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Abstract 
The work is devoted to the development of a neural network method for identifying potential 
defects in complex dynamic objects, such as, for example, helicopter turboshaft engines. The 
proposed method is based on the use of the Transformer model, consisting of the encoder, 
decoder, positional encoding, and attention mechanism, instead of a generalized regression 
neural network. A modification of the ReLU activation function in the form of Smooth ReLU is 
proposed to make it smoother and more continuous, which leads to improved convergence and 
training stability. The analysis of the derivatives of the ReLU and Smooth ReLU functions showed 
that Smooth ReLU solves the problem of “dead neurons” by providing a non-zero gradient for all 
input data values, including negative ones, which ensures more stable training of neural 
networks and prevents neurons from stopping updating due to a zero gradient. As a neural 
network implementation of the Transformer model, the use of a graph neural network is 
proposed, the key advantage of which is its ability to model more complex dependencies and 
relationships between input data elements, which increases the efficiency of training and 
improves the quality of prediction in sequence processing tasks. As a neuron activation function, 
the use of a cross-entropy loss function between actual and predicted probability distributions 
has been proposed, the key advantage of which is its ability to provide efficient training of a 
classification model by minimizing the discrepancy between predicted and real class 
probabilities. The results of the computational experiment showed that the proposed method 
demonstrated almost 100 % accuracy in determining potential defects, such as the possible 
formation of cracks (burnouts) in the combustion chamber of helicopter turboshaft engines due 
to the predicted decrease in the gas temperature in front of the compressor turbine. 
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1. Introduction 

Currently, the use of neural networks is becoming increasingly common in various fields, 

including the prediction and identification of potential defects in various systems and 

processes [1–3]. Neural network methods are a powerful tool for analyzing data and 

identifying hidden patterns [4, 5], which makes them attractive for use in tasks of prediction 

and defect detection. 

Neural networks are mathematical models that attempt to imitate the functioning of the 

human brain. They consist of many interconnected neurons organized into layers that 

process input data and generate a corresponding output [6, 7]. In predicting tasks, neural 

networks can be used to analyze time series, process images, texts, and other types of data 

[8–10].  

Identifying potential defects is an important step in the process of quality control and 

ensuring the reliability of systems and equipment. Neural network methods can be 

effectively applied to detect anomalies and predict possible failures based on historical data 

about the operation of a system or process [1, 11, 12]. 

The work aims to develop a neural network method for identifying potential defects in 

various systems and processes using data analysis and identifying hidden patterns to 

increase the efficiency of quality control and ensure the reliability of equipment and 

systems. 

2. Related works 

The neural network method for identifying potential defects based on prediction results is 

a powerful tool for increasing the efficiency of quality control and ensuring the reliability of 

systems and processes [13, 14]. The use of neural network methods allows you to automate 

the process of detecting anomalies and predicting failures, which helps improve production 

processes and reduce the cost of equipment maintenance and repair. 

The significance of this research area allows us to expand the capabilities of diagnostic 

models and increase the reliability of diagnosis. In [15, 16], the advantages of using artificial 

intelligence methods, including neural networks, fuzzy logic, and expert systems, compared 

to traditional diagnostic methods to solve issues related to predicting the reliability of 

complex dynamic systems were identified. This is because artificial intelligence systems are 

highly adaptable and capable of solving complex tasks of classification and pattern 

recognition, which is an important aspect of the process of diagnosis and prognosis. 

For example, in [17], the task of the YOLOv5 network model structure optimization using 

the Convolutional Block Attention Module (CBAM) was solved to improve the accuracy of 

detection and identification of small defects in pipeline circumferential welds based on the 

analysis of internal magnetic flux (MFL) signals, which helps to improve technical support 

and safety in assessing the condition and repair of pipelines. The disadvantage of [15] is that 

the YOLOv5 model, although effective in detecting anomalous objects, does not exhibit 

attentional preference during the feature extraction process, which is insufficient for the 

effective detection of small defects. 



The essence of [18] is to develop and experimentally validate a wavelet-gradient-

integrated neural network (WGI-SNN) structure combining wavelet packet transform 

(WPT) with peak neural network (SNN) to more effectively measure complex equipment 

defects using frequency-domain technologies. -temporal signal processing. A disadvantage 

of the work is the limited experimental testing of the proposed method, which may reduce 

the generalizability of the results to various types of complex defects. 

In [19] presents a neural network method for detecting binary and random impulse 

noise in contaminated images, based on pixel classification and random point patterning, 

which applies to colour images and demonstrates superiority over many existing methods 

in extensive experimental results. The key disadvantage of the proposed method is its 

dependence on the classification accuracy of random point patterns and the possibility of 

isolated points being misidentified as noise, which can lead to the loss of important 

information in the images. 

In [20] it proposed a method that uses multi-threshold binarization of multispectral 

images to extract features and improve classification accuracy in real-time, reducing 

training and inference time by 5 times compared to ResNet and Ensemble CNN models. The 

key disadvantage is its limitation in working with small data sets and possible reduction in 

classification accuracy when using large data sets. 

Based on the discussion of related works, it becomes urgent to develop methods that, 

based on the analysis of process behaviour and the results of predicting the technical 

condition, determine potential defects in the units of complex dynamic objects, which will 

lead to the occurrence of emergencies during their operation.  

3. Methods and materials 

In [1], a method was developed for identifying potential defects in the components of 

helicopter turboshaft engines (TE) based on predicting their operational status at flight 

modes, which makes it possible to use, along with quantitative mathematical models of 

engines, qualitative and experimental information obtained during flight engine tests, and 

also, directly, in a helicopter flight. Therefore, this method was chosen in this work as the 

initial one. 

In [1], based on a given data array of the object under research 𝑋(𝑡) = (𝑥𝑡1
, 𝑥𝑡2

, … , 𝑥𝑡𝑛
) 

input parameters, which correspond only to its operation normal mode, that is, in that time 

when there were no failures or other anomalies, a neural network model 𝑓(𝑋(𝑡), 𝜃) is 

developed (θ are the model parameters), based on a fragment with regular values 

{𝑥𝑡1
, 𝑥𝑡2

, … , 𝑥𝑡𝑛
}, which determines whether the fragments {𝑥𝑡𝑛+1

, 𝑥𝑡𝑛+2
, … , 𝑥𝑡𝑛+𝑙

} are 

anomalous with acceptable accuracy for identifying possible defects of the research object. 

The developed method consists of using subsequent data of the initial indicators of the 

research object to develop a time series predicting model. In this case, the models are 

trained on data that corresponds only to its operation normal mode, that is, at a time when 

there were no breakdowns or other anomalies. Thus, the model trains to predict what the 

signal should be during normal operation. If at a certain point in time, the actual value of the 

i-th initial indicator differs from the predicted normal value, anomalous behaviour is 

recorded and a signal about a potential defect is generated (Fig. 1). 
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Figure 1: Complex dynamic objects identifying potential defects graphic interpretation. 

(author's research, generalized based on [1]). 

Unlike [1], the proposed neural network method for identifying potential defects in 

complex dynamic objects is not based on the GRNN neural network, as in [1], but on the 

Transformer model [21, 22], which is capable of adapting to different lengths of input and 

output sequences without the need for pre-configuration. At the same time, the 

Transformer model allows one to take into account dependencies between sequence 

elements over large time intervals, which is important for predicting defects in complex 

dynamic objects. 

For the normal behaviour of the system, data on the initial indicators of the research 

object are collected, which must be presented in the form of a time series containing a 

sequence of actual values. At the same time, instead of a Seq-to-Seq model based on a 

general regression neural network of the GRNN neural network, it is proposed to use a 



model based on deep learning and the Transformer architecture, which is well suited for 

working with data sequences, allowing to take into account long-term dependencies and 

work with different lengths of input and output sequences. The proposed Transformer-

based model has the following architecture: 

1. Encoder: converts the input data sequence into an internal representation, taking 

into account the context and dependencies between the elements of the sequence. 

For each element of the input sequence X, the model creates its vector representation 

xi, which is then combined into a matrix Xenc: 

𝑋𝑒𝑛𝑐 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋). (1) 

2. Decoder: generates an output data sequence based on an internal representation, 

taking into account both the input data and the previous elements of the output 

sequence. At each step of generating the output sequence Y, the decoder uses the 

context vectors C from the encoder, as well as the previous elements of the output 

sequence Y, to predict the next element: 

𝑌𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑌𝑡−1, 𝐶). (2) 

3. Positional Encoding: adds vectors representing the positions of elements in a 

sequence so that the model can take into account the order of the data. For this, sine 

and cosine functions with different frequencies are used [23, 24]: 

𝑃𝐸𝑝𝑜𝑠,2𝑖 = sin (
𝑝𝑜𝑠

10000
2∙𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

), (3) 

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = cos (
𝑝𝑜𝑠

10000
2∙𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) , (4) 

where pos is the position in the sequence, i is the index of the element in the positional 

encoding vector, dmodel is the dimension of the model. 

4. Attention Mechanism allows the model to focus on different parts of the input 

sequence when generating the output sequence [25, 26]. One of the common 

methods is the scalar product attention mechanism (Scaled Dot-Product Attention) 

[27, 28]: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑉 ∙ softmax (
𝑄 ∙ 𝐾𝑇

√𝑑𝑘

), 
(5) 

where Q, K, and V are queries, keys and values, dk is the dimension of the keys. Q queries are 

usually generated based on the hidden state of the decoder or the last generated element of 



the output sequence, and can also be created by linear transformation of the corresponding 

vectors. Keys K are generated from the hidden state of the encoder or a sequence of inputs, 

similar to queries. The V values represent the actual data that the model must rely on when 

generating the output sequence. The key dimension dk is a hyperparameter that is 

empirically selected during model tuning, usually chosen according to the dimension of the 

model's hidden state and the complexity of the task. 

After obtaining predicted values using the Transformer model, the following approach 

can be used to identify potential defects in the research object: 

• If the difference between actual and predicted values exceeds a certain threshold, it 

may indicate a defect. 

• Additionally, statistical measures such as standard deviation can be considered to 

account for the extent to which forecast values deviate from actual values. 

To determine potential defects of the research object, the following expressions are used: 

𝑍 = {
1, if 𝐴 > 𝜌,
0, if 𝐴 ≤ 𝜌,

 (6) 

𝐴 =
1

𝐿𝑤
∙ ∑ 𝑒𝑖

𝐿𝑤

𝑖=1

, (7) 

𝑒𝑖 =
1

𝑁
∙ ∑ |𝑥𝑖

(𝑗)
− 𝑥̂𝑖

(𝑗)
|

𝑁

𝑖=1

, (8) 

𝑒𝑖 = {
1, if 𝑒𝑖 > 𝜏,
0, if 𝑒𝑖 ≤ 𝜏,

 (9) 

where X is a sequence of actual values of length Lw; X' is a sequence of predicted values of 

features with a length at a point in time; 𝑥𝑖
(𝑗)

 is an actual value of the i-th initial indicator at 

the j-th moment; 𝑥̂𝑖
(𝑗)

 is a predicted value of the i-th initial indicator at the j-th moment. 

For a Transformer-based model, it is advisable to use a loss function that reflects the 

difference between the actual and predicted sequence values [29, 30]. Given that the model 

generates a sequence, loss functions that estimate the probability of a match between the 

generated sequence and the actual target sequence are typically used. One of the standard 

choices for the sequence generation task is cross entropy (categorical cross entropy) [31, 

32]. This loss function is widely used in classification and sequence generation problems. 

The expression describes the cross-entropy loss function between the actual and predicted 

probability distributions: 

𝐽 = − ∑ 𝑦𝑡 ∙ log(𝑦̂𝑡)

𝑇

𝑡=1

, (10) 



where T is the length of the sequence, yt is the actual probability distribution for the 

sequence element at step t, 𝑦̂𝑡 is the predicted probability distribution for the sequence 

element at step t. 

The loss function (10) estimates the difference between the actual and predicted 

probability distributions for each element of the sequence and penalizes the model for 

incorrect predictions. 

It is also worth noting that in the proposed method, the root mean square error can be 

used to assess the numerical prediction accuracy: 

𝑀𝑆𝐸 =
1

𝑇
∙ ∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑇

𝑡=1

. (11) 

Currently, Transformer-based models are successfully implemented in the form of graph 

neural networks, whose ability to train on large amounts of data and effectively work with 

sequences of any length make them indispensable tools in modern research and 

development in the field of artificial intelligence [33–35]. 

Graph Neural Networks (GNN) are a powerful class of neural networks specialized for 

analyzing data represented as graphs. Unlike GRNN neural networks, GNN has unique 

advantages such as the ability to take into an account data structure, adaptability to various 

graph structures, efficiency in modelling complex dependencies, and graph training ability. 

Therefore, the proposed method uses a graph neural network (Fig. 2) in contrast to [1], 

where the GRNN neural network was used. 
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Figure 2: Graph neural network general view. (author's research, based on [33–35]). 

At the initial stage of GNN training based on the Transformer architecture, it is assumed 

that the input data are graphs, where nodes can contain features and edges can have 

weights or other information. In this case, the graphs are represented in the form of an 

adjacency matrix or adjacency lists. For the model training also requires dividing the data 

into training, validation and test sets. 

At the next stage, the Transformer architecture is adapted to work with graph data 

according to (1)–(4). This involves using attention mechanisms (5) to take into account 



information about neighbouring nodes and edges in the graph, which involves creating 

input and output vector representations for nodes and edges and using multilayer 

perceptron to compute aggregated features. 

At the next stage, the loss function is calculated according to (10) and the root mean 

square error according to (11). To minimize the loss function during training, an optimizer 

is then selected, for which it is advisable to use Adam [36], which has an adaptive training 

rate, provides stable training through the use of gradient moments, and usually 

demonstrates good performance in practice in classification tasks. 

In the next stage, the model training process on the training data set is carried out 

directly, followed by testing its performance on the validation set. For each training epoch, 

the training set is passed through. Each element of the training set is fed to the input of the 

model, then the loss function (10) is calculated for this element and the gradients of the loss 

function are calculated over the model parameters as: 

∇𝜃𝐽(𝜃) =
𝜕𝐽(𝜃)

𝜕𝜃
. (12) 

Using the computed gradients, the model parameters are updated using an update 

equation based on the Adam optimizer: 

𝑚 = 𝛽1 ∙ 𝑚 + (1 − 𝛽1) ∙ ∇𝜃𝐽(𝜃), (13) 

𝑣 = 𝛽2 ∙ 𝑣 + (1 − 𝛽2) ∙ (∇𝜃𝐽(𝜃))
2

, (14) 

𝜃 = 𝜃 − 𝛼𝑡 ∙
𝑚

√𝑣 + 𝜖
, (15) 

where β1 = 0.9…0.999 and β2 = 0.9…0.999 are exponential smoothing coefficients for 

estimates of the first and second moments of the gradient, respectively, m and v are 

estimates of the first and second moments of the gradient, ϵ is a small number for numerical 

stability, αt is the adaptive training rate, proposed in this work, calculated according to the 

expression: 

𝛼𝑡 = 𝛼 ∙
√1 − 𝛽2

𝑡

1 − 𝛽1
𝑡 , (16) 

where α is the specified training rate. 

After each training epoch, the model is evaluated on the validation dataset using 

performance metrics for the given task. For the task of identifying potential defects in 

complex dynamic objects, it is proposed to use the following performance metrics [37, 38]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (17) 



𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑅𝑒𝑐𝑎𝑙𝑙
, 

where Precision is accuracy, Recall is completeness, TP (True Positives) is the correctly 

identified defects number, FP (False Positives) is the incorrectly identified defects number, 

and FN (False Negatives) is the defects that the model number could not identify. 

If the task of identifying potential defects has several classes of defects, it is proposed to 

calculate the accuracy for each class of defects to evaluate the performance of the model on 

each class independently using the PerClassAccuracy metric is the percentage of correctly 

identified defects for each class: 

𝑃𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
, (18) 

where TPi (True Positives) is the number of correctly identified defects of the i-th class, and 

FNi (False Negatives) is the number of incorrectly identified defects of the i-th class. 

Model training stops when a stopping criterion is reached, for example, the maximum 

number of epochs, at which if the current training epoch is equal to the maximum number 

of epochs, then model training is completed. Another stopping criterion is the lack of 

improvement on the validation dataset for a certain number of epochs. For this criterion, an 

early stopping mechanism is usually used, which allows you to stop training if the 

performance of the model on the validation dataset does not improve over a certain number 

of epochs P. Formally, this can be written as follows: let val_Li be the value of the loss 

function on the validation dataset data set after the i-th training epoch. Then, for the i-th 

training epoch, it is checked whether the model’s performance has improved on the 

validation data set: 

𝐼𝑚𝑝𝑟 = 𝑣𝑎𝑙𝐿𝑖−1
− 𝑣𝑎𝑙𝐿𝑖

. (19) 

If an improvement occurs (Impr > 0), the epoch counter is reset to zero without 

improvement (no_improvement_epochs). If there is no improvement, the counter is 

incremented by 1. If the counter reaches a preset value P, then model training stops. 

Once the model is trained, its performance on a test dataset is evaluated to evaluate its 

ability to generalize to new data. 

The work proposes to use a new neuron activation function, Smooth ReLU, based on the 

ReLU function. The main idea of modifying the ReLU function is to make the activation 

function smoother and more continuous to improve the convergence and robustness of 

training. The expression describes the Smooth ReLU activation function: 

𝑓(𝑥) = {
𝑥,                 if 𝑥 > 0,

1

1 + 𝑒−𝛾∙𝑥
, if 𝑥 ≤ 0,

 (20) 

where γ is a parameter that determines the “degree of smoothness” of the function. When 

x > 0, the function behaves like a regular ReLU. For x ≤ 0, it uses a sigmoid function to 



smoothly transition from 0 to negative values. This avoids sudden “steps” in the gradient 

and can help speed up the neural network's training. 

The proposed neural activation function Smooth ReLU retains the benefits of ReLU (no 

gradient for positive values) and adds smoothness for negative values, which can be useful 

for improving training in some cases.  

4. Experiment 

At the preliminary stage of the computational experiment, the feasibility of using the 

proposed neuron activation function Smooth ReLU (20) is mathematically justified in 

comparison with the traditional ReLU 𝑓(𝑥) = max(0, 𝑥), which is used in graph neural 

networks. The initial data of the problem is the loss function J (10), which must be 

minimized, that is, J → min. To study the activation function of neurons, it is extremely 

important to analyze their derivatives. The derivative of the activation function allows you 

to analyze the rate of change of the activation function of neurons depending on changes in 

input data. This, in turn, helps optimize the process of updating neuron weights during 

neural network training. 

The derivative of the traditional ReLU neuron activation function (Fig. 3, red curve) has 

the form: 

𝑓′(𝑥) = {
1, if 𝑥 > 0,
0, if 𝑥 ≤ 0.

 (21) 

The derivative of the proposed Smooth ReLU neuron activation function (Fig. 3, black 

curve) has the form: 

𝑓′(𝑥) = {

1,                 if 𝑥 > 0,
𝛾 ∙ 𝑒−𝛾∙𝑥

(1 + 𝑒−𝛾∙𝑥)2
, if 𝑥 ≤ 0.

 (22) 

                 
             a         b 

Figure 3: Diagram of the derivative of traditional ReLU function (red curve) and proposed 

Smooth ReLU function (black curve). (author's research). 



As can be seen from (21), (22), as well as from Fig. 3, a, the problem with regular ReLU 

is that the derivative is 0 for all negative values of x, which can lead to a "dead neurons" 

problem in a neural network, where neurons stop updating due to a zero gradient. The 

advantage of Smooth ReLU is that it always has a non-zero gradient for all values of x, 

including negative values. This avoids the problem of “dead neurons” and promotes more 

stable training, especially in deep neural networks. Thus, the use of Smooth ReLU (Fig. 3, b) 

is mathematically justified because it provides a smooth and continuous gradient over the 

entire definition domain, which can help improve convergence and model training. 

Based on [1], to conduct a computational experiment consisting of assessing the 

performance of the proposed method for identifying potential defects, the research object 

was TV3-117 is the helicopter TE of various helicopter modifications. To conduct the 

computational experiment, we used a personal computer with an AMD Ryzen 5 5600 

processor, which has 6 cores with 12 threads operating at 3.5 GHz and 32 GB of DDR-4 RAM. 

At the first stage of the computational experiment, the creation, analysis and pre-processing 

of a training sample is carried out, consisting of the following parameters that are recorded 

on board the helicopter (Table 1): nTC is the gas generator rotor r.p.m., nFT is the free turbine 

rotor speed, TG is the gas temperature in front of the compressor turbine, h is the flight 

altitude, TN is the temperature, PN is the pressure, ρ is the air density [37–39]. All input 

parameters are reduced to absolute values according to the theory of gas-dynamic similarity. 

Table 1 

The training set part (author's research, published in [37–39]) 

Number Gas generator rotor 

r.p.m. 

Free turbine rotor 

speed 

Gas temperature in 

front of the 

compressor turbine 

1 0.929 0.943 0.932 

2 0.933 0.982 0.964 

3 0.952 0.962 0.917 

4 0.988 0.987 0.908 

5 0.991 0.972 0.899 

… … … … 

256 0.981 0.973 0.953 

 

A detailed description of the process of preprocessing data from the training set 

(Table 1) is given in [37–39]. This process includes several steps: data homogeneity 

assessment, dividing them into control and test samples, and checking the 

representativeness of both samples using cluster analysis. Data homogeneity is assessed 

using the Fisher-Pearson test [40], the result of which confirms the homogeneity of the 

samples and the hypothesis of normal distribution (at a significance level of 0.05 and 13 

degrees of freedom, the resulting value χ2 = 3.588 does not exceed the critical value of 3.44). 

The Fisher-Snedecor test [41] is also used to test homogeneity, confirming the homogeneity 

of the training sample (at a significance level of 0.01 and 13 degrees of freedom, the 

resulting value F = 1.28 does not exceed the critical value of 22.362). To assess 



representativeness, data clusters identified by cluster analysis are examined (Fig. 4). After 

the randomization procedure, training, and test samples are formed in a 2:1 ratio. Cluster 

analysis shows that both samples contain eight classes, which indicates their 

representativeness. The distances between clusters are almost the same in both samples, 

which confirms their similarity and representativeness. 

      
a               b 

Figure 4: Cluster analysis results: a – Original experimental dataset (I…VIII – classes); b – 

Training dataset. (author's research, published in [37–39]). 

In the course of graph neural network training (Fig. 2), the proposed algorithm obtained 

dependences of the accuracy (Fig. 5), completeness (Fig. 6), and losses (Fig. 7) of the neural 

network on the number of iterations (1000 iterations were used in the work), at which “blue 

curve” means training on the training set, “orange curve” means validation on the control 

set. From Fig. 5 it can be seen that the limiting value of accuracy practically reaches 1, Fig. 6 

it is clear that the completeness is almost constant and equal to 1, and Fig. 7 shows that the 

loss value does not exceed 0.025, which indicates the high efficiency of training the model 

on the available data and its ability to accurately generalize to new data.  

 

Figure 5: Diagram of changes in the neural network accuracy function with 1000 iterations. 

(author's research). 



 

Figure 6: Diagram of changes in the neural network recall function with 1000 iterations. 

(author's research). 

 

Figure 7: Diagram of changes in the neural network loss function with 1000 iterations. 

(author's research). 

Such results make the model potentially suitable for solving the task of identifying 

potential defects in helicopter TE.  

5. Results 

Fig. 8 shows the results of identifying potential defects based on long-term prediction of the 

gas temperature parameter in front of the compressor turbine TG in the components of the 

TV3-117 TE. On the graph of the initial parameter TG, corresponding to the time point t = 

94.65 hours, predicting is carried out. At t = 96.2 hours, there is a decrease in the TG 

parameter by 4 %, and at t = 99.3 hours – by another 3%, for a total of 7 % decrease. At 

times t = 96.2 hours and t = 99.3 hours Fig. 9 and 10 show the corresponding bursts, 

indicating a possible malfunction of the engine combustion chamber – the potential 

appearance of cracks (burnouts). In this way, normal engine operation can be guaranteed 



for 8 hours. The results of these researches fully confirm previously conducted identical 

research in [1]. 

 

 

Figure 8: The results of identification of potential defects in the combustion chamber of 

TV3-117 TE. (author's research). 

 

Figure 9: The results of identification of potential defects in the combustion chamber of 

TV3-117 TE. (author's research). 

 

Figure 10: The results of identification of potential defects in the combustion chamber of 

TV3-117 TE. (author's research). 



The red curve in Fig. 10 means an identified probable defect – the potential appearance 

of cracks (burnouts) in the combustion chamber. The obtained data on long-term prediction 

of the gas temperature parameter in front of the compressor turbine TG allows us to take 

effective measures to detect and prevent potential defects in the engine combustion 

chamber, which in turn helps to improve the safety and reliability of helicopter TE. Thus, 

these researches have significant practical significance and can be used in the field of 

maintenance and aviation equipment operation.  

6. Discussion 

Similar to [1], as a result of the comparative experiment, the results were obtained (Table 2) 

of the developed and known methods: Simple Autoencoder, Autoencoder using the LSTM 

neural network, the method developed in [1] using the GRNN neural network and the 

developed method using graph neural network. 

Table 2 

Comparative experiment results (author's research) 

P
a

ra
m

e
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r 

SOTA-architectures Developed in [1] 

method using 

the GRNN neural 

network 

Developed 

method using 

the graph neural 

network 

Simple 

AutoEncoder 

AutoEncoder 

using the LSTM 

neural network 
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nTC 0.81 0.76 0.78 0.63 0.67 0.64 0.88 0.87 0.87 0.96 0.98 0.94 

TG 0.86 0.84 0.85 0.77 0.77 0.77 0.92 0.91 0.91 0.99 0.97 0.96 

nFT 0.61 0.57 0.57 0.67 0.64 0.67 0.79 0.78 0.78 0.95 1.0 0.93 

 

Table 2 shows that the results of the proposed method using a graph neural network are 

superior to almost all presented accuracy metrics. Alternative methods (Simple 

AutoEncoder [42, 43], LSTM AutoEncoder [44, 45], and a similar method using the GRNN 

neural network developed in [1]) also demonstrate deterioration in performance on the 

same signals. Table 2 also shows that the results for all Precision, Recall, and F1-scope 

metrics when using a graph neural network are better compared to Simple AutoEncoder, 

LSTM AutoEncoder, and a similar method using the GRNN neural network [1]. These results 

confirm the effectiveness and high accuracy of the proposed method using a graph neural 

network while achieving high accuracy for all analyzed transformations. Thus, the results 

of the proposed method are superior to almost all presented accuracy metrics compared to 

alternative methods: Simple AutoEncoder, LSTM AutoEncoder, and a similar method using 

the GRNN neural network [1]. 

At the final stage of the comparative experiment, the effectiveness of the proposed 

method was assessed, which consisted of conducting a comparative analysis of the accuracy 



of classical and neural network methods for identifying potential defects, the results of 

which are given in Table 3, which displays the results of calculating the probability of errors 

of I and II types when identifying defects in the compressor (nTC parameter), combustion 

chamber (TG parameter) and compressor turbine (nFT parameter). In this case, errors of the 

first (FPR) and second (FNR) types were calculated as [46, 47]: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
, 𝐹𝑁𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
,  (23) 

where False Positives (FP) is the number of observations that are incorrectly classified as 

positive, False Negatives (FN) is the number of observations that are incorrectly classified 

as negative, True Positives (TP) is the number of observations that are correctly classified 

as positive, True Negatives (TN) is the number of observations that are correctly classified 

as negative. 

A type I error means rejecting the null hypothesis when it is true, while a type II error 

means accepting the null hypothesis when it is false. In the context of identifying potential 

defects, the null hypothesis is defined as: “There are no potential defects in the test item.” 

This means that under the null hypothesis, there are no anomalies, errors, or defects to be 

identified or corrected. 

Table 3 

Results of calculating errors of the I and II types (author's research) 

Identification Method Probability of error in potential defect 

identification, % 

Compressor 

defect 

Combustion 

chamber defect 

Compressor 

turbine defect 

Type I 

error 

Type II 

error 

Type I 

error 

Type II 

error 

Type I 

error 

Type II 

error 

Classical method  

(Tolerance control) 
1.75 1.35 2.48 1.76 2.23 1.51 

Neural Network Method:       

Simple AutoEncoder 1.15 0.94 1.24 1.09 1.23 1.06 

LSTM AutoEncoder 0.95 0.58 1.02 0.63 0.99 0.61 

GRNN neural network [1] 0.62 0.31 0.61 0.29 0.60 0.27 

Graph neural network 0.33 0.17 0.33 0.16 0.32 0.14 

 

As can be seen from Table 3, the use of a graph neural network reduces errors of the first 

and second types compared to the use of Simple AutoEncoder by 3.49...7.58 times, LSTM 

AutoEncoder – by 2.88...4.36 times, and the GRNN neural network [1] – by 1.81...1.93 times. 

Therefore, we can conclude that the use of a graph neural network in the method of 

identifying potential defects reduces errors of the first and second types by almost 2 times 

compared with the use of the GRNN neural network [1]. 



For four classification classes (True Positives, True Negatives, False Positives, False 

Negatives) confusion matrix was developed (Table 4) [48–50]. Each cell of the confusion 

matrix shows the number of times the actual class (rows) was classified as the predicted 

class (columns) for each method. 

Table 4 

Developed confusion matrix (author's research) 

Actual \ 

Predicted 

Developed 

method using 

the graph 

neural 

network 

Developed in 

[1] method 

using the 

GRNN neural 

network 

Simple 

AutoEncoder 

AutoEncoder 

using the 

LSTM neural 

network 

True Positives 95 3 2 0 

True Negatives 2 90 6 2 

False Positives 1 5 85 9 

False Negatives 0 2 7 91 

The confusion matrix demonstrates that the GNN is the most accurate method, correctly 

classifying the majority of instances in all classes with minimal misclassifications. The GRNN 

network, while performing well, shows slightly more errors, particularly in distinguishing 

between classes “True Negatives” and “False Positives”. The Simple Autoencoder 

demonstrates moderate accuracy but has noticeable misclassifications across all classes, 

particularly in misidentifying class “False Positives” instances. The Autoencoder using the 

LSTM neural network exhibits the lowest accuracy, with significant misclassifications, 

especially confusing instances of classes “True Positives”, “True Negatives” and “False 

Positives”, while showing better performance for class “False Negatives”. Overall, the GNN 

method clearly outperforms the others, followed by GRNN, Simple Autoencoder, and LSTM 

Autoencoder in descending order of classification quality. 

To conduct ROC analysis for four methods (Graph Neural Network, GRNN Network, 

Simple Autoencoder, Autoencoder using the LSTM neural network), true positive and false 

positive rates were calculated for each class and method, and then the corresponding ROC 

curves were plotted. To do this, a binary classification is created for each class (this class 

versus all others). For each class, True Positive Rate (TPR) and False Positive Rate (FPR) 

are calculated as [49–51]: 

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (24) 

The area under the ROC curve (AUC) can be estimated using the trapezium equation. If 

(TPRi and FPRi) are the ROC curve points coordinates, then AUC can be calculated as follows: 

𝐴𝑈𝐶 = ∑
𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖+1

2
∙ (𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖)

𝑃−1

𝑖=1

, (25) 



where P is the points number on the ROC curve. Table 5 shows the ROC analysis results. 

Table 5 

ROC analysis results (author's research) 

Actual \ 

Predicted 

Developed 

method using 

the graph 

neural 

network 

Developed in 

[1] method 

using the 

GRNN neural 

network 

Simple 

AutoEncoder 

AutoEncoder 

using the 

LSTM neural 

network 

True Positives 95 90 2 0 

True Negatives 3 7 8 10 

False Positives 270 266 290 290 

False Negatives 30 35 98 100 

TPR 0.76 0.72 0.02 0 

FPR 0.011 0.025 0.027 0.33 

AUC 0.838 0.724 0.445 0.292 

Thus, the use of GNN gives high accuracy with a low level of false positive results; the use 

of GNN also gives high accuracy, but 1.16 times lower than that of GNN. Using Simple 

Autoencoder gives moderate accuracy, with noticeable errors. Using LSTM Autoencoder 

gives the lowest accuracy with the highest number of false positives. 

7. Conclusions 

The neural network method for identifying potential defects in complex dynamic objects 

(using the example of helicopter turboshaft engines) has been further developed, which 

differs from the existing one in that, through the use of the Transformer model rather than 

the GRNN neural network, it has made it possible to identify potential defects in complex 

dynamic objects with almost 100 % accuracy (using the example of the potential 

appearance of cracks (burnouts) in the combustion chamber of helicopter turboshaft 

engines due to a predicted decrease in gas temperature in front of the compressor turbine 

values). 

A neural network implementation of the Transformer model is proposed using a graph 

neural network in the proposed method for identifying potential defects in complex 

dynamic objects, which made it possible to reduce errors of the first and second types in 

comparison with the use of Simple AutoEncoder by 3.49...7.58 times, LSTM AutoEncoder by 

2.88...4.36 times, neural GRNN network – 1.81…1.93 times.  

Improved ReLU activation function in the form of Smooth ReLU to make the activation 

function smoother and more continuous, and, as a result, improve the convergence and 

stability of training. By analyzing the derivatives of the ReLU and Smooth ReLU functions, it 

is determined that the Smooth ReLU function solves the "dead neurons" task associated 

with regular ReLU by providing a non-zero gradient for all input data values, including 

negative ones, which provides more stable training of neural networks and prevents 

neurons from stopping updating due to zero gradient. 



Acknowledgements 

This research was funded by the Ministry of Internal Affairs of Ukraine "Theoretical and 

applied aspects of the development of the aviation sphere" under Project 

No. 0123U104884. 

References 

[1] S. Vladov, Y. Shmelov, R. Yakovliev, Modified Method of Identification Potential Defects 

in Helicopters Turboshaft Engines Units Based on Prediction its Operational Status, in: 

Proceedings of the 2022 IEEE 4th International Conference on Modern Electrical and 

Energy System (MEES), Kremenchuk, Ukraine, October 20–22, 2022, pp. 556–561. 

doi: 10.1109/MEES58014.2022.10005605 

[2] O. Ivanov, L. Koretska, V. Lytvynenko, Intelligent modeling of unified communications 

systems using artificial neural networks, CEUR Workshop Proceedings 2623 (2020) 

77–84. 

[3] S. Babichev, V. Lytvynenko, J. Skvor, J. Fiser, Model of the objective clustering inductive 

technology of gene expression profiles based on SOTA and DBSCAN clustering 

algorithms, Advances in Intelligent Systems and Computing 689 (2018) 21–39. 

doi: 10.1007/978-3-319-70581-1\_2 

[4] J. Chen, Y. Liu, Neural optimization machine: a neural network approach for 

optimization and its application in additive manufacturing with physics-guided 

learning, Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 381: 2260 (2023). doi: 10.1098/rsta.2022.0405. 

URL: https://royalsocietypublishing.org/doi/10.1098/rsta.2022.0405 

[5] W.-K. Hong, 4 - Forward and backpropagation for artificial neural networks, in: W.-

K. Hong (Ed.), Artificial Intelligence-Based Design of Reinforced Concrete Structures, 

Woodhead Publishing, Sawston, England, 2023, pp. 67–116. doi: 10.1016/B978-0-443-

15252-8.00006-6. 

[6] M. Heidari, M. H. Moattar, H. Ghaffari, Forward propagation dropout in deep neural 

networks using Jensen–Shannon and random forest feature importance ranking, 

Neural Networks 165 (2023) 238–247. doi: 10.1016/j.neunet.2023.05.044.  

[7] A. Kupina, D. Zubov, Y. Osadchuka, R. Ivchenkoa, V. Saiapin, Intelligent Neural Networks 

Models for the Technological Separation Processes, CEUR Workshop Proceedings 3373 

(2023) 76–86. 

[8] B. Rusyn, R. Kosarevych, O. Lutsyk, V. Korniy, Segmentation of atmospheric cloud 

images obtained by remote sensing, in: Proceedings of the 2018 14th International 

Conference on Advanced Trends in Radioelecrtronics, Telecommunications and 

Computer Engineering (TCSET), Lviv-Slavske, Ukraine, February 20–24, 2018, pp. 213–

216. doi: 10.1109/TCSET.2018.8336189 

[9] S. Babichev, M. Korobchynskyi, O. Lahodynskyi, O. Korchomnyi, V. Basanets, 

V. Borynskyi, Development of a technique for the reconstruction and validation of gene 

network models based on gene expression, Eastern-European Journal of Enterprise 

Technologies 1(4 (91) (2018) 19–32. doi: 10.15587/1729-4061.2018.123634 

https://royalsocietypublishing.org/doi/10.1098/rsta.2022.0405


[10] B. Li, Y.-P. Zhao, Y.-B. Chen, Unilateral alignment transfer neural network for fault 

diagnosis of aircraft engine, Aerospace Science and Technology, vol. 118 (2021) 

107031. doi: 10.1016/j.ast.2021.107031. 

[11] M. Soleimani, F. Campean, D. Neagu, Diagnostics and prognostics for complex systems: 

A review of methods and challenges, Quality and Reliability Engineering, vol. 37, issue 

8 (2021) 3746–3778 doi: 10.1002/qre.2947. 

[12] X. Zhu, M. Li, X. Liu, Y. Zhang, A backpropagation neural network-based hybrid energy 

recognition and management system, Energy 297 (2024) 131264. 

doi: 10.1016/j.energy.2024.131264 

[13] Z. Wang, B. Li, W. Li, S. Niu, M. Wang, T. Niu, NAS-ASDet: An adaptive design method for 

surface defect detection network using neural architecture search, Advanced 

Engineering Informatics 61 (2024) 102500. doi: 10.1016/j.aei.2024.102500 

[14] B. Chen, T. Niu, R. Zhang, H. Zhang, Y. Lin, B. Li, Feature matching driven background 

generalization neural networks for surface defect segmentation, Knowledge-Based 

Systems 287 (2024) 111451. doi: 10.1016/j.knosys.2024.111451 

[15] S. Vladov, Y. Shmelov, R. Yakovliev, Helicopters Aircraft Engines Self-Organizing Neural 

Network Automatic Control System, CEUR Workshop Proceedings 3137 (2022) 28–47. 

doi: 10.32782/cmis/3137-3 

[16] Y. Shen, K. Khorasani, Hybrid multi-mode machine learning-based fault diagnosis 

strategies with application to aircraft gas turbine engines, Neural Networks, vol. 130 

(2020) 126–142. doi: 10.1016/j.neunet.2020.07.001 

[17] L. Xu, S. Dong, H. Wei, D. Peng, W. Qian, Q. Ren, L. Wang, Y. Ma, Intelligent identification 

of girth welds defects in pipelines using neural networks with attention modules 127 

(part B) (2024) 107295. doi: 10.1016/j.engappai.2023.107295 

[18] J. Xuan, Z. Wang, S. Li, A. Gao, C. Wang, T. Shi, Measuring compound defect of bearing by 

wavelet gradient integrated spiking neural network, Measurement 223 (2023) 113796. 

doi: 10.1016/j.measurement.2023.113796 

[19] R. Kosarevych, O. Lutsyk, B. Rusyn, Detection of pixels corrupted by impulse noise using 

random point patterns, The Visual Computer: International Journal of Computer 

Graphics 38(11) (2022) 3719–3730. doi: 10.1007/s00371-021-02207-1 

[20] B. Rusyn, O. Lutsyk, R. Kosarevych, T. Maksymyuk, J. Gazda, Features extraction from 

multi-spectral remote sensing images based on multi-threshold binarization, Scientific 

Reports 13(1) (2023) 19655. doi: 10.1038/s41598-023-46785-7 

[21] L. Feng, A. Sinchai, Transfer learning model for cash-instrument prediction adopting a 

Transformer derivative, Journal of King Saud University - Computer and Information 

Sciences 36:3 (2024) 102000. doi: 10.1016/j.jksuci.2024.102000 

[22] Z. Xin, S. Sirejiding, Y. Lu, Y. Ding, C. Wang, T. Alsarhan, H. Lu, TFUT: Task fusion upward 

transformer model for multi-task learning on dense prediction, Computer Vision and 

Image Understanding 244 (2024) 104014. doi: 10.1016/j.cviu.2024.104014 

[23] X. Wang, S. Chen, L. Chen, D. Zhu, Y. Liu, T. Wu, A hybrid MLP-CNN model based on 

positional encoding for daytime radiative cooler, Optics Communications 560 (2024) 

130448. doi: 10.1016/j.optcom.2024.130448 



[24] P. Liu, L. Chen, H. Zhang, Y. Zhang, C. Liu, C. Li, Z. Wang, PEAR: Positional-encoded 

Asynchronous Autoregression for satellite anomaly detection, Pattern Recognition 

Letters 176 (2023) 96–101. doi: 10.1016/j.patrec.2023.10.007 

[25] X. Wang, W. Deng, Z. Meng, D. Chen, Hybrid-attention mechanism based heterogeneous 

graph representation learning, Expert Systems with Applications 250 (2024) 123963. 

doi: 10.1016/j.eswa.2024.123963 

[26] M. Han, L. Fan, A short-term energy consumption forecasting method for attention 

mechanisms based on spatio-temporal deep learning, Computers and Electrical 

Engineering 114 (2024) 109063. doi: 10.1016/j.compeleceng.2023.109063 

[27] T. Xia, X. Chen, Category-learning attention mechanism for short text filtering, 

Neurocomputing 510 (2022) 15–23. doi: 10.1016/j.neucom.2022.08.076 

[28] R. Khalitov, T. Yu, L. Cheng, Z. Yang, Sparse factorization of square matrices with 

application to neural attention modeling, Neural Networks 152 (2022) 160–168. 

doi: 10.1016/j.neunet.2022.04.014 

[29] M. Zeynali, H. Seyedarabi, R. Afrouzian, Classification of EEG signals using Transformer 

based deep learning and ensemble models, Biomedical Signal Processing and Control 

86 (part A) (2023) 105130. doi: 10.1016/j.bspc.2023.105130 

[30] X. Li, Q.-L. Sun, Y. Zhang, J. Sha, M. Zhang, Environmental Modelling & Software 177 

(2024) 106042. doi: 10.1016/j.envsoft.2024.106042 

[31] J. Chan, I. Papaioannou, D. Straub, Bayesian improved cross entropy method for 

network reliability assessment, Structural Safety 103 (2023) 102344. 

doi: 10.1016/j.strusafe.2023.102344 

[32] B. Liu, H. Chen, K. Li, M. Ying Yang, Transformer-based multimodal change detection 

with multitask consistency constraints, Information Fusion 108 (2024) 102358. 

doi: 10.1016/j.inffus.2024.102358 

[33] P. Foroutan, S. Lahmiri, Deep learning-based spatial-temporal graph neural networks 

for price movement classification in crude oil and precious metal markets, Machine 

Learning with Applications 16 (2024) 100552. doi: 10.1016/j.mlwa.2024.100552 

[34] W. Pei, W.N. Xu, Z. Wu, W. Li, J. Wang, G. Lu, X. Wang, Saliency-aware regularized graph neural 

network, Artificial Intelligence 328 (2024) 104078. doi: 10.1016/j.artint.2024.104078 

[35] Y. Li, C. Jian, G. Zang, C. Song, X. Yuan, Node classification oriented Adaptive 

Multichannel Heterogeneous Graph Neural Network, Knowledge-Based Systems 292 

(2024) 111618. doi: 10.1016/j.knosys.2024.111618 

[36] J. Li, Y. Song, X. Song, D. Wipf, On the Initialization of Graph Neural Networks. in: 

Proceedings of the 40th International Conference on Machine Learning, Honolulu, 

Hawaii, USA, 2023, pp. 19911–19931. doi: 10.48550/arXiv.2312.02622 

[37] S. Vladov, R. Yakovliev, O. Hubachov, J. Rud, Neuro-Fuzzy System for Detection Fuel 

Consumption of Helicopters Turboshaft Engines, CEUR Workshop Proceedings 3628 

(2024) 55–72. 

[38] S. Vladov, R. Yakovliev, O. Hubachov, J. Rud, Y. Stushchanskyi, Neural Network Modeling 

of Helicopters Turboshaft Engines at Flight Modes Using an Approach Based on “Black 

Box” Models, CEUR Workshop Proceedings 3624 (2024) 116–135. 



[39] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, Neural Network Method for 

Parametric Adaptation Helicopters Turboshaft Engines On-Board Automatic Control, 

CEUR Workshop Proceedings 3403 (2023) 179–195. 

[40] F. S. Corotto, Appendix C - The method attributed to Neyman and Pearson, Wise Use of 

Null Hypothesis Tests (2023) 179–188. doi: 10.1016/B978-0-323-95284-2.00012-4  

[41] F. V. Motsnyi, Analysis of Nonparametric and Parametric Criteria for Statistical 

Hypotheses Testing. Chapter 1. Agreement Criteria of Pearson and Kolmogorov, 

Statistics of Ukraine 4’2018 (83) (2018) 14–24. doi: 10.31767/su.4(83)2018.04.02 

[42] S. Haidong, J. Hongkai, Z. Huiwei, W. Fuan, A novel deep autoencoder feature learning 

method for rotating machinery fault diagnosis, Mechanical Systems and Signal 

Processing, 95 (2017) 187–204. doi: 10.1016/j.ymssp.2017.03.034 

[43] A. Li, C. Feng, S. Xu, Y. Cheng, Graph t-SNE multi-view autoencoder for joint clustering 

and completion of incomplete multi-view data, Knowledge-Based Systems 284 (2024) 

111323. doi: 10.1016/j.knosys.2023.111324 

[44] X. Tong, J. Wang, C. Zhang, T. Wu, H. Wang, Y. Wang, LS-LSTM-AE: Power load 

forecasting via Long-Short series features and LSTM-Autoencoder, Energy Reports, 8:1 

(2022) 596–603. doi: 10.1016/j.egyr.2021.11.172 

[45] L. Zeng, Q. Jin, Z. Lin, C. Zheng, Y. Wu, X. Wu, X. Gao, Dual-attention LSTM autoencoder 

for fault detection in industrial complex dynamic processes, Process Safety and 

Environmental Protection 185 (2024) 1145–1159. doi: 10.1016/j.psep.2024.02.042 

[46] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, S. Drozdova, Neural Network Method 

for Helicopters Turboshaft Engines Working Process Parameters Identification at 

Flight Modes, in: Proceedings of the 2022 IEEE 4th International Conference on Modern 

Electrical and Energy System (MEES), Kremenchuk, Ukraine, 2022, pp. 604–609. 

doi: 10.1109/MEES58014.2022.10005670 

[47] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, S. Drozdova, Helicopters Turboshaft 

Engines Parameters Identification at Flight Modes Using Neural Networks, in: Proceedings 

of the IEEE 17th International Conference on Computer Science and Information 

Technologies (CSIT), Lviv, Ukraine, 2022, pp. 5–8. doi: 10.1109/CSIT56902.2022.10000444 

[48] K. Andriushchenko, V. Rudyk, O. Riabchenko, M. Kachynska, N. Marynenko, L. Shergina, 

V. Kovtun, M. Tepliuk, A. Zhemba, O. Kuchai. Processes of managing information 

infrastructure of a digital enterprise in the framework of the «Industry 4.0» concept, 

Eastern-European Journal of Enterprise Technologies 1(3–97) (2019) 60–72. 

doi: 10.15587/1729-4061.2019.157765 

[49] V. V. Morozov, O. V. Kalnichenko, O. O. Mezentseva, The method of interaction modeling 

on basis of deep learning the neural networks in complex it-projects, International 

Journal of Computing 19(1) (2020) 88–96. doi: 10.47839/ijc.19.1.1697 

[50] S. Bezobrazov, V. Golovko, A. Sachenko, M. Komar, R. Dolny, V. Kasyanik, P. Bykovyy, 

E. Mikhno, O. Osolinskyi, Deep multilayer neural network for predicting the winner of 

football matches, International Journal of Computing 19(1) (2020) 70–77. 

doi: 10.47839/ijc.19.1.1695 

[51] S. Vladov, R. Yakovliev, M. Bulakh, V. Vysotska. Neural Network Approximation of 

Helicopter Turboshaft Engine Parameters for Improved Efficiency, Energies 17(9) 

(2024) 2233. doi: 10.3390/en17092233 

https://doi.org/10.3390/en17092233

