓𝑗 into 𝜙3.

The formula 𝜙3 resulting from these insertions and the original 𝜙2 are clearly equisatisfiable.

4. 𝜙3 ↝ 𝜙4: elimination of function variables.

As a final step, we get rid of all literals containing function variables.

Define the index function 𝑖𝑛𝑑 :𝑉 ∪ {−∞,+∞} → {1, 2, . . . , 𝑟} over the set {𝑣1, 𝑣2, . . . , 𝑣𝑟} of

distinct domain variables of 𝜙3 as follows:

𝑖𝑛𝑑(𝑥) :=

⎧⎨⎩
1 if 𝑥 = −∞,
𝑙 if 𝑥 = 𝑣𝑙 for some 𝑙 ∈ {1, 2, . . . , 𝑟},
𝑟 if 𝑥 = +∞.

For each function symbol 𝑓 occurring in𝜙3, introduce new numerical variables 𝑘𝑓0 , 𝑘
𝑓
𝑟 , 𝛾

1,𝑓
0 , . . . , 𝛾𝑛,𝑓0 ,

𝛾1,𝑓𝑟 , . . . , 𝛾𝑛,𝑓𝑟 , and proceed as follows:

a) For each literal (𝑓 = 𝑔)[𝑧1,𝑧2] occurring in 𝜙3, add all literals 𝑦𝑓𝑖 = 𝑦𝑔𝑖 , 𝑡
1,𝑓
𝑖 = 𝑡1,𝑔𝑖 , . . . ,

𝑡𝑛,𝑓𝑖 = 𝑡𝑛,𝑔𝑖 whose subscript 𝑖 satisfies 𝑖𝑛𝑑(𝑧1) ⩽ 𝑖 ⩽ 𝑖𝑛𝑑(𝑧2); moreover, if 𝑧1 = −∞
introduce the literals 𝛾1,𝑓0 =𝛾1,𝑔0 , . . . , 𝛾𝑛,𝑓0 =𝛾𝑛,𝑔0 , and if 𝑧2 = +∞ introduce the literals

𝛾1,𝑓𝑟 =𝛾1,𝑔𝑟 , . . . , 𝛾𝑛,𝑓𝑟 =𝛾𝑛,𝑔𝑟 .

b) For each literal (𝑓 = 𝑧 𝑔)[𝑧1,𝑧2] occurring in 𝜙3, add all literals 𝑦𝑓𝑖 = 𝑧 𝑦𝑔𝑖 , 𝑡
1,𝑓
𝑖 =

𝑧 𝑡1,𝑔𝑖 , . . . , 𝑡𝑛,𝑓𝑖 = 𝑧 𝑡𝑛,𝑔𝑖 , whose subscript 𝑖 satisfies 𝑖𝑛𝑑(𝑧1) ⩽ 𝑖 ⩽𝑖𝑛𝑑(𝑧2); moreover, if

𝑧1 = −∞ then introduce the literals 𝛾1,𝑓0 = 𝑧 𝛾1,𝑔0 , . . . , 𝛾𝑛,𝑓0 = 𝑧 𝛾𝑛,𝑔0 , and if 𝑧2 = +∞
then introduce the literals 𝛾1,𝑓𝑟 =𝑧 𝛾1,𝑔𝑟 , . . . , 𝛾𝑛,𝑓𝑟 = 𝑧 𝛾𝑛,𝑔𝑟 .

c) For each literal (ℎ = 𝑓 + 𝑔)[𝑧1,𝑧2] occurring in 𝜙3, add all literals 𝑦ℎ𝑖 = 𝑦𝑓𝑖 + 𝑦𝑔𝑖 , 𝑡
1,ℎ
𝑖 =

𝑡1,𝑓𝑖 +𝑡1,𝑔𝑖 , . . . , 𝑡𝑛,ℎ𝑖 = 𝑡𝑛,𝑓𝑖 +𝑡𝑛,𝑔𝑖 whose subscript 𝑖 satisfies 𝑖𝑛𝑑(𝑧1)⩽ 𝑖⩽ 𝑖𝑛𝑑(𝑧2); moreover,

if 𝑧1 = −∞ then introduce the literals 𝛾1,ℎ0 =𝛾1,𝑓0 + 𝛾1,𝑔0 , . . . , 𝛾𝑛,ℎ0 = 𝛾𝑛,𝑓0 + 𝛾𝑛,𝑔0 , and if

𝑧2 = +∞ then introduce the literals 𝛾1,ℎ𝑟 =𝛾1,𝑓𝑟 + 𝛾1,𝑔𝑟 , . . . , 𝛾𝑛,ℎ𝑟 = 𝛾𝑛,𝑓𝑟 + 𝛾𝑛,𝑔𝑟 .

d) For literals of type (𝑓 > 𝑔)𝐴, we consider separately bounded and unbounded intervals:

d1) For each literal (𝑓 >𝑔)[𝑤1,𝑤2] (resp. (𝑓 >𝑔)]𝑤1,𝑤2[, (𝑓 > 𝑔)[𝑤1,𝑤2[, (𝑓 >𝑔)]𝑤1,𝑤2]) oc-

curring in 𝜙3, add the literals 𝑦𝑓𝑖 > 𝑦𝑔𝑖 with 𝑖𝑛𝑑(𝑤1)⩽ 𝑖⩽ 𝑖𝑛𝑑(𝑤2) (resp. 𝑖𝑛𝑑(𝑤1)<
𝑖 < 𝑖𝑛𝑑(𝑤2), 𝑖𝑛𝑑(𝑤1) ⩽ 𝑖 < 𝑖𝑛𝑑(𝑤2), and 𝑖𝑛𝑑(𝑤1) < 𝑖 ⩽ 𝑖𝑛𝑑(𝑤2)). Moreover, if

𝑤1<𝑤2 as domain variables, in the case (𝑓 > 𝑔)]𝑤1,𝑤2[(resp. (𝑓 > 𝑔)[𝑤1,𝑤2[, (𝑓 >

𝑔)]𝑤1,𝑤2]) also add the literals 𝑡1,𝑓𝑖𝑛𝑑(𝑤1)
⩾ 𝑡1,𝑔𝑖𝑛𝑑(𝑤1)

, 𝑡1,𝑓𝑖𝑛𝑑(𝑤2)
⩽ 𝑡1,𝑔𝑖𝑛𝑑(𝑤2)

(resp. 𝑡1,𝑓𝑖𝑛𝑑(𝑤2)
⩽

𝑡1,𝑔𝑖𝑛𝑑(𝑤2)
or 𝑡1,𝑓𝑖𝑛𝑑(𝑤1)

⩾ 𝑡1,𝑔𝑖𝑛𝑑(𝑤1)
).

d2) For each literal (𝑓 > 𝑔)]−∞,+∞[(resp. (𝑓 > 𝑔)]−∞,𝑤1], (𝑓 > 𝑔)[𝑤1,+∞[) occurring in

𝜙3, add the literal 𝑦𝑓𝑖 > 𝑦𝑔𝑖 with 1⩽ 𝑖⩽𝑟 (resp. 1⩽ 𝑖⩽ 𝑖𝑛𝑑(𝑤1), 𝑖𝑛𝑑(𝑤1)⩽ 𝑖⩽𝑟), and

the literals 𝑘𝑓0 ⩾ 𝑘𝑔0 , 𝑘
𝑓
𝑟 ⩾ 𝑘𝑔𝑟 (resp. 𝑘𝑓0 ⩾ 𝑘𝑔0 or 𝑘𝑓𝑟 ⩾ 𝑘𝑔𝑟).

e) For literals of type (𝐷𝛼[𝑓] ◁▷ 𝑦)𝐴, we consider separately closed and unclosed interval

specifications:
8

e1) For each literal (𝐷[𝑓]𝛼 ◁▷ 𝑦)[𝑧1,𝑧2] occurring in 𝜙3, where ◁▷∈{=, <,>,⩽,⩾}, add

the following formulas:

𝑡𝛼,𝑓𝑖 ◁▷ 𝑦,
𝑡𝛼−1,𝑓
𝑗+1 −𝑡𝛼−1,𝑓

𝑗

𝑣𝑗+1−𝑣𝑗
◁▷ 𝑦,

for 𝑖𝑛𝑑(𝑧1) ⩽ 𝑖 ⩽ 𝑖𝑛𝑑(𝑧2) and 𝑖𝑛𝑑(𝑧1) ⩽ 𝑗 < 𝑖𝑛𝑑(𝑧2), and if ◁▷∈ {⩽,⩾} add the

implication: (︂
𝑡𝛼−1,𝑓
𝑗+1 −𝑡𝛼−1,𝑓

𝑗

𝑣𝑗+1−𝑣𝑗
= 𝑦

)︂
→ (𝑡𝛼,𝑓𝑗 = 𝑦 ∧ 𝑡𝛼,𝑓𝑗+1 = 𝑦);

moreover, if 𝑧1 = −∞, introduce the literal 𝛾𝛼,𝑓0 ◁▷ 𝑦, and if 𝑧2 = +∞, introduce the

literal 𝛾𝛼,𝑓𝑟 ◁▷ 𝑦.

e2) For each literal (𝐷𝛼[𝑓] ◁▷ 𝑦)]𝑤1,𝑤2[(resp. (𝐷𝛼[𝑓] ◁▷ 𝑦)]𝑤1,𝑤2], (𝐷
𝛼[𝑓] ◁▷ 𝑦)[𝑤1,𝑤2[)

occurring in 𝜙3, where ◁▷∈{=, <,>,⩽,⩾}, add the formulas:

8

The treatment of these literals, novel with respect to [1], is a straightforward refinement of the corresponding algorithm step

[1, step 4.e)].

𝑡𝛼,𝑓𝑖 ◁▷ 𝑦,
𝑡𝛼−1,𝑓
𝑗+1 −𝑡𝛼−1,𝑓

𝑗

𝑣𝑗+1−𝑣𝑗
◁▷ 𝑦 ,

for 𝑖𝑛𝑑(𝑤1)⩽ 𝑗 < 𝑖𝑛𝑑(𝑤2) and 𝑖𝑛𝑑(𝑤1)<𝑖<𝑖𝑛𝑑(𝑤2) (resp. 𝑖𝑛𝑑(𝑤1)<𝑖⩽ 𝑖𝑛𝑑(𝑤2)
and 𝑖𝑛𝑑(𝑤1)⩽ 𝑖<𝑖𝑛𝑑(𝑤2)).

f) For each literal S_Up(𝑓)[𝑧1,𝑧2] (resp. S_Down(𝑓)[𝑧1,𝑧2]) occurring in 𝜙3, add the literals

𝑡1,𝑓𝑖 ⩾ 0 (resp. ⩽), 𝑦𝑓𝑗+1 > 𝑦𝑓𝑗 (resp. <),
for 𝑖𝑛𝑑(𝑧1) ⩽ 𝑖 ⩽ 𝑖𝑛𝑑(𝑧2) and 𝑖𝑛𝑑(𝑧1) ⩽ 𝑗 < 𝑖𝑛𝑑(𝑧2); moreover, if 𝑧1=−∞, introduce

the literal 𝛾1,𝑓0 >0 (resp. <) and, if 𝑧2 = +∞, introduce the formula 𝛾1,𝑓𝑟 >0 (resp. <).

g) For each literal Convex(𝑓)[𝑧1,𝑧2] (resp. Concave(𝑓)[𝑧1,𝑧2]) occurring in 𝜙3, add:

𝑡1,𝑓𝑖 ⩽
𝑦𝑓𝑖+1−𝑦𝑓𝑖
𝑣𝑖+1−𝑣𝑖

⩽ 𝑡1,𝑓𝑖+1 (resp. ⩾), 𝑡2,𝑓𝑖 ⩾ 0 (resp. ⩽)(︂
𝑦𝑓𝑖+1−𝑦𝑓𝑖
𝑣𝑖+1−𝑣𝑖

= 𝑡1,𝑓𝑖 ∨ 𝑦𝑓𝑖+1−𝑦𝑓𝑖
𝑣𝑖+1−𝑣𝑖

= 𝑡1,𝑓𝑖+1

)︂
→

(︁
𝑡1,𝑓𝑖 = 𝑡1,𝑓𝑖+1

)︁
,

for each 𝑖𝑛𝑑(𝑧1)⩽ 𝑖 < 𝑖𝑛𝑑(𝑧2); moreover, if 𝑧1 =−∞, introduce the literal 𝛾1,𝑓0 ⩽ 𝑡1,𝑓1

(resp. ⩾), and, if 𝑧2 = +∞, introduce the literal 𝛾1,𝑓𝑟 ⩾ 𝑡1,𝑓𝑟 (resp. ⩽).

h) For each literal S_Convex(𝑓)[𝑧1,𝑧2] (resp. S_Concave(𝑓)[𝑧1,𝑧2]) occurring in 𝜙3, add:

𝑡1,𝑓𝑖 <
𝑦𝑓𝑖+1−𝑦𝑓𝑖
𝑣𝑖+1−𝑣𝑖

< 𝑡1,𝑓𝑖+1 (resp. >), 𝑡2,𝑓𝑖 ⩾ 0 (resp. ⩽)

for 𝑖𝑛𝑑(𝑧1)⩽ 𝑖<𝑖𝑛𝑑(𝑧2); moreover, if 𝑧1=−∞, introduce the literal 𝛾1,𝑓0 < 𝑡1,𝑓1 (resp. >),

and, if 𝑧2 = +∞, introduce the literal 𝛾1,𝑓𝑟 > 𝑡1,𝑓𝑟 (resp. <).

i) If there are literals involving variables of type 𝑘, i.e., literals of the form 𝑘𝑓𝑖 ⩾ 𝑘𝑔𝑖 with

𝑖∈{0, 𝑟} and 𝑓, 𝑔 function variables, perform the following steps:

i. for each variable 𝑘𝑓𝑖 , add the formula −1 ⩽ 𝑘𝑓𝑖 ⩽ +1, with 𝑖∈{0, 𝑟};

ii. if both literals 𝑘𝑓𝑖 ⩾ 𝑘𝑔𝑖 and 𝑘𝑔𝑖 ⩾ 𝑘ℎ𝑖 occur in 𝜙4, add literals 𝑘𝑓𝑖 ⩾ 𝑘ℎ𝑖 and 𝑦𝑓𝑖 > 𝑦ℎ𝑖 ,

with 𝑖∈{0, 𝑟};

iii. if literals 𝑘𝑓0 ⩾ 𝑘𝑔0 , 𝛾1,𝑓0 ⊵ 𝑚 and 𝛾1,𝑔0 ⊴ 𝑛 occur together, with ⊵∈ {⩾, >,=} and

⊴∈ {⩽, <,=}, add literal 𝑚 ⩽ 𝑛; specularly, in the case 𝑘𝑓𝑟 ⩾ 𝑘𝑔𝑟 , 𝛾1,𝑓𝑟 ⊴ 𝑚 and

𝛾1,𝑔𝑟 ⊵ 𝑛, add the literal 𝑚 ⩾ 𝑛.

j) Remove all literals that involve function variables.

The formula 𝜙4 resulting at the end involves only numerical variables, hence it can be decided by means

of Tarski’s method.

4. Remarks on the correctness of the algorithm

Proving the correctness of the algorithm amounts to showing that each one of the (terminating)

transformations 𝜙↝ 𝜙1, 𝜙1 ↝ 𝜙2, 𝜙2 ↝ 𝜙3, 𝜙3 ↝ 𝜙4 is satisfiability preserving. As for the first three

transformations (behavior at the endpoints, negative-clause removal, explicit evaluation of function

variables), this emerges as a rather straightforward fact.

We must focus on the equisatisfiability of the formulas 𝜙3 and 𝜙4, because the transformation

𝜙3 ↝ 𝜙4 is less transparent than the previous ones: we are, in fact, comparing a formula whose

predicates regard the behavior of functions in real intervals with another one, which only involves

relations between numerical variables. Let us sketch the idea behind the proof, which as usual consists

of two parts: soundness and completeness. Recall that 𝜙4 is obtained from 𝜙3 by adding some formulas

that involve only numerical variables and removing all predicates that refer to function variables.

Soundness: If a model exists for 𝜙3, it can be extended to a model that also verifies the numerical

formulas added in 𝜙4, since these formulas reflect the properties of the functions in 𝜙3 at specific points

in real intervals.

Completeness: Conversely, if there exists a model for 𝜙4, it should be possible to extend it to 𝜙3 by

interpreting the function variables with suitable interpolating functions. Thus, showing the correctness

of the fourth transformation calls for an ad hoc interpolation method, which we have produced explicitly

for the case 𝑛 = 1 in [1]; when 𝑛 = 2, we could borrow an interpolation method due to Manni [15];

when 𝑛 > 2, we hope for, and remain in debt with the reader of, a proof of existence of the suitable

interpolating function.

Completeness for RDF 2, a bird’s-eye view

The completeness for RDF2
relies on the interpolation method developed by Manni [15] which is a shape-

preserving 𝐶2
interpolation method. This means that, given a grid of real numbers 𝑣1 < 𝑣2 < · · · < 𝑣𝑟

and real values 𝑦𝑖, 𝑡𝑖, 𝑠𝑖 with 𝑖 ∈ {1, . . . , 𝑟}, Manni’s method builds a 𝐶2
real function 𝑓 such that, for

all 𝑖 ∈ {1, . . . , 𝑟}:

𝑓(𝑣𝑖) = 𝑦𝑖, 𝑓
′(𝑣𝑖) = 𝑡𝑖 and 𝑓 ′′(𝑣𝑖) = 𝑠𝑖. (1)

Moreover, Manni’s method has three properties relevant for our aims:

1. It preserves the “geometric properties” [10] of the given data 𝑣𝑖, 𝑦𝑖, 𝑡𝑖, 𝑠𝑖; e.g, if the data are

increasing, 𝑦𝑖 ⩽ 𝑦𝑖+1 and 𝑡𝑖 ⩾ 0 for all 𝑖, so will be the interpolating function.

2. The interpolation of a sum of data is the sum of the two interpolations; namely given two series

of values 𝑦𝑓𝑖 , 𝑡
𝑓
𝑖 , 𝑠

𝑓
𝑖 and 𝑦𝑔𝑖 , 𝑡

𝑔
𝑖 , 𝑠

𝑔
𝑖 over the same grid 𝑣1 < 𝑣2 < · · · < 𝑣𝑟 with, respectively,

two interpolating functions 𝑓 and 𝑔, then 𝑓 + 𝑔 is the interpolating function for the values

𝑦𝑓𝑖 + 𝑦𝑔𝑖 , 𝑡
𝑓
𝑖 + 𝑡𝑔𝑖 , 𝑠

𝑓
𝑖 + 𝑠𝑔𝑖 .

3. Beside the given data 𝑣𝑖, 𝑦𝑖, 𝑡𝑖, 𝑠𝑖, the interpolating function 𝑓 built by the method depends on a

shrinking parameter 𝑘 and we will use the notation 𝑓𝑘 to emphasize the dependency from this

parameter 𝑘. As 𝑘 tends toward 0, the function 𝑓𝑘 tends to the piece-wise linear interpolation

passing through the points (𝑣1, 𝑦1), . . . , (𝑣𝑟, 𝑦𝑟); more precisely lim𝑘→0 ||𝑓𝑘 − 𝑞||∞ = 0 where

||𝑓𝑘 − 𝑞||∞ = sup𝑣1⩽𝑥⩽𝑣𝑟 |𝑓𝑘(𝑥) − 𝑞(𝑥)| and 𝑞 is the piece-wise linear interpolation passing

through the points (𝑣𝑖, 𝑦𝑖).
9

Roughly speaking, having Manni’s method at our disposal the completeness proof goes as follows.

Given a numerical model𝑀 for 𝜙4, i.e., a set of real values which satisfies all the algebraic constraints

in 𝜙4, we use Manni’s method to build from 𝑀 a functional model ℱ for 𝜙3, namely a set of real

functions interpreting all the function variables of 𝜙3 and satisfying all the function requirements.

More precisely, let 𝑣 denote the interpretation 𝑀𝑣 of the numerical variable 𝑣 under the model M.

Given a function variable 𝑓 in 𝜙3, we apply Manni’s method to the values 𝑣𝑖, 𝑦
𝑓
𝑖 , 𝑡̄

𝑓
𝑖 and 𝑠̄𝑓𝑖 to obtain a

𝐶2
function 𝑓 which will be the interpretation of 𝑓 . By (1), 𝑓 satisfies all point-wise conditions such

as 𝐷[𝑓](𝑣3) = 𝑡𝑓3 . The remaining part consists in proving that, for 𝑘 small enough, the interpolating

function 𝑓𝑘 satisfies also all the other possible atomic formulas, e.g. (𝐷[𝑓] > 𝑠)[𝑣𝑖,𝑣𝑗 [; this part heavily

relies on the three interpolation properties previously exposed.

5. The threshold of undecidability

Tarski himself showed that decidability of his full elementary algebra of real numbers [23] would be

disrupted if its language were enriched with a periodic real function, e.g., sin𝑥. Richardson proved

in [20] the undecidability of the existential theory of reals extended with the numbers log 2 and 𝜋,

and with the functions 𝑒𝑥, sin𝑥; Richardson’s results have been subsequently improved by Caviness

[7], Wang [24] and Laczkovich [13]. More precisely: Caviness removed the use of 𝑒𝑥 and ln 2; Wang

extended Caviness’ result from undecidability for comparison with 0, namely of type 𝐴(𝑥) < 0, to

9

Over the interval [𝑣𝑖, 𝑣𝑖+1], 𝑞 is defined as 𝑞(𝑥) := 𝑦𝑖 +
𝑥−𝑣𝑖

𝑣𝑖+1−𝑣𝑖
· (𝑦𝑖+1 − 𝑦𝑖).

undecidability for equality to 0, i.e., 𝐴(𝑥) = 0; Laczkovich removed the need of 𝜋 and reduced the use

of function composition.

In consequence of Laczkovich’s result and of our reduction of RDF𝑛
to Tarskian algebra, any extension

of RDF𝑛
enabling us to express sin𝑥 turns out to be undecidable. For example, an atomic formula(︀

𝐷2[𝑓] = 𝑔
)︀
𝐴

for equality between a second derivative and a function would allow one to specify

𝑓 = sin𝑥 through the differential characterization:

𝑓(0) = 0 ∧ 𝐷1[𝑓](0) = 1 ∧ (𝐷2[𝑓] = −𝑓)]−∞,+∞[.
Thus, for 𝑛 ⩾ 2, the introduction of atomic formulas of type

(︀
𝐷2[𝑓] = 𝑔

)︀
𝐴

would make RDF𝑛
unde-

cidable. Establishing whether or not an analogous extension of RDF1
is decidable is harder. As far as

we now, having comparison between first derivatives and functions does not allow one to define sin𝑥;

however, it enables the definition of 𝑒𝑥 via

𝑓(0) = 1 ∧ (𝐷1[𝑓] = 𝑓)]−∞,+∞[,
but, since even the decidability of Tarskian algebra extended with the exponential function is still an

open problem [14], we cannot judge whether such an enrichment, i.e., function-derivative comparison(︀
𝐷1[𝑓] = 𝑔

)︀
𝐴

, would disrupt the decidability of RDF1
.

Conclusions
Applications

The decidability result presented in this paper is not merely of theoretical interest, but can be seen

as a contribution to the automated reasoning field; as a matter of fact RMCF+
, one of the decision

algorithms from which it originates, was discussed in the monograph [21], which is a companion of the

proof-verification system ÆtnaNova: if it were implemented inside such a system, a decision algorithm

akin to it could play the role of a sophisticated and specialized inference mechanism.
10

Regrettably,

though, the worst-case algorithmic complexity of the known algorithms concerned with real functions,

in their present forms, is not encouraging [3]; discouragement can be alleviated by considerations about

the behaviour in typical cases, as discussed in the same context (cf. [3, pp. 775–776]).

Envisaged applications of a system such as ÆtnaNova regard proof checking as well as program-

correctness verification; parts of it specialized on real algebra and analysis might also assist in formal

hardware validation and in the study of hybrid systems.

Given the enduring popularity of resolution, research on decision algorithms—whether focusing on

fragments of mathematical theories or logical calculi, or addressing entire theories—has only sporadically

influenced the field of automated deduction. Notable exceptions include the influential papers by Nelson-

Oppen [17, 18]. These works are significant not because they add to the inventory of decidable theories,

but because they address the integration of decision algorithms. In this regard, their impact and long-

term influence are comparable to that of the DPLL algorithm, which, besides being directly applicable

as a test for propositional logic, often serves as a crucial and ubiquitous inference mechanism.

Related and future work

This article has presented a decision algorithm for a fragment RDF𝑛
of real analysis, which extends

the unquantified part of Tarski’s elementary algebra EAR of real numbers with variables designating

functions of a real variable endowed with continuous derivatives up the 𝑛-th order.

The decidability of the theory RDF𝑛
is a follow-up of a series of previous results, regarding the

theories RMCF, RMCF+
, RDF, RDF+

and RDF*
[5, 3, 8, 4, 2, 1]. A general survey on those results, save

the last two, can be found in [6], where other decidability results on real analysis are also treated, in

particular the FS theory [11, 12].

It is hoped that decision methods regarding differentiable functions from R𝑛
to R𝑚

are amenable to

the approach discussed above: an encouraging indication in this direction comes from [5, Sec. 4] which,

10

Actually, less specialized than it may seem at first glance: as shown in [5, Sec. 5], a decision algorithm conceived for

real numbers and univariate real functions could be exploited to reason about a totally ordered set (𝑆,<) and monotone

functions from 𝑆 to 𝑆.

however, deals with continuous function (with no concern about differentiability).

A decidability problem that seems worth being investigated regards the theory RDF∞
, whose set of

formulas is the union of all RDF𝑛
formulas with 𝑛 ∈ N (hence we have a differentiation operator 𝐷𝑖[]

for every natural number 𝑖); the intended semantics will refer to the real functions of class 𝐶∞
. The

decision algorithm will proceed in full analogy with the one of each RDF𝑛
; the correctness proof seems

more challenging, though, because the interpolating method needs to accommodate an arbitrarily high

number of derivative constraints. Thus far, we have no evidence in favor or against the existence of the

sought 𝐶∞
interpolant.

References
[1] Buriola G., Cantone D., Cincotti G., Omodeo E.G., Spartà G.T., A decidable theory treating addition of differentiable real

functions. Theoretical Computer Science, 940:124-148, 2023.

[2] Buriola G., Cantone D., Cincotti G., Omodeo E.G., Spartà G.T., A decidable theory of differentiable functions with
convexities and concavities on real intervals. In Francesco Calimeri, Simona Perri, and Ester Zumpano, eds, Proceedings

of the 35th Italian Conference on Computational Logic - CILC 2020, Rende, Italy, October 13-15, 2020, CEUR Workshop

Proceedings, 2710:231-247. CEUR-WS.org, 2020.

[3] Cantone D., Cincotti G., Gallo G., Decision algorithms for fragments of real analysis. I. Continuous functions with strict
convexity and concavity predicates. J. Symb. Comput., 41(7):763-789, 2006.

[4] Cantone D., Cincotti G., Decision algorithms for fragments of real analysis. II. A theory of differentiable functions with
convexity and concavity predicates. List of CILC 2007 papers, 14 pp., 2007. https://www.programmazionelogica.it/

wp-content/uploads/2014/10/cilc2007.pdf

[5] Cantone D., Ferro A., Omodeo E.G., Schwartz J.T., Decision algorithms for some fragments of analysis and related areas.
Comm. Pure Appl. Math., 40(3):281-300, 1987.

[6] Cantone D., Omodeo E.G., Spartà G.T., Solvable (and unsolvable) cases of the decision problem for fragments of analysis.
Rend. Istit. Mat. Univ. Trieste, 44:313-348, 2012.

[7] Caviness B.F., On Canonical Forms and Simplification, Journal of the ACM 17 (2) (1970), 385—396.

[8] Cincotti G., Decision algorithms for fragments of real analysis and graph theory, Ph.D. Thesis, Università degli Studi di

Catania, Catania, Italy, ix+136 pp., 2000.

[9] Collins G., Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Second GI Conference

on Automata Theory and Formal Languages, LNCS Vol.33, Springer-Verlag, Berlin, 1975.

[10] Goodman T.N.T., Shape preserving interpolation by curves, Algorithms for Approximation IV, editors Levesley J., Anderson

I. and Mason J., 2002.

[11] Friedman H. and Seress Á., Decidability in elementary analysis. I, Adv. Math. 76 (1989), no. 1, 94–115.

[12] Friedman H. and Seress Á., Decidability in elementary analysis. II, Adv. Math. 79 (1990), no. 1, 1–17.

[13] Laczkovich M., The removal of 𝜋 from some undecidable problems involving elementary functions, Proceedings of the

AMS 131 (7) (2002), 2235—2240.

[14] Macintyre, A. and Wilkie, A.J., On the Decidability of the Real Exponential Field, Kreiseliana. About and Around Georg

Kreisel, (1996), 441–467.

[15] Manni C., On Shape Preserving 𝐶2 Hermite Interpolation, BIT Numerical Mathematics, vol. 41 (2001), pp. 127–148.

[16] Mendelson, E., Introduction to Mathematical Logic, CRC Press, Discrete Mathematics and Its Applications, 2015 ISBN

9781482237788.

[17] Nelson, G. and Oppen, D.C., Simplification by cooperating decision procedures, ACM Trans. on Programming Languages

and Systems 1(2) (1979), 245–257.

[18] Nelson, G. and Oppen, D.C., Fast decision procedures based on congruence closure, Journal of the ACM 27(2) (1980),

356–364.

[19] Renegar J., A faster PSPACE algorithm for deciding the existential theory of the reals, 29th Annual Symposium on

Foundations of Computer Science (FOCS 1988, Los Angeles, Ca., USA), IEEE Computer Society Press, Los Alamitos

(1988), pp. 291–295.

[20] Richardson D., Some undecidable problems involving elementary functions of a real variable, J. Symbolic Logic 33 (1968),

514–520.

[21] Schwartz J.T., Cantone D., Omodeo E.G., Computational logic and set theory: Applying formalized logic to analysis.
Springer-Verlag, 2011. ISBN 978-0-85729-807-2. Foreword by M. Davis.

[22] Tarski A., The completeness of elementary algebra and geometry, Institut Blaise Pascal, Paris, 1967, iv+50 pp. (Late

publication of a paper which had been submitted for publication in 1940)

[23] Tarski A., A decision method for elementary algebra and geometry, prepared for publication by J.C.C McKinsey, U.S

Air Force Project RAND, R-109, the RAND Corporation, Santa Monica, 1948, iv+60 pp.; a second, revised edition was

published by the University of California Press, Berkeley and Los Angeles, CA, 1951, iii+63 pp.

[24] Wang P.S., The undecidability of the existence of zeros of real elementary functions, Journal of the ACM 21 (4) (1974),

586-589.

https://ceur-ws.org/Vol-2710/paper15.pdf
https://ceur-ws.org/Vol-2710/paper15.pdf
https://www.programmazionelogica.it/wp-content/uploads/2014/10/cilc2007.pdf
https://www.programmazionelogica.it/wp-content/uploads/2014/10/cilc2007.pdf

	1 The interpreted RDFn language
	2 The decision algorithm at work
	3 The decision algorithm, in detail
	4 Remarks on the correctness of the algorithm
	5 The threshold of undecidability

