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Abstract

Automatic Speech Emotion Recognition (SER) is a pivotal task across domains such as psychology, healthcare,
or human-computer interaction. This study, conducted within the framework of the EmoSpeech challenge at
IberLEF 2024, explores efficient adaptation techniques for mono-modal and multi-modal large language models
(LLMs) for SER in Spanish. The challenge includes two tasks: one that relies solely on textual transcriptions and
another that integrates audio signals. For the text-only task, we fine-tune the multilingual Gemma-2B model
using the Low-Rank Adaptation (LoRA) method, optimizing low-rank adaptation parameters. For the multi-modal
task, we employ Qwen-Audio-Chat, enhancing its performance using the LoRA technique, and we propose a
novel Whisper-Gemma model that integrates Whisper-large-v3 audio encoder with the Gemma LLM, training
only a projection layer. The metrics obtained as a result of the experimentation process demonstrate the potential
of both approaches. The fine-tuned Gemma-2B model achieves an f1-macro score of 0.6094 on the text-only task,
while the Qwen-Audio-Chat model reaches 0.8248, indicating significant improvements in emotional recognition
capabilities when combining both modalities. Additionally, the Whisper-Gemma model achieves a competitive
f1-macro score of 0.7904, underscoring the effectiveness of using pre-trained audio encoders and smaller LLMs in
SER tasks. These findings highlight the value of parameter-efficient fine-tuning methods and the integration of
robust audio encoders with LLMs to enhance SER performance.

Keywords
Speech Emotion Recognition, MultiModal Large Language Models, Low-Rank Adaptation, Parameter-efficient
Fine-Tuning

1. Introduction

Understanding human emotions is crucial in various domains ranging from psychology and healthcare
to human-computer interaction and marketing [1]. Accurately recognizing them can provide valuable
information on human behavior, preferences, or mental health, among others. Although emotions
manifest in multiple modalities, our study focuses specifically on spoken Spanish audio and its transcripts
as sources of emotional expression. In addition, a relationship between the topic of conversation and
the emotion expressed has been studied in the literature [2].

This work contributes to the EmoSPeech challenge at Iberlef 2024 [3]. It poses the problem of
automatic Speech Emotion Recognition (SER) through two distinct tasks: one that uses only textual
transcriptions and the other that integrates the audio signals corresponding to such transcriptions [4].
By focusing on both modalities, we aim to capture the nature of emotional expression while leveraging
the strengths of combining both modalities for enhanced accuracy and robustness.
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The human voice is a complex signal that condenses a wealth of information about the speaker,
including their age, gender, health, and even emotional state [5]. Subtle variations in pitch, tone and
rhythm capture these nuances. Analyzing these acoustic features along with textual transcripts, we
can learn more about the emotional content of the spoken words, helping to recognize emotions more
accurately and appropriately in different contexts. In detail, the challenge dataset consists of a set of 6
emotions: neutral, disgust, anger, joy, sadness and fear.

Our approach for the challenge is based on leveraging the strengths of a family of Language Models
that, although smaller in size than the top performing LLMs [6, 7], have been trained on a vast amount
of data spanning multiple disciplines and have therefore acquired a solid grounding of knowledge about
our world. In particular, we focus on the Gemma [8] and Qwen [9, 10] models. More specifically, we
explore parameter-efficient methods for adapting this pre-training sapiens to the context of SER, either
using written language-only approaches or imbuing them with audio capabilities. When only textual
transcripts are considered, we explore how adapting Gemma using Low-Rank Adaptation (LoRA) [11]
and SER related data can capture semantic and syntactic information related to emotional patterns.
Alternatively, when incorporating audio data, we fine-tune state-of-the-art MultiModal Large Language
Models (MM-LLMs) so the LLM also has the ability to comprehend not only textual content but also the
acoustic features extracted by the audio encoder, thus enriching the understanding of emotions across
both modalities. In particular, we choose to fine-tune Qwen Audio [10] due to its demonstrated state-of-
the-art performance across various benchmarks, leveraging its pre-trained capabilities. Additionally,
to evaluate the trade-off between accuracy and computational efficiency, we compare Qwen-Audio’s
performance with a smaller model. This lightweight model integrates features extracted by an audio
encoder into the Gemma LLM. Here, only the projection layer that maps the audio encoder output to
the LLM semantic space is trained, allowing the model to effectively handle the audio data.

The contributions to emotion recognition described in this work can be summarized as:

« Leveraging large language models (LLMs): We fine-tune LLMs to directly predict emotions from
textual transcripts. This approach allows us to obtain probability distributions for the emotions
under analysis.

 Enhancing classification with audio features: We investigate the potential of incorporating audio
features by fine-tuning multimodal LLMs (MM-LLMs). This aims to enhance the classification
capabilities for emotion recognition.

» Exploring the efficiency of adapting and using small LLMs: We explore training a projection layer
that allows pre-trained encoders (inspired by MM-LLMs) to be used independently with the LLM
for emotion recognition. This approach investigates the possibility of achieving good results with
computationally less expensive models.

This paper is organized as follows: In Section 2, we provide a comprehensive review of related
work, discussing traditional and deep learning approaches for SER and recent advancements in multi-
modal strategies and LLMs. Section 3 details our proposed methods for the EmoSpeech challenge,
including the fine-tuning of Gemma-2B using LoRA for text-only classification and the adaptation
of Qwen-Audio-Chat and Whisper-Gemma models for multimodal classification. Section 4 describes
the materials and methods used in our experiments, including data sources, experimental setup, and
hyperparameter configurations. In Section 5, we present our results and discussion, comparing in-house
validation results and official challenge test results for both tasks. Finally, Section 6 concludes the paper,
summarizing our findings and outlining future research directions to further improve automatic SER
systems.

2. Related Work

Traditionally, SER approaches have relied on extracting meaningful descriptors of the audio signal. This
process often involved determining the most effective features to identify emotions, including but not
limited to Fast Fourier Transform (FFT) and Mel-Frequency Cepstral Coeflicients (MFCC) [12]. This



research path travelled through approaches that exploit these and other features in order to train classical
Machine Learning models such as Support Vector Machines (SVMs) [13], Linear Discriminant Analysis
(LDA) [14], k-Nearest Neighbors [15] or even unsupervised clustering algorithms [16]. However, these
types of approach have struggled to capture the specifics of emotion in audio [1]. With the advent of
Deep Learning methods came systems that no longer rely on manually curated features but classified
emotions directly from the audio signal or its spectral representations, using architectures such as
Convolutional Neural Networks (CNNs) or Long Short-Term Memory (LSTM) Networks [17, 18, 19].

Studies in Spanish SER lack abundance, mainly due to the sparcity of available data. However, recent
efforts go beyond the audio signal alone and incorporate textual transcriptions in hybrid approaches
using deep audio encoders and text models and late fusion strategies [20, 2].

The recent use of multimodal strategies for SER based on textual models motivates a shift of focus
towards Large Language Models (LLMs), that have been revolutionizing the field of Natural Language
Processing (NLP) for the past few years. Although the most capable LLMs contain hundreds of billions
of parameters, after recent advancements, some models with significantly fewer parameters have shown
great adaptability, enabling them to tackle complex tasks efficiently. Examples include Qwen-7B [9]
with 7 billion parameters, developed by Alibaba and Google Gemma-2B [21] with a more compact size
of 2 billion parameters. These models demonstrate impressive performance despite their relatively
small size.

The Qwen [9] LLM family is based on the transformer-based LlaMa architecture [22]. However,
Qwen models introduce several modifications such as untiding weights for input embedding and output
projection, using a rotary positional embedding [23], removal of the bias input in all layers and an
adjusted activation function among others. These refinements lead the Qwen-7B model to outperform
Llama-7B on various benchmarks. However, a key limitation of Qwen is its training data, which is
formed by English and Chinese limiting its usage in multilingual settings unless it is adapted.

The Gemma 2B model, despite its relatively smaller size with 2 billion parameters, showcased a
competitive performance on different benchmarks when compared to larger models such as Llama-7B
(8].

Another interesting example of a relatively small LLM is Microsoft Phi-2, which provides outstanding
results while maintaining a relatively low number of parameters [24]. It follows the training methodology
presented in “Textbooks are all you need” [24], which emphasizes the usage of high-quality data to
enhance performance when using smaller models.

Recent advances have expanded the scope of LLMs by incorporating multimodal capabilities, so
that they can now process and understand various data types at the same time beyond text, such as
audio and images. By simultaneously processing different data modalities, MM-LLMs benefit from the
semantic and syntactic understanding acquired by the LLM to extend its comprehension strengths over
new domains such as image or audio processing. Typically, they are formed by encoders that convert
each data type (e.g., image, audio) into a representation that is translated using a projection layer into a
format the LLM can understand [25]. Finally, the output provided by the LLM combines the information
from all modalities, capturing the relationships between them.

As an example, Qwen-Audio extends the capabilities of the Qwen-7B LLM with audio understanding
by integrating a fine-tuned version of Whisper-large-v2 as an audio encoder with projection layer to
serve as an interpreter of the audio features for the text encoder. Whisper [26] is a state-of-the-art audio
encoder that uses 80-channel log-mel spectrograms for speech recognition and audio transcription
using a transformer-based architecture. Despite the fact that Whisper models are trained for speech
recognition and translation, they show good performance in a variety of tasks while using their audio
representations. It obtains outstanding results for transcription tasks due to its powerful embedding
representations, which are proven to contain relevant information about the sounds that form an audio
file [27, 28]. As a result, it provides Qwen-Audio with great reasoning capabilities and understanding
about the audios given as input.

Although Qwen-audio uses a fine-tuned version of Whisper-large-v2 as its audio encoder, recently
an upgraded version of this speech recognition model has been developed. Whisper-large-v3 follows a
similar architecture to that of its previous version but increases the size of the input by using 128 mel



frequency bins instead of 80 [26]. This architectural upgrade and higher performance motivate its use
over its predecessors in building systems that solve a downstream task.

Although impressive in size and capabilities, Whisper V3 has not been trained explicitly for the
SER problem. This issue is tackled by emo2vec [29], a model that although smaller in parameters is
pre-trained with a specific focus on SER tasks, thus being able to generate audio representations that
pose as more meaningful for the challenge at hand. Emo2vec uses a CNN as a feature extractor followed
by a linear projection layer and a mask operation to obtain the input for the backbone network which is
based on the data2vec architecture [30]. The backbone networks form the core component responsible
for learning high-level features from the input data [31]. To the best of our knowledge, a comparative
analysis between the strengths of a largely pre-trained, generalist audio model (Whisper) and smaller
but more task-oriented approaches (emo2vec) on the SER task is yet to be carried out, which motivates
further exploration of both.

While MM-LLMs have achieved outstanding results in a wide variety of tasks, training them is
challenging due to their large number of parameters which turn into a huge computational demand.
LoRA [11] is a technique designed to address these challenges by allowing to efficiently fine-tune
large models. It is based on the idea that most of the information of the original matrix which stores
the updates of the model is captured in matrices with a lower intrinsic rank. Therefore, it can be
decomposed into a product of lower rank adaptation matrices that will significantly reduce the number
of trainable parameters compared to traditional fine-tuning, leading to faster training and lower memory
requirements.

In this work, we focus on fine-tuning the Gemma-2B model and the Qwen-Audio model. Furthermore,
we propose a novel architecture where we explore the potential of utilizing a combination of smaller,
pre-trained LLMs, like Gemma or Phi, alongside the Whisper-large-v3 and emo2vec audio encoders.

3. Proposal

3.1. Task 1 - Fine-tune Gemma using LoRA

Our approach for the Speech Emotion Recognition through text transcription task works under the
hypothesis that a fairly sized LLM that has been trained on a huge amount of multilingual data, such as
Gemma [21], has the potential to understand and model the emotion of the speaker through the nuances
embedded in the written language with few adjustments. For that reason, we fine-tune the Gemma
model using the LoRA method on the transcriptions provided for the challenge dataset. In particular,
we use the google/gemma-1.1-2b-it checkpoint from the HuggingFace Hub' as a starting point.
As reported in the model card, the 1. 1 family of Gemma models are instruction tuned using a novel
Reinforcement Learning with Human Feedback (RLHF) method that enhances their truthfulness and
ability to follow instructions.

We train our proposed system using the next token prediction task, i.e., we model the probability
distribution of the next token z,,, p(z,|{zo, 1, ...xn_1}), given the previous sequence of tokens, or
prompt, {xg, x1,...xp—1}. The prompt used for the training process can be found in Table 1, where
the tag <transcription> is replaced on each case with the corresponding text transcription. Since the
Gemma model has been trained as a conversational agent, we pre-process the prompt by applying a
chat template that instructs the model to predict the next conversational turn:

<start_of_turn>user\n [prompt] <end_of_turn>\n<start_of_turn>model

where [prompt] is the original instruction prompt as shown in Table 1. During training, the label
is appended as the first word of the model turn, so that our system learns to generate that word
given the preceding context (in our case, z,, would be the emotion assigned to a given sample and
{xo,x1,...xn—1} represents the prompt that includes a transcription of the audio belonging to that

'https://huggingface.co/google/gemma-1.1-2b-it



Table 1
Prompt used to both perform zero-shot evaluation and to fine-tune the model using LoRA

Model Prompt

Instruction:
Given the following audio transcription, predict the emotion of the speaker.
The emotion can be one of the following: [neutral, sad, angry, happy, surprise, fear, disgust, contempt]
The transcription is:<transcription>

Gemma 2B

Select the predominant emotion from neutral, disgust, anger, joy, sadness and fear. Answer only

en-Audio-Chat . . . . ; . -
Qw " with one of the emotion words and nothing else. Consider also its transcription: <transcription>

sample). By modeling next token prediction, the LLM is able to elicit the nuances involved in the
language behind each subject and how they translate into the perceived emotion.

In the spirit of leveraging the immense capabilities of state-of-the-art Language Models and adapting
them to the downstream task in the most efficient manner, we use the LoRA technique in order to build
our systems for this subtask. This way, instead of adapting the whole set of parameters that constitute
the LLM, a low rank adaptation of each weight matrix is appended and trained whilst keeping the
original model untouched. This “addenda”, which requires significantly less computational budget to be
trained, can be used in combination with the pre-trained LLM in order to modify its original behaviour,
in this case with the aim of turning it into a SER system. Mathematically speaking, a forward pass over
any given layer of the adapted model can be formulated as:

h=Wor+ SAWz (1)
T

where W) is the original weight matrix of the Transformer layer that is not subject to backpropagation,
AW is the LoRA matrix of rank r that is trained at this stage, and « is a design hyperparameter that
controls the prevalence given to the transformations carried out by the LoRA surrogate with respect to
the original LLM. This process enables learning a low-rank matrix representation of the original model
that is easily trainable with the available resources and data, thus effectively combining large-scale
pre-training knowledge with task-aware capabilities. The two design parameters associated with this
technique, a (LoRA alpha) and r (LoRA rank), may be definitive on the overall performance of the
final system. To evaluate this, we employ a 5-fold cross-validation (CV) scheme to compare different
combinations of LoRa parameters, allowing us to identify the hyperparameter combination that yields
the best average f1-macro score.

3.2. Task 2 - Fine-tuning Qwen-Audio using LoRA

Our proposal for the SER task that uses the audio and corresponding text transcriptions is based on
fine-tuning the Qwen-Audio-Chat [10] model. Figure 1 shows the architecture of Qwen-Audio-Chat
model used for speech emotion classification. Our interest comes from its strengths, which are that it
has been trained using huge amounts of data from diverse datasets across various tasks and it has shown
remarkable performance on various benchmarks. In addition, SER is one of its pre-training objectives,
making it a strong foundation for our study. We specifically utilized the Qwen-Audio-Chat? checkpoint,
which has improved reasoning and understanding capabilities due to an additional supervised training
stage.

However, the output of the model often includes the predicted emotion within a sentence, requiring
a post-processing step to extract the actual predicted label. In case no emotion is returned or it falls
outside from those expected, the predominant emotion 'neutral’ will be assigned. The prompt used to
evaluate model performance is specified in Table 1, where the tag <transcription> is replaced on each
case with the transcription corresponding to the analyzed audio sample.

To tailor the model for SER and address the output format, we fine-tuned the LLM in the Qwen-
Audio-Chat architecture employing the LoRA technique [11]. The audio encoder remains frozen during

*https://huggingface.co/Qwen/Qwen-Audio-Chat



<emotion>

A
Next Token Prediction

Qwen-7B LoRA “

Audio Encoder ;% Tokenizer ;:)K

I

"Select the predominant emotion from neutral,
disgust, anger, joy, sadness and fear. Answer
only with one of the emotion words and nothing
else. Consider also its transcription:
<transcription>"

Figure 1: The diagram illustrates the architecture of Qwen-Audio [10] model used as an speech emotion classifier.
The Audio Encoder and the Tokenizer provide a sequence of tokens that represent the audio signals and prompt
with the transcriptions given as input, respectively. These sequences are concatenated and processed by the
Qwen-7B LLM which has been fine-tuned using LoRA to provide the most likely emotion based on the combined
information. Snowflakes represent the components that remain frozen throughout the training process, while
the flame indicates those adapted via fine-tuning. The <emotion> is expected to be one among those specified in
the input prompt.

the entire process. LoRA facilitates efficient training of large models, greatly reducing computational
demands as described in Section 3.1. Here, we have also conducted a 5-Fold CV process to identify the
LoRA rank and alpha configuration that achieves the best performance based on the average f1-macro.
The chosen hyperparameters will be applied to the final model evaluated in the challenge test dataset.
For this fine-tuning process, we use the Swift framework [32] due to its support for training MM-LLMs.

3.3. Task 2 - MM-LLM: Gemma + Whisper

We propose a model architecture, see Figure 2, that integrates both audio and textual information
inspired on Qwen-Audio model’s structure. However, the core difference with Qwen-Audio [10] or
similar approaches [9, 33] is that only the projection layer is trained, as we hypothesize that it will
allow the language model to comprehend the audio features extracted by the audio encoder. Another
relevant modification in our proposal regarding Qwen-Audio [10] is that we employ Whisper-large-v3
[26] as the audio encoder, instead of Whisper-large-v2, since it processes spectrograms with higher
resolution as input, 128 mels filters instead of 80 [26]. In addition, we prioritize efficiency by employing
smaller LLMs, reducing in more than half the parameters of the original Qwen-Audio model [21, 24].
Our model employs a frozen LLM as the textual understanding backbone and a frozen audio encoder
tailored for the extraction of acoustic features. We employ a linear layer as a projector that leverages
the communication between the audio encoder and the LLM. To address the imbalanced emotion
distribution present in the dataset, we applied a weighted cross-entropy loss function during training,
assigning higher weights to underrepresented classes to enhance model performance and robustness.
Then, we extract the final logits of the LLM that correspond to each emotion token to ensure the LLM
to categorize with just the provided emotion labels. Finally, for inference, we apply a softmax layer to
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Figure 2: Architecture for processing audio and textual modalities with an LLM. On the left, the audio encoder
processes the audio signal and a projection layer maps the extracted audio features into the LLM domain. This
Linear (Projector) module is trained from scratch. Then, information from both modalities is combined and
used as input to the LLM, represented on the right, which remains frozen the whole process. Finally, the logits
corresponding to all the emotions considered are gathered to obtain the probability distribution of all emotions.

obtain the probability distribution of all the possible emotions.

In the end, audio content and temporal dynamics are captured and processed through the Mel
spectrograms received by Whisper-large-v3 as input providing a set of features that are merged with
the hidden representations provided by the LLM. The purpose of the introduced projection layer is to
obtain a unified representation by mapping audio features into the semantic space of the LLM. This
enables the LLM to effectively interpret the audio data and leverage any latent emotional patterns
present.

4. Materials and Methods

4.1. Data Source

The official data for the challenge come from the Multimodal speech-text corpus for Emotion Analysis
in Spanish from natural environments (MEACorpus) 2023 Dataset [2]. A pioneer source of multimodal
data annotated in terms of emotion in Spanish, it consists of a collection of audio segments extracted
from YouTube videos uploaded to Spanish channels. The audios, lasting 9 seconds approximately on
average, are annotated in terms of Ekman’s six basic emotions: anger, disgust, sadness, joy, fear, and
surprise, as well as a neutral class. A subset of the Spanish MEACorpus 2023 Dataset is used for the
task, comprising a grand total of 3,750 audios split into a train (3,000 samples) and test (750 samples)
subset. The corpus includes both processed audio segments and automatically generated transcriptions,
as well as the golden labels for the train split.

The distribution of labels for the training data is shown in Figure 3. Firstly, as originally reported by
the authors, it can be seen that there are no examples of the “surprised” class in the dataset. Secondly,
there are clear signs of class imbalance in the data, with “fear” being heavily misrepresented.
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Figure 3: Label distribution for the train partition of the MEACorpus 2023.

4.2. Experimental Setup

In order to validate our approaches in-house before submitting the challenge runs, a Stratified 5-Fold
Cross-Validation schema is used in all our experiments, which benefits robustness and statistical rele-
vance. In this way, the training data are split 5 times into training and validation, with the validation
splits of each fold being disjoint. Furthermore, the data splits are stratified, i.e. they contain approxi-
mately the same distribution of labels as the entire training corpus, thus enforcing similar experimental
conditions across the folds. As validation metric, we use the f1-macro score, the official figure of merit
for the task, which does not take into account class imbalance.

For the challenge runs, we utilized the entire train dataset to obtain our final models. For Task 1, all
models are trained for 6 epochs using the Adam optimizer, a batch size of 4 and a learning rate of 10~%
with a decreasing linear scheduler to a final value of 0. For task 2, Qwen-Audio-Chat is fine-tuned for 6
epochs using Adam optimizer with weight decay of 0.1, a batch size of 3 and a learning rate of 10~%
with a decreasing linear scheduler. All experiments were carried out on a single NVIDIA A100 40GB
GPU.

5. Results and Discussion

5.1. In-house results
5.1.1. Task 1 - Text only classification

When adapting LLMs to a downstream task using LoRA, the alpha and rank parameters become crucial
in the model design. These parameters effectively control the complexity of the “surrogate model”
learned by LoRA and how much it overrides the original LLM. To find the optimal settings for our task,
we performed a 5-fold cross-validation (CV) on the challenge’s training data using various alpha and
rank combinations. The results are visualized in Figure 4 as a heatmap of the mean f1-macro scores
for the 5 splits in our CV setup for each configuration. The figure reveals a clear sensitivity to the
alpha parameter. The best performance occurs when alpha is close to the chosen rank, but it drops
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Figure 4: Average f1-macro score after 5-Fold CV for different LoORA parameters configuration fine-tuning
Gemma 2B model.

significantly at a value of 512. This suggests that overly influential LoRA adaptations can diminish the
value of the pre-trained LLM knowledge. Conversely, very low alpha values lead to suboptimal results,
as the task-specific knowledge is underutilized.

Regarding the rank parameter, for the optimal alpha, higher values generally improve performance.
A peak f1-macro score of 0.6694 is achieved with both rank and alpha set to 128. However, this benefit
decreases at rank 256. Therefore, it can be empirically induced that, for this specific problem and model
configuration, the original weight matrices are best described using a rank 128 decomposition.

5.1.2. Task 2 - Multimodal classification

To evaluate Qwen-Audio-Chat [10] performance, we performed a zero-shot evaluation on the entire
train dataset achieving an f1-macro result of 0.27 indicating a misalignment with the task requirements.
As shown in Table 1, our prompts specified that only the emotion should be provided. However, the
model struggled to follow these instructions accurately, often adding unexpected information to its
responses. Consequently, a post-processing step was required to retrieve the actual emotion provided.
This suggests difficulty following instructions and potential language mismatch, as Qwen-Audio (based
on Qwen-7B [9]) was trained primarily on Chinese and English data. Additionally, pre-training data for
SER tasks might use different emotion taxonomies than this study.

To address these issues, we fine-tuned Qwen-Audio-Chat using LoRA. Figure 5 presents the results
of a 5-Fold CV for different LoRA configurations. The F1-macro score generally increased with the
LoRA alpha parameter, indicating the benefit of task-specific adaptation. However, excessively high
alpha values (above 4,096) yielded lower f1-macro scores, suggesting that the importance given to the
newly learned weights is so high that the original model knowledge is being sidelined. Regarding rank,
values above 64 showed minimal performance improvement. In fact, the best configuration achieved a
f1-macro score of 0.8164 with a LoRA rank and alpha of 64 and 1,024, respectively.

We further explored multimodal approaches by combining audio encoders with the Gemma LLM.
First, we evaluated both Whisper-large-v3 and Emo2vec encoders with Gemma-2B using a batch size
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Figure 5: Average f1-macro score after 5-Fold CV for different LoORA parameters configuration fine-tuning
Qwen-Audio-Chat model.

Table 2
Average f1-macro results after 5-Fold CV for different hyperparameters configuration for Whisper-Gemma
model.

Whisper + Gemma

Batch size Learning rate Validation f1-macro

4 10—3 0.8125
4 104 0.7660
6 10—3 0.7515
6 10—4 0.7404

of 4 and learning rate 10~%. Our results on the official test set showed that the Whisper-based model
significantly outperformed Emo2vec (0.6636 F1-macro vs. 0.5134).

To optimize the Whisper-Gemma model, we conducted a hyperparameter search on batch size and
learning rate. Table 2 shows the validation f1-macro scores obtained from the different combinations of
hyperparameters. Despite the potential benefits of larger batch sizes in terms of convergence speed
and computational efficiency, hardware limitations restricted us to batch sizes of 4 and 6. Interestingly,
our experimentation reveals that the model trained with a batch size of 4 achieved a higher validation
f1-macro score compared to the one trained with a batch size of 6. Our best model scored an average
f1-macro of 0.8125 after 5-fold CV.



Table 3
Official challenge f1-Macro results over the 750 samples of the test set for various models and tasks, along with
95% Confidence Intervals.

Task 1
Model Test f1-macro
Gemma 2B (Alpha = 32 | Rank = 32) 0.5814 £ 0.0352
Gemma 2B (Alpha = 128 | Rank = 128)* 0.6094 + 0.0349
Task 2
Model Test f1-macro
Qwen-Audio-Chat (Alpha = 2,048 | Rank = 256) 0.8248 4+ 0.0272
Qwen-Audio-Chat (Alpha = 1,024 | Rank = 64) 0.8072 £ 0.0282
Whisper - Gemma 0.7904 £ 0.0291
Emo2Vec - Gemma 0.5134 4+ 0.0359

* This result was obtained at the post-evaluation stage.

5.2. Challenge runs

Table 3 summarizes the performance metrics achieved on the official test set containing 750 examples. For
Task 1, the best fine-tuned Gemma-2B model achieved an f1-macro score of 0.6094. This configuration
used LoRA rank and alpha values of 128. A configuration with a lower rank and alpha (32) yielded a
slightly lower score (0.5814). These results are aligned with the trends observed during validation.

For Task 2, the test results highlight the significance of audio encoder choice in multimodal models
[34]. Specifically, the Whisper-Gemma model achieved a strong f1-macro score of 0.7904, demonstrating
consistent performance across different emotion classes. In contrast, the Emo2vec-Gemma model scored
a lower f1-macro of 0.5134.

Furthermore, we tested for Task 2 the Qwen-Audio model which achieved a higher f1-macro score of
0.8248 on the official test split with a LoRA rank and alpha values of 256 and 2048, respectively. Notice
that the value is higher than the one corresponding to the best configuration obtained in our in-house
experimentation, which is LoRa rank of 64 and alpha of 1024, which achieved a 0.8072 f1-macro score.
However, the reader may note that the difference between both configurations was not statistically
significant (see Figure 5). We hypothesize that it may be due to the use of higher rank decomposition
matrices results in a better adaptation of the target distribution to be modeled.

6. Conclusions and Future Work

This work explored the potential of MM-LLMs to capture the intrinsic patterns of emotions in spoken
language, specifically in the context of the EmoSpeech IberLEF 2024 challenge.

For task 1, we explored parameter-efficient fine-tuning of LLMs using audio transcripts, working
under the hypothesis that the vast generic knowledge held by this kind of architecture can be leveraged
in order to build a strong emotion prediction with little adjustments. We obtained a top result of 0.6094
with a Gemma-2B model fine-tuned using the LoRA technique with a rank and alpha parameters of 128
(0.6694 according to our in-house cross-validation-based experimentation setup). This promising result
opens the door to further exploration of text-only models for automatic SER by efficiently tuning large
models.

For task 2, we fine-tuned the Qwen-Audio model to efficiently adapt the LLM using LoRA to improve
the emotional recognition capabilities of the model. It achieved a 0.8248 f1-macro in the challenge
test dataset, being the second best result, showing that the audio features extracted from the pre-
trained audio encoder contain relevant emotional information that can be adapted so that the LLM can
accurately process it.



Interestingly, a comparable performance with our Qwen-Audio best result was achieved using
the Whisper-Gemma model, which only fine-tuned a projection layer while keeping both models
frozen. This results suggests that smaller models (8.4 billion parameters for Qwen-Audio vs. 3.2 billion
parameters for Whisper-Gemma) can be effective with appropriate audio encoders (Whisper achieved
0.7904 f1-macro compared to 0.5134 with Emo2Vec).

These findings suggest several promising directions for future work. First, we plan to investigate the
effect of fine-tuning the Qwen-Audio audio encoder specifically for the target language, potentially
leading to further performance improvements. Additionally, this could be extended to using models
fine-tuned for specific tasks, followed by the joint fine-tuning of the projection layer to create even
more capable SER systems.

Overall, this work demonstrates the effectiveness of MM-LLMs for emotion recognition in spoken
language, contributing valuable insights to the EmoSpeech Iberlef 2024 challenge. Our findings pave
the way for further research into efficient and accurate models for this task.
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