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Abstract
This paper introduces Telescope, a Machine-Generated Text (MGT) detection system developed for the Iber-
AuTexTification challenge at IberLEF 2024. Our approach is an adaptation of Binoculars, a technique which
involves the change ratio of perplexity and cross-perplexity using two closely related language models to quantify
the level of surprise in word selection in the generation of a sentence for identifying MGT. This is supported by
an iterative threshold selection process that balances false positives and false negatives. Enhancements include
fine-tuning of pretrained linguistic models to improve performance in the minority languages present in the
Iberian Peninsula. This approach obtained the best performance measured in a random split of the training used
for testing in all the Iberian languages. Results extrapolate to other contexts and generation profiles, with our
models finishing third of all participants in the final contest. Telescope demonstrated its robustness and efficacy
across diverse linguistic contexts, with significant improvements in MGT detection over Iberian languages. These
results highlight the potential of Telescope for enhancing content moderation strategies.
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1. Introduction

Machine-Generated Text (MGT) refers to natural language text produced, extended, or modified by
machines, predominantly large language models (LLMs) [1]. Given the continuous advancement in
the quality of text that language models are capable of generating and, consequently, the expansion of
their application in content generation for various purposes, it is imperative to develop robust methods
for detecting MGT across diverse contexts, languages, and domains. These methods are essential for
developing effective content moderation strategies and are crucial in mitigating risks associated with
MGT, such as disinformation, phishing, and spam [2].

This paper introduces Telescope, a system developed for the IberAuTexTification [3] shared task
at IberLEF 2024 [4], which aims to develop models that exploit linguistic form and meaning cues to
identify MGT and Human-Written Text (HWT) using a wide variety of models, domains, and languages
from the Iberian Peninsula. Our approach primarily focuses on Subtask_1, which involves the binary
classification of text records as either machine-generated or human-written.
Telescope is an adaptation of Binoculars [5], a technique that utilizes dual metrics: perplexity and

cross-perplexity (a cross-entropy measure of two perplexities) combined in a metric called 𝐵, which
represents the change ratio of both metrics. This approach quantifies the level of surprise in word
selection during sentence generation from the perspective of two closely related language models, with
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the hypothesis that this ratio will increase in the presence of HWT and decrease in the presence of
MGT.

We employ open pretrained language models that achieve state-of-the-art results under optimal
conditions; however, their performance degrades when applied to specific domains or languages. Given
that this challenge involves languages from the Iberian Peninsula, some of which are considered
minority languages, Telescope proposes to enhance detection accuracy through a fine-tuning phase
to develop specialized models for defined language groups. This process involves adapting models
to better comprehend the nuances and syntactic structures of minority languages, which are often
underrepresented in mainstream datasets.

As the Binoculars approach provides an indicator of the likelihood of text being HWT, the selection of
the decision threshold is critical to the performance of the detection system. To determine this threshold
value, we employ an iterative process, experimenting with various threshold values to optimize the
trade-off between false positives and false negatives, thereby achieving a higher accuracy rate in MGT
identification.

By incorporating these advanced techniques and enhancements, we achieved third place in the
Subtask_1 ranking, demonstrating the effectiveness of our approach across diverse linguistic contexts.
The remainder of this paper is organized as follows:

Section 2 provides an overview of current approaches to detect generated text. Section 3 describes
the dataset utilized in our approach. Section 4 details the methodology employed to detect MGT texts.
Section 5 presents the evaluation and model selection process. Section 6 reports the obtained results.
Section 7 discusses the implications of these results. Finally, Section 8 concludes the paper and suggests
directions for future research.

2. Background

Current approaches to detect machine-generated text can be categorized into several distinct groups:

• Machine Learning Classifiers: These methods employ traditional text classifiers trained on
labeled HWT and MGT. This approach can involve fine-tuning pretrained models such as BERT
or RoBERTa, or utilizing simpler techniques like logistic regression [6]. However, these methods
often encounter challenges when confronted with texts generated by models more sophisticated
than those used for detection [7], or when faced with overfitting to the domains and distributions
of the training data [8].

• Statistical Analysis: These models calculate the probabilities of generated text using the output
probability matrix of a model. Such approaches typically account for the common heuristics
employed in text generation. Many of these techniques demonstrate superior performance in
white-box analysis when the model generating the text to be detected is known a priori. However,
their performance deteriorates significantly when the generating model is unknown. Numerous
models in this category rely on the perplexity of the generated text [9], incorporating random
perturbations with another model to measure probability curvature [10] or analyzing the log
rank of tokens with and without perturbations [11].

• Watermarking: This category encompasses strategies that require unrestricted access to the
text generation process. These methods involve altering output probabilities of the text at each
step [12] or directly filtering them [13], thereby creating a hidden pattern in the output text that
can be readily detected through statistical analysis. While watermarking is a promising approach,
it can be susceptible to evasion through paraphrasing in certain configurations. To enhance the
reliability of this scheme, more robust generation heuristics have been proposed [14, 15].

• Detection via Rewriting: This innovative method, as employed by some researchers [16],
involves tasking an LLM with rewriting the text and subsequently analyzing the result. This
approach leverages the tendency of LLMs to perceive MGT as higher-quality text, resulting in
fewer modifications. This method offers several advantages, including the ability to utilize any
LLM, regardless of its open or proprietary nature, and requires only the final output for analysis.



3. Dataset

The dataset employed in our approach comprises a diverse collection of texts in various languages from
the Iberian Peninsula, provided by the IberAuTexTification shared task. The corpus encompasses texts
in Spanish (ES), Galician (GL), Basque (EU), Catalan (CA), Portuguese (PT), and English (EN). In total,
the dataset consists of 109, 663 texts released by the organization as training data.

We conducted a preliminary analysis of the dataset to ascertain the distribution of texts and the
average text length per language. Table 1 presents a comprehensive overview of the text distribution
and average text length for each language represented in the corpus. The languages have been detected
using langID [17].

Table 1
Distribution and Average Text Length of the Training Corpus by Language

Language Number of Texts Average Length (characters)

Spanish 22,535 1,121
Catalan 16,372 836
Basque 13,444 874
Galician 11,625 1,006
Portuguese 19,733 1,051
English 25,954 1,196

The corpus was strategically partitioned into three segments. The largest segment, comprising
87, 730 texts, was utilized for model fine-tuning. Two smaller segments, each containing 10, 000 texts
(hereafter referred to as 10𝐾), were employed for evaluation and testing purposes. Throughout this
paper, these segments are designated as eval-10K and test-10K, respectively, to distinguish them from the
authentic unlabeled test set released by the organization during the test phase of the IberAuTexTification
task.

4. Methodology

4.1. Binoculars Detector

The evaluation of statistical metrics for the detection of MGT is predicated on measuring the presence of
a statistical signature characteristic of both HWT and MGT. The underlying rationale is that language
models generally adhere to a measurable probability distribution in their word selection during text
generation. Specifically, perplexity is employed as a metric to quantify the degree of surprise generated
when selecting words that compose a text, given its prior context.

A common assumption has been that when a language model analyzes the perplexity of a text,
human-written content will yield higher scores than machine-generated text. Consequently, previous
contributions have proposed identifying a threshold to differentiate between human and machine-
generated text based on this measure. However, this assumption has been invalidated by the advent
of larger, prompt-based models. Their outputs tend to exhibit perplexity metrics similar to human-
generated texts due to their enhanced expressiveness. As a result, false positives are not uncommon
when analyzing perplexity in isolation.

Binoculars proposes an alternative approach [5], based on a metric 𝐵, which represents the rate of
the perplexity of an input text 𝑠 of length 𝐿 divided by a cross-perplexity metric that measures how
surprising are the predictions on one model to another (a sort of cross-entropy). Binoculars employs
two closely related language models, 𝑀𝑂 (observer) and 𝑀𝑃 (performer), executing the following steps:

• A baseline-perplexity (equation 1) of the input text is calculated. Complex prompts are expected
to increase this value. Here 𝑀𝑃 (𝑠𝑖) is the output probability of sentence token 𝑖 obtained with
the model.
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• Concurrently, cross-entropy is calculated (equation 2), measuring the degree of surprise in the
text generation by the performer from the observer’s perspective.
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• The ratio 𝐵 between these two metrics is calculated (equation 3) and compared to a decision
threshold. We adhere to the same order of performer/observer models as in the official Binoculars
implementation [18], that differs slightly from the paper notation of the same authors.

𝐵 = 𝑆𝑐𝑜𝑟𝑒𝑀𝑃 ,𝑀𝑂(𝑠) =
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(𝑠)
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(3)

The rationale for employing a ratio rather than absolute baseline-perplexity and cross-perplexity values
is to mitigate the impact of complex prompts on perplexity scores. It is anticipated that both metrics
will be correlated in MGT, but not in human texts. This implies that human 𝐵 values are higher than
MGT ones, justifying the use of the 𝐵 ratio with a decision threshold.

In the original work, a specialized model for English was utilized, the FALCON 7B model [19].
Performance in other languages is degraded, although the authors claim the system maintains adequate
performance across multiple contexts. They establish the reference threshold using a random split of
the reference datasets used to train the system.

We propose two main improvements over the seminal Binoculars work. First, we introduce a fine-
tuning step with only generative content to enhance system performance. Second, instead of using a
single threshold to discriminate between human and generated content, we obtain multiple thresholds
using non-random splits of the data. Consequently, different text sizes, languages, or contexts could
potentially have different thresholds.

4.2. Model Fine-tuning

The adjustments implemented by Binoculars in MGT detection are related to the influence of the prompt
on MGT perplexity values. Although Binoculars achieves state-of-the-art performance using pretrained
models without the need for fine-tuning, this implies that the performance of these systems will be
strictly related to the quality of pretraining of the selected models. This is why one of the most relevant
drawbacks is the noticeable decrease in performance of this algorithm when dealing with different
languages and domains, particularly with minority languages and specific domains.

Our proposed method utilizes the dataset presented in Section 3, separated by languages into groups
that allow language models to specialize in minority languages (Basque and Galician) and in another
group of more widely spoken languages such as Spanish, English, and Catalan, with a final group for
Portuguese. Specifically, we fine-tuned the following models for each language:

• Basque [Latxa-7B]: A family of LLMs designed for Basque with 7 to 70 billion parameters. The
model is based on Llama 2 and was trained on a corpus of 4.3M Basque documents. Latxa was
released by a team from the HiTZ Center [20].

• Spanish, English, and Catalan [FLOR-1B3]: BLOOM architecture fine-tuned with 26 billion
tokens of Catalan, Spanish, and English text, released by the Barcelona Supercomputing Center
[21].

• Galician [Carballo-BLOOM-1B3]: Model based on FLOR-1B3 pretrained with CorpusNOS
[22], a massive Galician corpus with 2.1B words.



• Portuguese [BLOOM-1B7]: Multilingual model composed of over 1.7 billion parameters, sup-
porting 45 natural and 12 programming languages. It was developed by the BigScience initiative
using the Jean Zay Public Supercomputer in France [23]. We also experimented with Aira-2
[24] but did not obtain superior results in our tests.

We utilized the HuggingFace Transformers library [25] to fine-tune the models using the PEFT [26]
implementation of LORA, with hyperparameters 𝛼 = 16, dropout = 0.1 and rank = 64, to reduce
training complexity. Each model except the Basque was fine-tuned for 250 steps with a batch size
of 16, exclusively feeding randomly shuffled training examples in the relevant language. The model
for Basque was fine-tuned for 500 steps with a batch size of 4. In this phase, only the generated data
are used. The base model and the fine-tuned models are used as performer and observer, respectively,
using the same strategy as Binoculars. With the exception of Latxa-7B, all models have a smaller size
than the original Falcon-7B to accommodate training in the available hardware. Fine-tuned and base
models share the same token dictionary, which is the main requirement for use in Binoculars.

Following the naming convention of Binoculars, we call our models Telescope, as they are more
focused and powerful in specific scenarios but, in contrast, are less portable as they require extra models
per language and computational steps for fine-tuning. To differentiate from the baseline that is closer
to the Binoculars strategy, we use this name only to refer to the combination that uses the fine-tuned
models.

4.3. Selection of a Classification Threshold

The Telescope strategy based on Binoculars allows us to obtain a numerical indicator to decide
whether a text is HWT or MGT. However, as important as the calculation of the perplexity metrics is
the determination of the threshold value to decide the boundary between values that will be classified
as HWT or MGT. As mentioned in the methods section, the value of the B-ratio will increase if the text
was generated by a human and decrease if it was written by machines.

The optimal threshold value for Binoculars is directly influenced by factors such as text length,
communicative context, linguistic environment, and the combination of models selected as performer
and observer, respectively. This is why correctly selecting the threshold value for Binoculars is crucial
for accurately determining the classification of a text at its source of generation. As this is a learning
process influenced by multiple factors, it is essential to search through a wide set of possible threshold
values around their potential combinations.

Given a subset of data from the training corpus, the optimal threshold for this subset is obtained with
the AUROC score, using the ground-truth labels. For example, Figure 1 and Figure 2 show the ROC
curve for the Spanish texts in the training corpus. In these examples, the best threshold for this split is
0.76 and 0.90, respectively, using this combination of models.

Due to resource constraints, we limit the search for the optimum threshold to a small subset of text
size splits (with a maximum of 10 splits), fixing the split by language and the subset of models used.
To select the optimum threshold for the training corpus, we employed Optuna [27]. Here, we aim to
maximize the Macro-F1 score in the test-10k, using the thresholds obtained in the eval-10k.

5. Evaluation and model selection

In this comparative analysis, we evaluate four model combinations. Two serve as zero-shot baselines:
FLOR-1B3/FLOR-1B3-instruct and BLOOM-1B7/BLOOMZ-1B7. The third combination, which we
designate as Telescope, utilizes the fine-tuned and base models, one model pair per language. At test
time, language is detected to apply the corresponding model pair and threshold. Finally, we aggregate
the scores of all models into a single output, termed Ensemble, assuming equal contributions from all
combinations.

It is crucial to note that the Binoculars score is not symmetrical, and the designation of a model
as performer or observer significantly impacts the result. Table 2 presents a preliminary study used



Figure 1: ROC for the Spanish texts of the train corpora with Binoculars using BLOOM-1B7 as performer and
BLOOMZ-1B7 as observer.

to determine the optimal combination of models for Telescope. The results demonstrate that the
fine-tuned models consistently perform better as performers across all language and model combinations
for this task.

Table 2
AUROC in the eval-10K for different model pairs. Fine-tuned versions have the PEFT suffix. Combinations
marked with * were finally selected for Telescope.

Performer Observer Language AUROC

Carballo-1B3 Carballo-1B3-PEFT GL 0.71
Carballo-1B3-PEFT Carballo-1B3 GL 0.81*
FLOR-1B3 FLOR-1B3-PEFT ES 0.84
FLOR-1B3-PEFT FLOR-1B3 ES 0.90*
FLOR-1B3 FLOR-1B3-PEFT EN 0.83
FLOR-1B3-PEFT FLOR-1B3 EN 0.89*
FLOR-1B3 FLOR-1B3-PEFT CA 0.72
FLOR-1B3-PEFT FLOR-1B3 CA 0.82*
Aira-2 Aira-2-PEFT PT 0.72
Aira-2-PEFT Aira-2 PT 0.75
BLOOM-1B7 BLOOM-1B7-PEFT PT 0.79
BLOOM-1B7-PEFT BLOOM-1B7 PT 0.85*
BLOOM-1B7 BLOOM-1B7-PEFT EU 0.61
BLOOM-1B7-PEFT BLOOM-1B7 EU 0.85
Latxa-7B Latxa-7B-PEFT EU 0.43
Latxa-7B-PEFT Latxa-7B EU 0.79*

For each case (excluding the baselines), thresholds are derived from the eval-10K dataset and applied
to the test-10K dataset to compute the Macro-F1 score. The baselines, being zero-shot, utilize the
training split and eval-10k to determine the optimal thresholds.



Figure 2: ROC for the Spanish texts of the train corpora with Binoculars using FLOR-1B3 as performer and
FLOR-1B3-instruct as observer.

Table 3 illustrates the splits by text size and language, along with the optimal thresholds in the eval-
10k for the FLOR-1B3 and FLOR-1B3-instruct model combination. Similar analyses are conducted
for the other model combinations, as shown in Tables 4 and 5. Notably, the optimal threshold varies
considerably from smaller to larger text sizes, although no clear trend is discernible.

Table 3
Optimum threshold for each split using using FLOR-1B3 as performer and FLOR-1B3-instruct as observer.

Text length (in tokens) GL ES EN CA PT EU

⟨0, 35⟩ 1.14 0.98 1.06 0.97 0.95 1.12
⟨35, 166⟩ 0.97 0.94 0.92 0.87 0.92 1.01
⟨166, 405⟩ 0.93 0.87 0.91 0.84 0.89 0.97
⟨405,𝑚𝑎𝑥⟩ 0.91 0.87 0.91 0.80 0.92 0.99

Table 4
Optimum threshold for each split using using BLOOM-1B7 as performer and BLOOMZ-1B7 as observer.

Text length (in tokens) GL ES EN CA PT EU

⟨0, 35⟩ 0.89 0.79 0.86 0.54 0.47 0.76
⟨35, 166⟩ 0.80 0.68 0.86 0.54 0.55 0.72
⟨166, 405⟩ 0.82 0.76 0.86 0.60 0.63 0.50
⟨405,𝑚𝑎𝑥⟩ 0.81 0.80 0.87 0.66 0.70 0.58



Table 5
Optimum threshold for each split using the Telescope models (fine-tuned/pretrained) per language.

Text length (in tokens) GL ES EN CA PT EU

⟨0, 35⟩ 0.81 0.91 0.72 0.74 0.69 0.86
⟨35, 166⟩ 0.74 0.67 0.67 0.66 0.69 0.81
⟨166, 405⟩ 0.81 0.75 0.75 0.69 0.84 0.76
⟨405,𝑚𝑎𝑥⟩ 0.80 0.78 0.79 0.71 0.87 0.78

6. Results

To evaluate the performance of the various model combinations and their respective thresholds, we
employ the Macro-F1 score on the random split of the training corpus, designated as test-10K. Table
6 summarizes these results. Upon initial examination, a significant disparity in performance across
different languages is evident. The majority languages (English and Spanish) demonstrate comparatively
superior results relative to the minority languages, with Basque exhibiting the lowest score overall.
Surprisingly, certain models that purportedly support a given language, such as BLOOM-1B7, yielded
lower scores than other model combinations that do not explicitly support it, such as FLOR-1B3.

When a uniform threshold is applied across all languages, as in the original Binoculars paper, the
system’s performance decreases substantially. Implementing language-specific thresholds and incorpo-
rating thresholds based on text length enhances the performance of every model pair configuration.
Telescope demonstrates robust performance even with a shared threshold, at least when the training
and test data share the same context and model generation techniques.

The utilization of fine-tuned models improves metrics across all languages. However, it is important
to note that some biases may be introduced, as we are using generated data from a different split
of the training corpus that follows the same distribution as the test data (e.g., context and methods
of generation). Nevertheless, the fine-tuning step appears to be particularly beneficial for minority
languages that lack substantial support in terms of the number of models and training data used to
pretrain the multilingual models.

Table 6
Macro-F1 score per language for different model pairs and threshold selection strategies in the test-10k. The
configurations marked with an asterisk (*) are those submitted to the IberAutextification 2024 competition. Our
model achieved third place in this task [4].

Model Pairs GL ES EN CA PT EU all

Shared threshold

FLOR-1B3/FLOR-1B3-instruct 0.77 0.88 0.83 0.69 0.78 0.44 0.76
BLOOM-1B7/BLOOMZ-1B7 0.76 0.77 0.80 0.51 0.67 0.47 0.72
Telescope 0.81 0.90 0.87 0.79 0.80 0.81 0.84
Ensemble 0.77 0.89 0.83 0.72 0.84 0.78 0.82

Thresholds by language

FLOR-1B3/FLOR-1B3-instruct 0.77 0.88 0.83 0.69 0.78 0.73 0.79
BLOOM-1B7/BLOOMZ-1B7 0.76 0.79 0.85 0.73 0.74 0.62 0.76
Telescope 0.82 0.90 0.87 0.82 0.82 0.82 0.85
Ensemble 0.85 0.89 0.88 0.79 0.84 0.77 0.85

Thresholds by language and size

FLOR-1B3/FLOR-1B3-instruct * 0.80 0.88 0.85 0.76 0.78 0.72 0.81
BLOOM-1B7/BLOOMZ-1B7 0.79 0.81 0.86 0.74 0.78 0.64 0.78
Telescope * 0.84 0.91 0.90 0.83 0.86 0.81 0.87
Ensemble * 0.85 0.90 0.89 0.82 0.86 0.78 0.86



Figure 3: Clusters for a subset of Spanish records from the training data of AuTexTification 2023. The orange
cluster primarily comprises tweets, while the red cluster contains how-to guides and the green cluster consists of
legal and formal texts.

7. Discussion

7.1. Selection of Models

The selection of generative models for certain minority languages is constrained. Recent developments
have seen the creation of models for Catalan and Galician based on the FLOR family of models (2023)
and the release of Latxa for Basque (2024). However, multilingual models have not demonstrated
optimal performance in these languages for text detection, likely due to the limited representation of
these languages in the pretraining data. Indeed, models exclusively pretrained in a single language
demonstrated superior performance in the majority of cases. Nevertheless, model selection was often
driven by availability, as it was frequently the only option for a given language. Our implemented
strategy requires two models whose tokenizers share the same vocabulary, further constraining the
availability of models for the study.

A secondary limitation arose from the constrained computing resources available. All models (with
the exception of Latxa) were fine-tuned on a single NVIDIA GeForce GTX 1080, with a hardware limit
of 12GB of RAM. The performance of larger models using this strategy remains a prospective avenue
for future research.

7.2. Generalization to Other Contexts

An intriguing question is the extent to which the implemented strategy generalizes to other contexts.
To address this, we analyze the system’s performance using the training data from Autextification 2023
[28] (utilizing only the Spanish records). In comparison with the 2024 data, the different domains of
2023 are more easily distinguishable.

The 2023 training data comprised three distinct contexts: tweets (orange), how-to guides (red), and
legal texts (green). These contexts are represented in Figure 3. The clusters were obtained through a
three-step pipeline: sentence embeddings vectorization with the all-MiniLM-L12-v2 model, UMAP
for dimensionality reduction, and K-Means with 𝑘 = 3.

We compare the performance of the FLOR-1B3 baseline with that of the fine-tuned models across
the three clusters using the area under the receiver operating characteristic curve (AUROC). Table 7



summarizes these results. It is evident that the baseline performs poorly in detecting legal and formal
texts, despite these texts being longer in length. This is likely due to the inherent difficulty in detecting
these texts using this strategy. The baseline zero-shot model performs no better than random, and
the fine-tuned Telescope is marginally better but still far from optimal. As observed, fine-tuning the
model with generated data appears to be beneficial in all contexts, despite the fact that the training data
were obtained from different sources, topics, and generation strategies.

Table 7
AUROC scores of FLOR-1B3/FLOR-1B3-instruct and Fine-tuned/FLOR-1B3 on 2023 training data. The
optimal threshold for each context is shown in parentheses.

Cluster FLOR-1B3/FLOR-1B3-instruct Telescope

Tweets 0.82 (0.87) 0.84 (0.86)
How-to guides 0.86 (0.88) 0.89 (0.89)
Legal 0.51 (0.90) 0.66 (0.86)

We conducted a similar analysis with the 2024 data but did not observe substantial gains or drops in
performance across the clusters. Consequently, the threshold was calculated only per language and text
length.

7.3. Influence of Text Size

Generally, strategies for detecting MGT text tend to exhibit a positive correlation between accu-
racy and text length, a trend we also observe in our proposal. Figure 4 illustrates the AUROC
calculated at text length intervals of 25 tokens for the Spanish and English records using the
FLOR-1B3/FLOR-1B3-instruct model pairs.

A slight performance drop is observed between 100-300 tokens, which we hypothesize may be
attributable to factors other than text size (e.g., the context of the texts or the generation strategy). For
texts with fewer than 100 tokens, the proposed system operates far from its optimal working region.
This is logical, as this strategy relies on metrics that are averaged over the text length (such as entropy
and cross-entropy).

8. Conclusions

This paper presents and evaluates our Telescope approach for MGT detection across multiple lan-
guages and domains, with a particular focus on languages of the Iberian Peninsula. This work was
conducted within the context of the IberAuTexTification task for the IberLEF Campaign, whose primary
objective is to develop models that exploit linguistic form and meaning cues to identify automatically
generated texts from a wide variety of models, domains, and languages.

Our primary contributions are threefold: i) Development of the Telescope approach for MGT
detection based on the statistical signatures that current language models impart on the texts they
generate; ii) Evaluation of the system’s effectiveness across various contexts; iii) Analysis of the
influence of factors such as text length and linguistic context on system performance.

These objectives were largely achieved, albeit with certain limitations and constraints detailed below.
The Telescope system demonstrated efficacy in detecting generated texts across several languages,
achieving competitive performance and securing third place in the IberAutextification 2024 competition.

To implement our approach, we fine-tuned a set of pretrained linguistic models for each language in
the dataset. We then selected optimal thresholds for the scores based on a split of the language variety
and text sizes using the eval-10K dataset. Finally, we evaluated the performance of different model
combinations and threshold selection strategies on the test-10K dataset.

The results revealed notable variations in system performance according to language and text size.
While Spanish and English texts exhibited satisfactory performance, Basque texts presented the greatest



Figure 4: AUROC scores with FLOR-1B3/FLOR-1B3-instruct calculated at intervals of token size in the
Spanish and English records of the training corpus.

challenges. This was attributed to the limited representation of this language in training corpora,
coupled with its linguistic dissimilarity to the other studied languages. These findings underscore the
limitations of multilingual models in minority languages that differ significantly in structure from more
widely spoken languages. Furthermore, system performance generally improved with longer texts.
However, performance drops were identified for text sizes between 100 and 300 tokens, which may
be attributed to contextual factors rather than text size itself, affecting measures of surprise such as
perplexity.

The most significant limitation was the limited availability of high-quality generative models for
minority languages such as Catalan, Galician, and Basque. For these languages, often only one robust
option was available, negatively impacting our ability to train and tune models for optimal performance
or to conduct comprehensive benchmarking of minority language models. It should be noted that model
selection is one of the factors affecting Binoculars performance. Additionally, computational resource
constraints prevented us from exploring larger models, more complex architectures, or extending the
range of tests for threshold values. This limited our training to a single NVIDIA GeForce GTX 1080
GPU.

We identify three key areas for future research: i) Augmentation of robust models for minority
languages and expansion of training datasets to improve representation and performance in these
languages. ii) Exploration of more advanced hardware and optimization techniques to enable the
training of larger models. iii) Further investigation into how different contexts and textual domains
affect system performance to improve generalization results to new areas.

The generalization of the implemented strategy to other contexts is limited and influenced by the
aforementioned factors. Therefore, these three areas represent critical avenues for future research.
Nevertheless, Telescope represents a significant contribution to the field of MGT detection, having
yielded successful results within a shared task in the IberLEF campaign.
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Acronyms

CA Catalan. 3, 4, 6–9, 11

EN English. 3, 4, 6–8, 10, 11

ES Spanish. 3–11

EU Basque. 3–11

GL Galician. 3, 4, 6–9, 11

HWT Human-Written Text. 1–3, 5

MGT Machine-Generated Text. 1–5, 10, 11

PT Portuguese. 3–8
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