
Building Taxonomies with Triplet Queries
Donatella Firmani1,*, Sainyam Galhotra2, Barna Saha3 and Divesh Srivastava4

1Sapienza University
2Cornell University
3University of California San Diego
4AT&T Chief Data Office

Abstract
The organization of records referring to different entities into a taxonomy is crucial for capturing their
relationships. Nevertheless, the automatic identification of such relationships often faces inaccuracies
due to noise and heterogeneity of records across various sources. Simultaneously, manual maintenance
of these relationships proves impractical and lacks scalability. This study addresses these challenges
by adopting a weak supervision strategy, in the form of an oracle, to solve a novel Hierarchical Entity
Resolution task. Within our framework, records are organized into a tree-like structure that encompasses
records at the bottom level and encapsulates entities and categories at the higher levels. To make the
most effective use of supervision, we employ a triplet comparison oracle, which takes three records as
input and output the most similar pair(s). Finally, we introduce HierER, a querying strategy utilizing
record pair similarities to minimize the number of oracle queries while simultaneously maximizing
the identification of the hierarchical structure. Theoretical and empirical analyses demonstrate the
effectiveness and efficiency of HierER with noisy datasets with millions of records.

1. Introduction

In many applications, records are represented in diverse formats like images, unstructured
and structured text and these records need to be organized to capture complex relationships.
Assigning records to taxonomies is useful for diverse applications like recommendation [1],
categorization [2], and search [3]. For example, e-commerce websites like Amazon organize
products in the form of a taxonomy to enable better search and recommendations. Animal and
plant species along with their textual descriptions can be arranged in hierarchies of varying
depth, average degree and shape, called pylogenetic trees. In Figure 1a we show an example
hierarchy for arranging a collection of records describing birds. Example records are 𝑟𝑎 and 𝑟𝑏,
describing respectively the little bunting (Emberiza pusilla) and the yellow-breasted bunting
(Emberiza aureola). Example categories in the hierarchy is 𝑢1. Note that categories are not
required to have a descriptive name: in this example the category 𝑢1 is simply defined as the
set comprising the little bunting (𝑟𝑎) and the yellow-breasted bunting (𝑟𝑏).

Two main types of relationships arise naturally in a hierarchy:
• is-A (in orange) connecting record-nodes such as 𝑟𝑎 to category-nodes such as 𝑢1;
• category-supercategory (in black) connecting pairs of category-nodes such as 𝑢1 to 𝑢2;
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Figure 1: (a) Example hierarchy for phylogenetic data. The center of the diagram corresponds to the
root and the subsequent levels are placed in concentric circles. (b) Entity-nodes and duplicate records.

In order to account for duplicate records, that are, different records referring to the same entity
in the real world, we introduce a third type of relationship, that we call co-reference. In Figure 1b,
the co-reference relationship is shown in green. To represent this relationship we introduce
intermediate entity-nodes, such as 𝑒𝑎 and 𝑒𝑏, between record-nodes and category-nodes. In the
figure, records 𝑟1, 𝑟2 and 𝑟3 are different pictures of little bunting, which is now represented by
𝑒𝑎, while records 𝑟4, 𝑟5 both represent a yellow-breasted bunting, that we now call 𝑒𝑏. Both 𝑒𝑎
and 𝑒𝑏 belong to the 𝑢1 category, which can be equivalently defined as a set of entities.

Starting from records 𝑟1, . . . , 𝑟𝑛, our task is to return the complete tree structure, identifying
duplicate records and enriching them with is-A and category-supercategory relationships. We
call this problem as the Hierarchical Entity Resolution (HER) problem. The popular Entity
Resolution (ER) problem corresponds to identification of record-entity relationships only (see
green edges in Figure 1b) and thus our problem represents a natural extension.

Before our work there are two main roads to the solution of HER.
• Fully automatic construction. To automatically construct categories and identify

their relationships, prior techniques have proposed to leverage co-occurence patterns of
hypernyms [4, 5]. However, certain categories may not always be explicitly mentioned in
the records [6] nor respect the same terminology across different sources.

• Fully manual Construction. A domain expert can easily generate a hierarchy that
contains all well-known categories. However, it might be impossible to capture all the
fine-grain relationships in the data (such as, very specialized category-nodes like 𝑢1 and
𝑢2 in Example 1) without processing all the records manually, which is not scalable.

Even though the benefits of constructing a hierarchy are widely acknowledged, due to limi-
tations of fully automatic construction, the majority of category-supercategory relationships
are maintained manually by domain experts. Manual maintenance of such relationships is
labor-intensive as the hierarchy evolves whenever new records are introduced/discontinued.

Our intuition. We aim at using a hybrid weakly supervised approach; that is, an automatic
approach that is guided by domain experts providing answers to targeted queries. While
manually processing all the records might be infeasible, if only three records are considered in
isolation, say 𝑟1, 𝑟2 and 𝑟4, then a user – or even a trained classifier – can easily distinguish that
𝑟1 and 𝑟2 are closer to each other than either of them is to 𝑟3. Even though considering record
triplets in isolation can help uncover the hierarchical structure, it is still unfeasible to compare all
possible triples in million scale datasets. Our framework is capable of automatically prioritizing



records to optimize the number of triplet comparisons and to minimize the query workload. We
refer to the domain expert (or the classifier) using the abstraction of a black-box oracle. Oracle-
based algorithms have been widely popular to study fairness [7], correlation clustering [8]
and classification [9, 10], identify maximum elements [11, 12], top-𝑘 elements [13, 14, 15],
information retrieval [16], skyline computation [17], and so on. Our oracle can answer to:

• triplet queries: “which pair of records among 𝑢, 𝑣 and 𝑤 are most similar?”
• co-reference queries: “do records 𝑢 and 𝑣 refer to the same entity?”;

These queries can reveal the local hierarchical structure and can be answered without requiring
(i) the context of all the identified categories in the constructed hierarchy, nor (ii) the knowledge
of other records in the dataset. Recent advancements of deep-learning based classifiers for
ER [18, 19, 20, 21] are also alternative implementation of our oracle.

Related works and oracle-based methods. The closest task to our problem is ER, featur-
ing a variety of oracle-based methods [22, 23, 24]. However ER techniques typically ignore
category information.Another related task is Hierarchical Clustering. This has been studied
in a variety of application domains including the construction of phylogenetic trees [25, 26]
and taxonomies [27, 28]. The work in [26] describes an oracle-based method. In Hierarchi-
cal Clustering, records refer to different entities, and thus clustering methods ignore entity
resolution. Moreover, these techniques build almost binary hierarchies, where every node
has approximately two children. Thus, neither ER nor Hierarchical Clustering techniques can
by itself solve our HER problem effectively. Even pipelining the two processes turns out to
achieve a sub-optimal query workload. Let 𝑛 be the number of records. Running a hierarchical
clustering technique first and then post-processing the bottom level in order to detect entities
can require 𝑂(𝑛2) oracle queries for non-binary hierarchies in the worst case [26], before even
identifying the entities. Running an oracle-based ER technique first and post-processing entities
after that to detect categories can be efficient in case of large entities but can require 𝑂(𝑛2)
queries to identify small entity clusters [23], before even starting to process categories.

Contributions and Outline. We show that previous methods can be significantly outper-
formed by our approach, thus alleviating the manual workload required for construction and
maintenance of taxonomies over very large databases. Section 2 contains a high-level overview
of our approach, and in particular of the HierER algorithm. Detailed description of the al-
gorithm and theoretical analysis can be found in [29]. Main experimental results of [29] are
reported in Section 3. Finally, Section 4 contain our concluding remarks.

2. Overview

Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} be a collection of 𝑛 records. We use the notion of laminar family of
sets to define the ground truth hierarchy 𝐻* more formally. A family of sets 𝒞* is laminar iff
∀𝑋1, 𝑋2 ∈ 𝒞*, either 𝑋1∩𝑋2 = 𝜑 or 𝑋1 ⊆ 𝑋2 or 𝑋2 ⊆ 𝑋1. The hierarchy 𝐻* corresponds to
a laminar family of labelled sets 𝒞* such that each set in 𝒞* is labelled with one of the three labels:
record (r), entity (e) or category (t). Each labelled set is denoted as ⟨label : 𝑋⟩
where 𝑋 ⊆ 𝑉 . According to this notation, ⟨r : {𝑣}⟩ ∈ 𝒞*,∀𝑣 ∈ 𝑉 and ⟨t : 𝑉 ⟩ ∈ 𝒞*. This
hierarchy has an additional constraint that a set labelled ‘entity’ cannot have a proper superset
of label ‘entity’ or ‘record’ and a set labelled ‘category’ cannot have a superset labelled



‘entity’ or ‘record’. Following this definition, there exists a one-to-one mapping between
internal nodes of the hierarchy and the laminar family of sets 𝒞* where an internal node of the
hierarchy (say 𝑢) is equivalent to a set 𝐶 ∈ 𝒞* containing all the leaf-level descendants of 𝑢
and vice versa. In this formulation, a category node that has a single category node as a child is
redundant and can be ignored. However, an entity can have a single child (record).

A hierarchy has an interesting property that for any three records 𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 , the lca’s
of two pairs of these records are the same and the lca of the third pair is either the same or a
descendant of the other two lca’s [26]. Without loss of generality, one of the following hold.

lca(𝑣2, 𝑣3) ≥ lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3)

where lca(𝑣1, 𝑣2) > lca(𝑥, 𝑦) denotes that lca(𝑣1, 𝑣2) is a descendant of lca(𝑥, 𝑦). In case
all three lca’s are the same, then 𝑣1, 𝑣2 and 𝑣3 belong to three different descendant-branches of
the internal node corresponding to lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3) = lca(𝑣2, 𝑣3). A triplet oracle is
a function 𝑞𝑡 : 𝑉 ×𝑉 ×𝑉 → 𝑉 ∪{𝜑} that takes three records as input and outputs the farthest
record (if any). For an input (𝑣1, 𝑣2, 𝑣3), the oracle outputs 𝑞𝑡(𝑣1, 𝑣2, 𝑣3) = 𝑣1 if lca(𝑣2, 𝑣3) >
lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3) and 𝑞𝑡(𝑣1, 𝑣2, 𝑣3) = 𝜑 if lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3) = lca(𝑣2, 𝑣3).

Prioritizing triplet oracle queries to maximize the accuracy in the 𝐻* estimation task after
every query, is the goal of the high-level workflow presented in Figure 2. Note that evaluating
accuracy is non-trivial. A naive way is to compare the fraction of the total Θ(𝑛3) relationships
(i.e.,

(︀
𝑛
3

)︀
triplets and

(︀
𝑛
2

)︀
equality relationships) that are correctly identified by a given method.

However, such an approach can be infeasible even in medium-sized datasets. Therefore, we
extend the popular metric of comparing F-score of different ER techniques to our hierarchical
setting. In ER, F-score is computed over two types of pairwise relationships: intra-cluster and
inter-cluster. Following these ideas, we consider co-reference relationships as intra-cluster and
enumerate the different types of inter-entity relationships between record pairs. We define
the notion of t-ancestor relationship to capture the distance between record pairs and then
use it to compute the F-score of the output hierarchy 𝐻 . A pair of records (𝑢, 𝑣) satisfies a
t-ancestor relationship if their lca is at most t edges away from both 𝑢 and 𝑣’s entity nodes.
0-ancestor relationship is equivalent to an equality (i.e., co-reference) relationship. We map
t-ancestor relationships identified from the output hierarchy 𝐻 to the ground truth hierarchy
𝐻* and then use those to compute precision as the weighted fraction of correctly identified
pairwise relationships among the identified relationships and recall as the weighted fraction of
total relationships that were identified. Weighting mechanisms are discussed in detail in [29].
F-score is finally computed as the harmonic mean of precision and recall.
Auxiliary modules. In the following, we first describe the auxiliary modules in Figure 2, then
we provide more intuition on the core Oracle strategy module.

• The Blocking module is used to reduce the number of pairs considered for similarity
computation. Blocking is a widely used operation in ER literature [30] to efficiently
generate a small set of candidate pairs so that similarity values are computed only for this
small set of candidates. Standard blocking (also known as token-based blocking) is one of
the most popular mechanisms that generates a block for each token in the input set of
records [30]. Similarity values may not be directly interpretable as probability distributions
over the possible oracle responses. For practical purposes, calibration approach in [23, 31]
can be used to map values 𝑠(𝑣1, 𝑣2) to probability distributions 𝑝(𝑣1, 𝑣2) and 𝑝(𝑣1, 𝑣2, 𝑣3).
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• The Initialization module in our workflow constructs a candidate hierarchy �̄� that can
be used downstream to guide the querying strategies. Construction of �̄� is based solely
on the similarity scores 𝑠 : 𝑉 × 𝑉 → [0, 1] and requires no oracle queries. We prove
in [29] that �̄� has high F-score under low noise of similarity values.

• The Inference module provides tools to infer relationships from previously asked triplet
and equality queries, without asking new oracle queries leading to unnecessary cost. Such
module allows to infer, for instance, which is the farthest record among 𝑣, 𝑤 and 𝑥 by
looking at the result of previous queries about other triples like (𝑢, 𝑣, 𝑤) and (𝑢,𝑤, 𝑥).

We observe that inferring category-subcategory relationships is the major challenge, whereas
co-reference can be easily inferred via transitive closure.1 Consider three records 𝑟1, 𝑟2, 𝑟6
and a query 𝑞1 ≡ 𝑞𝑡(𝑟1, 𝑟2, 𝑟6) that returns 𝑟6. To interpret 𝑞1 mathematically, we define
three variables corresponding to the lca’s of involved record pairs (𝑟1, 𝑟2), (𝑟1, 𝑟6) and (𝑟2, 𝑟6).
Using these variables, 𝑞1 can be represented as lca(𝑟1, 𝑟2) > lca(𝑟1, 𝑟6) = lca(𝑟2, 𝑟6).
This inequality characterizes a relation between the lca of record pairs (𝑟1, 𝑟2), (𝑟1, 𝑟6) and
(𝑟2, 𝑟6). Each query can be written in the form of such inequality constraints over at most(︀
𝑛
2

)︀
lca variables. Consider another query 𝑞2 ≡ 𝑞𝑡(𝑟1, 𝑟6, 𝑟11) = 𝑟11, meaning lca(𝑟1, 𝑟6) >

𝑙𝑐𝑎(𝑟1, 𝑟11) = lca(𝑟6, 𝑟11). Using the inequalities of 𝑞1 and 𝑞2, we can infer that lca(𝑟1, 𝑟2) >
lca(𝑟1, 𝑟6) > lca(𝑟1, 𝑟11).

Oracle strategy. This module prioritizes oracle queries by leveraging (i) the candidate hierarchy
from the initialization step to give higher priority to queries that yield higher F-score increment
and (ii) the inference engine to identify inferable relationships for free. The algorithm HierER
described in [29] can be thought of as an oracle strategy that leverage the initialization and
inference methods and focus on the following principles to maximize progressive F-score.

• Internal node discovery. Prioritize queries that enable the discovery of new internal nodes.
Indeed, identifying the tree structure, specifically the internal nodes between the root
node and the leaf nodes corresponding to the processed records is important to provide
optimal progressive behavior.

• Large entities. Give high priority to queries enabling the discovery of new children of
high-degree entity nodes. This principle has also been used in ER literature [23, 22] since
asking queries in non-increasing order of entity sizes provides the maximum gain in

1E.g., if we know that 𝑣1 refers to the same entity as 𝑣2, and 𝑣2 refers to the same entity as 𝑣3, then we can infer
that 𝑣1 refers to the same entity as 𝑣3 without asking the corresponding oracle query.



Dataset n Depth Average degree Max degree Largest Entity
Phylogenetic 1039 21 2.01 4 1

DMOZ 100K 5 274.3 17K 1
Cars 16.5K 2 330 1800 1800

Camera 30K 3 5 91 91
Amazon 30K 7 8.46 760 1

Geography 3M 5 8K 35K 1

Figure 3: Dataset description.

progressive recall.
• Connectivity. Prioritize queries that grow the hierarchy in a connected fashion. Indeed,

ensuring that the processed records at any given time form a single connected hierarchy
(rather than growing multiple disjoint hierarchies in parallel) allows for the inference of
more relationships with the same number of queries.

3. Experiments

We now compare HierER and baselines on real-world datasets and answer the following
questions. Q1: What is the end-to-end quality vs query complexity trade off for HierER? Q2:
Is HierER sensitive to noise in the dataset? Q3: Is HierER scalable to large-scale datasets?

Set-up. Figure 3 reports the six real-world datasets in our experiments, consisting of hierarchies
of varying depth, average degree and shape, and comprising either textual (records) or visual
description (images) of entities. Phylogenetic contains scientific names of bird and insect
species along with textual descriptions collected from Wikipedia. The hierarchy corresponds to
the phylogenetic tree obtained from [32]. Figure 1a in Section 1 shows the shape of such hierar-
chy. DMOZ [33] is an open-content directory of web pages along with a hierarchy that organizes
these webpages according to their categories like art, science, mathematics, etc. Cars comprises
images of different models of cars. For Cars we generate textual descriptions using Google’s
vision API [34] and hierarchy is constructed based on their make and model. Camera [35] is a
collection of specifications of cameras collected from over 25 retail companies and the hierarchy
corresponds to the brand-model categorization. Amazon [36] contains descriptions of products
and the amazon catalog ontology. Geography [37] contains names of cities across the world
with categories corresponding to their state, country and continent.

Due to low-training data requirements for random forests as compared to deep-learning
based techniques [20], we used a random forest classifier trained with active learning for cars,
geography and camera datasets as an oracle. Such model achieved more than 0.95 F-score for
all three datasets. For other datasets we consider a simulated oracle model (i.e., using ground
truth hierarchy to generate responses) to control the noise level. For more implementation
details such as similarity calculation and triplet probability we refer the reader to [29].

We consider the following pipelined baseline strategies that perform hierarchical clustering
and entity resolution separately as a two-step procedure. (i) Average Linkage (denoted by
AverageLink) is an Agglomerative clustering technique. We used the sklearn package [38] to
construct the hierarchy and then run triplet queries bottom up to merge neighboring internal
nodes. (ii) HiExpan denotes the automated taxonomy construction technique from [28] that uses
the initial seed hierarchy to generate other internal nodes assuming access to all internal nodes



 0

 0.2

 0.4

 0.6

 0.8

 1

5K 10K

(a) phylogenetic

F
-s

c
o
re

#queries

Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

2M 4M 6M

(b) dmoz

F
-s

c
o
re

#queries

HierER

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2M 0.4M 0.6M

(c) amazon

F
-s

c
o
re

#queries

Hybrid

 0

 0.2

 0.4

 0.6

 0.8

 1

20M 40M 60M

(d) geography

F
-s

c
o
re

#queries

InsSort AverageLink HiExpan

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

20K 40K

(a) cars

F
-s

co
re

#queries

InsSort

 0

 0.2

 0.4

 0.6

 0.8

 1

20K 40K

(b) camera

F
-s

co
re

#queries

AverageLink HiExpan

(b)

2K

4K

6K

0 2 3 4 10

(a) Processing error

#
q

u
e

ri
e

s

a

HierER

1K

2K

3K

4K

0 5 10 15 20

(b) Data error

#
q

u
e

ri
e

s

Percentage

Theory

(c)

Figure 4: F-score vs #queries for datasets where (Top) all records refer to distinct entities and (bottom-
left) datasets have many co-references. (Bottom-right) Query complexity for varying similarity noise.

in the hierachy. We added the internal nodes to run this algorithm. (iii) InsSort considers the
extension of the insertion sort algorithm [26] for non-binary hierarchies to generate a hierarchy,
followed by Hybrid [23] to identify equality relationships. (iv) The pipeline that performs ER
followed by hierarchical clustering has almost zero F-score at the end of ER phase when the
datasets contain singleton entities and therefore suffer from poor progressiveness. Instead, we
consider Hybrid as an adaptation of the state-of-the-art entity resolution strategy [23].

Q1: Result Quality. In order to answer to our first question, we compare the quality of
techniques by measuring the progressive F-score. The F-score value after every query is
computed by mapping the relationships in the constructed hierarchy to those in the the ground
truth hierarchy. Figures 4a and Figures 4b compare the F-score of HierER with other baselines
on multiple datasets. Across all datasets, HierER achieves the highest progressive F-score and
is closest to the ideal curve. InsSort and Hybrid achieve poor progressive F-score. These
techniques require more than 5× the queries required by HierER to achieve comparable F-score
across all large scale datasets. AverageLink generates a hierarchical clustering over the records
without any oracle queries. This hierarchy achieves non-zero F-score but the mistakes in the
constructed hierarchy can not be corrected. HiExpan performs better than AverageLink for
most datasets but does not achieve high F-score. It is sensitive to the initial structure provided
as input and does not generalize if it does not contain all levels of the hierarchy. Due to the
presence of noise in datasets, such automated techniques do not achieve high F-score.

We observe different behaviors across datasets. In phylogenetic dataset, the ideal requires
< 2𝑛 queries as majority of the internal nodes have two children and require less than 2 queries
to be inserted. For each leaf level record, HierER requires 𝑂(log 𝑛) queries to identify its
location in the processed hierarchy [29], performing better than InsSort but requiring much
more queries than the ideal strategy. This is due to high noise in similarity values, with
more than 85% of the records suffering from data error in this dataset. Among other datasets,
including those with internal nodes having much higher average degree, HierER achieves



Dataset HierER InsSort Hybrid AverageLink
Phylogenetic 1min 40sec 1min 50sec 1min 53sec 2min 10sec

DMOZ 1hr 23min 4hr 47min 6hr 20min 3hr 17min
Cars 45min 3hr 25min 5hr 30min 3hr 5min

Camera 52min 2hr 47min 3hr 35min 3hr 10min
Amazon 1hr 5min 3hr 27min 3hr 55min 3hr 40min

Geography 11hr 35min 30hr 35min 34hr 35min Did Not finish

Figure 5: Running Time Comparison

near-optimal progressive F-score and performs much better than all other baselines.
The experiments in Figure 4 assumes that the oracle answers all queries correctly. For

experiments with independent triplet error we refer the reader to [29]. To develop robust
methods, we leverage the random graph toolkit [24] for each oracle query.

Q2: Noise sensitivity. To validate the effect of noise, Figure 4c considers synthetic similari-
ties in the Phylogenetic dataset and compares the query complexity with the theoretically
proven bounds in [29], where we establish that HierER requires 𝑂(𝑛 log 𝑛) triplet comparisons,
assuming reasonable data error. Figure 4c (left) simulates processing error, where each pairwise
similarity (𝑠(𝑢, 𝑣)) is sampled independently according to a normal distribution with mean 𝜇(𝑢,𝑣)

and variance 𝜎2 = 𝑎𝜇2 (𝜇 denotes the difference in expected similarity for pairs connected
at different depths). The query complexity of HierER is the same as that of ideal (roughly
2𝑛) for 𝑎 < 3. For higher noise, the query complexity increases but it plateaus at 𝑂(𝑛 log 𝑛).
Figure 4c (right) simulates data error, where a random sample of the nodes is erroneous such
that all pairwise similarities containing these records are erroneous. In this case, the query
complexity of the technique is directly proportional to the error.

Q3: Scalability. Figure 5 compares the running time of HierER to reach 0.90 F-score with
respect to other baselines. HierER has significantly lower running time for all the datasets due
to the linear dependence of running time on the number of queries, finishing in less than 2
minutes on Phylogenetic and in less than 12 hrs on the million-scale Geography dataset.

4. Conclusions

In this paper, we have formalized the Hierarchical Entity Resolution problem, introducing
an oracle-based approach. Our algorithm, HierER, presents a novel query ordering strategy
that capitalizes on pairwise record similarities, prioritizing triplet and equality oracle queries.
Theoretical and empirical analysis underscores that HierER is capable of constructing an
accurate hierarchy with a limited query workload across diverse real-world datasets.
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