
On Computational Problems for Infinite
Argumentation Frameworks: Classifying Complexity
via Computability?

Uri Andrews1,†, Luca San Mauro2,⇤,†

1Department of Mathematics, University of Wisconsin, USA
2Department of Philosophy, University of Bari, Italy

Abstract
This paper investigates in�nite argumentation frameworks. We introduce computability theoretic ma-
chinery as a robust method of evaluating, in the in�nite setting, the complexity of the main computational
issues arising from admissible, complete, and stable semantics: in particular, for each of these semantics,
we measure the complexity of credulous and skeptical acceptance of arguments, and that of determining
existence and uniqueness of extensions. We also propose a way of using Turing degrees to classify, for
a given in�nite argumentation framework, the exact di�culty of computing an extension in a given
semantics and show that these problems give rise to a rich class of complexities.

Keywords
in�nite argumentation frameworks, computability theory, complexity, admissible extensions, stable
extensions, complete extensions, Turing degrees

1. Introduction

Abstract argumentation theory is a fundamental research area in AI, providing a powerful
paradigm for reasoning about knowledge representation and multi-agent systems. Historically,
the focus has predominantly been on �nite argumentation frameworks (AFs), leaving the
in�nite case relatively unexplored. As noted in [1], this oversight poses signi�cant theoretical,
conceptual, and practical limitations.

Firstly, in�nite frameworks align naturally with Dung’s seminal approach [2], whose results
do not presuppose �niteness. Secondly, representing argumentation scenarios in an in�nite
manner captures the inherently nonmonotonic nature of argumentation, where arguments can
always be challenged by the emergence of new information, making any �xed limit on the space
arguments or attacks somewhat arti�cial. Thirdly, in�nite AFs often arise in practical contexts,
such as logic programming [3] and the logical analysis of multi-agent or distributed systems [4]

SAFA’24: Fifth International Workshop on Systems and Algorithms for Formal Argumentation, September 17, 2024,
Hagen, Germany
?
An expanded version of this article will be submitted to NMR 2024 and FCR 2024.

⇤Corresponding author.
†
These authors contributed equally.
� andrews@math.wisc.edu (U. Andrews); luca.sanmauro@gmail.com (L. San Mauro)
� https://math.wisc.edu/~andrews (U. Andrews); https://www.lucasanmauro.com/ (L. San Mauro)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 12

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

(the substantial introduction of [1] provides other concrete examples of applications of in�nite
AFs, e.g., to multiagent negotiations).

Fortunately, recent years have seen a growing interest in in�nite AFs, with special focus
on how the existence and interplay of various semantics—well-understood for �nite AFs—are
a�ected in the in�nite realm (see, e.g., [5, 6, 7, 8, 9]). This increasing recognition underscores
the importance of in�nite AFs for a broad understanding of argumentation theory.
However, the literature still lacks a comprehensive framework for systematically exploring

all logical aspects of in�nite AFs, particularly regarding their core computational issues. A
signi�cant research avenue in �nite AFs has been determining the algorithmic complexity of
tasks associated with �nding acceptable collections of arguments (up to suitable collection of
semantics), with numerous complexity theoretic results highlighting their inherent computa-
tional di�culty (see, e.g., [10, 11, 12]). To our knowledge, no analog study has been conducted
for in�nite AFs.

This paper addresses this gap by initiating a systematic study of the complexity of computa-
tional problems in in�nite AFs. For this endeavor, we bring into the subject of argumentation
theory the machinery of computability theory, which may be regarded as an in�nitary com-
panion of computational complexity theory and abounds with concepts and hierarchies for
measuring the complexity of computing or de�ning countably in�nite objects.
The application of computability theoretic tools outside of mathematical logic is a well-

established idea. Over the past decades, computability theory has been applied to a wide array
of mathematical disciplines, and computability theoretic concepts have found applications in
other formal subjects, such as theoretical computer science, economics, and linguistics (see, e.g.,
[13, 14, 15]).

The present paper, we argue, provides compelling evidence of the bene�ts of viewing in�nite
AFs through a computability theoretic lens. We assess the complexity of many computational
problems—both established and novel—within our framework, illustrating their undecidability
while providing precise measures of their complexity.

Organization of the paper

Section 2 brie�y reviews the main semantic concepts from argumentation theory that are
relevant to this paper, along with the fundamental computational problems associated with
them. In Section 3, we introduce the key notions of computability theory employed in the
work and we de�ne the concept of computable AFs and the computational issues emerging
from it. Finally, in Section 4, we provide lower bounds for the complexity of our computational
problems. Our results are collected in Table 2.

2. Argumentation theoretic background

To keep our paper self-contained, we now brie�y review some key concepts of Dung-style
argumentation theory, focusing on the semantics notions considered in this paper and the fun-
damental computational problems associated with them (the surveys [16, 17] o�er an overview
of these topics).

Uri Andrews, Luca San Mauro

13 SAFA@COMMA 2024

An argumentation framework (AF) F is a pair (AF , RF) consisting of a set AF of arguments
and an attack relation RF ✓ AF ⇥AF . If some argument a attacks some argument b, we may
write a ⇢ b instead of (a, b) 2 RF . Collections of arguments S ✓ AF are called extensions.
For an extension S, the symbols S+ and S� denote, respectively, the arguments that S attacks
and the arguments that attack S:

S+ = {x : (9y 2 S)(y ⇢ x)};
S� = {x : (9y 2 S)(x ⇢ y)}.

S defends an argument a, if any argument that attacks a is attacked by some argument in S
(i.e., {a}� ✓ S+). The characteristic function of F is the following mapping fF which sends
subsets of AF to subsets of AF :

fF (S) := {x : x is defended by S}.

All AFs investigated in this paper are in�nite.
A semantics � assigns to every AFF a set of extensions �(F)which are deemed as acceptable.

A huge number of semantics, fueled by di�erent motivations, have been proposed and analyzed.
Here, we focus on three prominent choices, whose computational aspects are well-understood
in the �nite setting: admissible, complete, and stable semantics (abbreviated by ad, co, stb,
respectively).
Let F = (AF , RF) be an AF. Denote by cf(F) the collection of extensions of F which are

con�ict-free (i.e., S 2 cf(F) i� a 6⇢ b, for all a, b 2 S). Then, for S 2 cf(F),

• S 2 ad(F) i� S is self-defending (i.e., S ✓ fF (S));
• S 2 co(F) i� S is a �xed point of fF (i.e., S = fF (S));
• S 2 stb(F), i� S attacks all arguments outside of it (i.e., S+ = AF r S).

In discussing the complete extensions, we will also brie�y mention the grounded extension,
which is the unique smallest �xed point of fF ; in any AF, the grounded extension always exists
[2, Theorem 3].

For a given semantics �, the following are well-known computational problems related to �:

• Cred� (for credulous acceptance) is the decision problem whose accepting instances are
the pairs (F , a) so that a 2 S for some S 2 �(F);

• Skept
�
(for skeptical acceptance) is the decision problem whose accepting instances are

the pairs (F , a) so that a 2 S for all S 2 �(F);
• Exist� is the decision problem whose accepting instances are the AFsF so that �(F) 6= ;;
• NE� is the decision problemwhose accepting instances are the AFsF so that�(F)r{;} 6=
;;

• Uni� is the decision problem whose accepting instances are the AFs F so that |�(F)| = 1.

In formal argumentation theory, evaluating the computational complexity of the aforemen-
tioned problems for various semantics has been a noteworthy research thread for more than 20
years [17]. Table 1 collects known complexity results for the admissible, stable, and complete
semantics. This analysis refers only to �nite AFs. In the next section, we introduce our com-
putability theoretic perspective that allows us to tackle complexity issues concerning in�nite
AFs.

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 14

� Cred� Skept� Exist� NE� Uni�
ad NP-c trivial trivial NP-c coNP-c
stb NP-c coNP-c NP-c NP-c DP-c
co NP-c P-c trivial NP-c coNP-c

Table 1
Computational problems for finite AFs. C-c denotes completeness for the class C.

3. Computational problems for AFs through the lens of
computability theory

In this section, we introduce computable AFs and we revisit the computational problems of
the last section through the lens of computability theory. We aim at conveying the main ideas
without delving into too many technical details. A more formal and comprehensive exposition of
the fundamentals of computability theory can be found, e.g., in [18, 19]. We begin by establishing
standard notation and terminology for some combinatorial notions that appear frequently in
our proofs.

3.1. Sequences, strings, and trees

As is common in computability theory, we denote the set of natural numbers by !. Since there is
no risk of ambiguity, we simply refer to the elements of ! as numbers. The symbol !! denotes
the set of all functions from ! to !. For our purposes, it is convenient to represent elements of
!! as in�nite sequences of numbers; we denote by 01 the in�nite sequence consisting of only
0’s (or, equivalently, the constant function to 0). The restriction of an in�nite sequence ⇡ 2 !!

to its �rst n-many bits is denoted by ⇡ �n.
We use standard notation and terminology about strings: The set of all �nite strings of

numbers is denoted by !<! . The symbol � denotes the empty string. The concatenation of
strings �, ⌧ is denoted by �_⌧ . The length of a string � is denoted by |�|. If there is ⇢ so that
�_⇢ = ⌧ , we say that � is a pre�x of ⌧ and we write � � ⌧ . Similarly, if ⇡ 2 !<! and � = ⇡ �n
for some n, we write � � ⇡.
In order to formulate our problems as subsets of !, it will be convenient to encode pairs

of numbers into single numbers. The pairing function does this. Fix p : ! ⇥ ! ! ! to be a
computable bijection. We adopt the common habit of denoting p(x, y) by hx, yi.

The encodings discussed in Section 4 heavily rely on the di�culty of calcuting paths through
trees. As is common in computability theory, we say that a tree is a set T ✓ !<! closed under
pre�xes. We picture trees growing upwards, with �_i to the left of �_j, whenever i < j. A
path ⇡ 2 !! through a tree T ✓ !<! is an in�nite sequence so that ⇡ �n 2 T , for all numbers n.
The set of paths through a tree T is denoted by [T]. T is well-founded if [T] = ; and otherwise
is ill-founded. Note that we follow the standard terminology in computability theory requiring
that paths be in�nite. Indeed, if one were to allow paths to be �nite, then these notions trivialize,
since one could computably �nd a path through any given computable tree. For example, the
set of strings

T := {�} [{�,�_1 : (8n < |�|)(�(n) = 0)}

Uri Andrews, Luca San Mauro

15 SAFA@COMMA 2024

is an ill-founded tree with [T] = {01}. If T contains strings of arbitrary length, then T
has in�nite height. Note that there are trees of in�nite height which are well-founded, e.g.,
T = {n_� : |�| n}.

3.2. Computable argumentation frameworks

A basic problem that one encounters when attempting to calibrate the algorithmic complexity
of in�nite AFs is that of describing in�nite objects in a �nitary way. Computability theory o�ers
a wide range of tools designed for this endeavour. Here, we will concentrate on AFs that are
computably presentable, in the sense that there are Turing machines (or, equivalently, modern
computer programs) that, in �nitely many steps, decide whether a given pair of arguments
belongs to the attack relation.

Notation. Let (�e)e2! be a uniformly computable enumeration of all computable functions
from ! to {0, 1}.

De�nition 3.1. A number e is a computable index for an AF F = (AF , RF), if there is a
computable bijection f : ! ! AF so that

�e(hx, yi) =
(
1 if f(x) ⇢ f(y)

0 otherwise.

An AF F is computably presented, if it has a computable index e 2 !.

We use the notationFe to refer to the AFwith computable index e (note that every computable
AF possesses in�nitely many computable indices.). We let an refer to the element of AFe given
by f(n).

Remark 3.2. The collection of computable indices for AFs just de�ned is noncomputable (in
particular, any index e for a non-total computable function �e cannot be a computable index
for an argumentation framework). There are alternative indexings that circumvent this issue;
yet, adopting another indexing would not alter the complexity of the computational problems
we analyze, though it would make the proofs slightly more cumbersome. Hence, we opt for the
simplicity of De�nition 3.1.

The bene�t of dealing with computable AFs is that the complexity of the decision problems
associated with them do not arise due to complexity of the argumentation framework itself,
but rather re�ects the inherent complexity of the decision problem. Further, the computational
problems associated with computable AFs can be naturally represented as subsets of !, which
are suitable to be classi�ed by computability theoretic means:

De�nition 3.3. For a semantics �:

1. Cred1� := {he, ai 2 ! : (9S 2 �(Fe))(a 2 S)};

2. Skept1
�

:= {he, ai 2 ! : (8S 2 �(Fe))(a 2 S)};

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 16

3. Exist1� := {e : (9S ✓ AFe))(S 2 �(Fe))};

4. NE1� := {e : (9S 2 �(Fe))(S 6= ;)};

5. Uni1� := {e : (9!S ✓ AFe)(S 2 �(Fe))}.

We also introduce new semantics which make sense only in the in�nite setting. This is
motivated by the idea that, given an in�nite AF, we might hope for our accepted sets to give us
in�nitely much information:

1. S 2 infad(F) if and only if S 2 ad(F) and S is in�nite;

2. S 2 infco(F) if and only if S 2 co(F) and S is in�nite;

3. S 2 infstb(F) if and only if S 2 stb(F) and S is in�nite.

In a sense, these new semantics give a measure of how much con�ict lies in a given AF. For
example, if infad(F) = ; for an AF F , then the size of any of its admissible extensions are
negligible in comparison to the size of F , suggesting that the attack relation in F prevents
simultaneously accepting any signi�cant fraction of F-arguments.

As an illustration of why we might want to accept only in�nite extensions, we consider that
a given in�nite AF may contain a single argument b so that b attacks every other argument, and
every other argument attacks b. We imagine that b is a statement of extreme solipsism denying
the truth of any other statement. While {b} is a stable extension, it represents a negligible
fraction of arguments, and we may prefer not to accept it. In an in�nite AF, any �nite set is as
negligible as {b}, so we may prefer to accept only in�nite extensions.

The complexity classes that most naturally match the problems of De�nition 3.3 are those of
the ⌃1

1 and ⇧1
1 sets. The ⌃

1
1 sets are formally de�ned as those subsets of ! that are de�nable

in the language of second-order arithmetic using a single second-order existential quanti�er
ranging over subsets of ! followed by number quanti�ers and the �rst order functions and
relations (+, ·, <, 0, 1,2); for more details, see [18, §16]. ⇧1

1 sets are the complements of ⌃1
1

sets.

Proposition 3.4. For � 2 {ad, stb, co, infad, infstb, infco}, Cred1� , Exist1� , NE1� , are ⌃1
1.

Proof. We �rst consider � 2 {ad, stb, co}. To de�ne Cred1� , we see from De�nition 3.3:
Cred1� := {he, ai 2 ! : (9S 2 �(Fe)(a 2 S))} uses a single existential quanti�er over
sets S. This is similarly true for the de�nitions of Exist1� and NE1� in De�nition 3.3. Thus,
it su�ces to see that the condition S 2 �(Fe) can be de�ned with only quanti�cation over
arguments (which are encoded as numbers), not needing quanti�cation over sets of arguments.
Note that the de�nition of S+ and S� uses only quanti�ers over arguments. Thus, the de�nition
of fF (S) given by a 2 fF (S) if and only if {a}� ✓ S+ uses only quanti�ers over arguments.
Finally, S 2 ad(F), S 2 stb(F), S 2 co(F) are all de�ned from fF (S) and S+ using only
quanti�ers over arguments.
In the case of � 2 {infad, infstb, infco}, we need to also observe that S being in�nite is

de�ned via 8n9m(am 2 S ^ m > n), which uses only quanti�ers over numbers.

Uri Andrews, Luca San Mauro

17 SAFA@COMMA 2024

Proposition 3.5. For � 2 {ad, stb, co, infad, infstb, infco}, Skept1
�

is ⇧1
1 and, for � 2 {ad, co},

Uni1� is ⇧1
1.

Proof. The de�nition of Skept1
�

in De�nition 3.3 uses a single universal set-quanti�er followed
by only number quanti�ers in the de�nition of �(Fe).

For � 2 {ad, co}, e 2 Uni1� if and only if there are not two di�erent � extensions (as there is
always at least one � extension). This is de�ned by the negation of the following formula:

(9S19S2)(9x 2 S1 r S2) ^ S1 2 �(Fe) ^ S2 2 �(Fe)).

Note that 9S19S2 can be replaced by a single existential quanti�er by encoding the pair
(S1, S2) as a single set {h1, xi : x 2 S1} [{h2, yi : y 2 S2}. This shows that Uni1� is the
complement of a ⌃1

1 set, thus is ⇧
1
1.

Remark 3.6. The above argument does not su�ce to show that Uni1stb is also ⇧1
1, since some

AFs have no stable extension. The most obvious de�nition says there exists one stable extension
and there does not exist two, which gives a de�nition which is a conjunction of a ⌃1

1 and a
⇧1

1 condition, i.e., a so-called d-⌃1
1 de�nition. This is analogous to the fact that in the �nite

case Unistb is DP-complete. Similarly, the argument above does not show that Uni1� is ⇧1
1 for

� 2 {infad, infstb, infco}. It is true that Uni1� is ⇧1
1 for � 2 {stb, infad, infstb, infco}, but we

will not include a proof in this paper.

We note that knowing that a problem is ⌃1
1 does not necessarily mean the problem is

complicated. This only gives an upper bound for its complexity. Sometimes, a simpler de�nition
is achievable. As an example, we consider Credcf := {ha, ei : (9S 2 cf(Fe))(a 2 S)}. Though
the given de�nition is ⌃1

1, to know if an argument a belongs to a con�ict-free extension of Fe,
it su�ces to check whether a is non-self-defeating, i.e., a 6⇢ a, which is equivalent to checking
the computable fact that �e(hf�1(a), f�1(a)i) = 0. In contrast, we will show that for the
computational problems associated to the admissible, stable, and complete semantics, the use of
the quanti�er ranging over all sets cannot be avoided.

We will heavily rely on the following fundamental theorem by Kleene which o�ers a natural
way of representing ⌃1

1 sets:

Theorem 3.7 (Kleene [20]). A set X ✓ ! is ⌃1
1 if and only if there is a computable sequence of

computable trees (T X
n)n2! so that n 2 X i� T X

n is ill-founded.

We call (T X
n)n2! a tree-sequence for X . As a corollary of Kleene’s theorem, one obtains that

the problem of deciding which computable trees in !<! are ill-founded (or well-founded) is as
hard as any other ⌃1

1 (resp., ⇧
1
1) problem.

Theorem 3.7 gives a reason to consider the ⌃1
1 sets as the natural in�nite analogs of the NP

problems. Namely, given an ill-founded computable tree T and a sequence ⇡ which is a path
through T , it’s relatively simple to check that ⇡ 2 [T] (it requires checking in�nitely many
simple facts: ⇡ �n 2 T , for each n), but �nding a sequence ⇡ 2 [T]—or even knowing whether
there exists a sequence ⇡ 2 [T]—is a far harder problem.
Our main goal is to exactly characterize the complexity of the computational problems

described in De�nition 3.3. To do so, we need to show that they are complete for their respective
complexity classes. The following de�nition formalizes this notion.

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 18

De�nition 3.8. Let � be a complexity class (e.g., � 2 {⌃1
1,⇧

1
1}). A set V ✓ ! is �-hard, if for

every X 2 � there is a computable function f : ! ! ! so that x 2 X if and only if f(x) 2 V . If
V is �-hard and belongs to �, then it is �-complete.

Proposition 3.9. It follows from Theorem 3.7 that the set of indices for ill-founded computable
trees is a ⌃1

1-complete set. Similarly, the set of indices for well-founded computable trees is a
⇧1

1-complete set.

The following result is far less obvious, but will be useful below to examine Uni1� .

Theorem 3.10 ([21, Theorem 18.11]). The set UB of indices for computable trees with exactly one
path is a ⇧1

1-complete set.

Remark 3.11. The hardness in Theorem 3.10 is quite easy. We can reduce the question of
whether a tree T is well-founded to whether a tree T 0 has two paths, where T 0 always has at
least one path, by simply giving T 0 one more path than T (e.g. T 0 = {1_� : � 2 T } [{� :
(8n < |�|)�(n) = 0}). The fact that UB is itself ⇧1

1 is the subtle part of Theorem 3.10.

Theorem 3.7 along with De�nition 3.8 suggest a natural approach for gauging the complexity
of the computational problems of De�nition 3.3. Namely, given another ⌃1

1 (or ⇧
1
1) set X , we

translate the question asking whether n 2 X to the question of if the tree T X
n is ill-founded

(resp., well-founded), and then we need to computably �nd an instance of our computational
problem which should be accepted if and only if T X

n is ill-founded (resp., well-founded). This
involves coding a tree, or more precisely, the collection of paths through a tree into the �
extensions in an argumentation framework. We do exactly this in Section 4.

Table 2 collects our results regarding complexities of the computational problems examined
for computable argumentation frameworks.

� Cred1� Skept1� Exists1� NE1� Uni1�
ad ⌃1

1-c 4.4,3.4 trivial trivial ⌃1
1-c 4.4 3.4 ⇧1

1-c 4.5,3.5
stb ⌃1

1-c 4.4,3.4 ⇧1
1-c 4.6,3.5 ⌃1

1-c 4.4, 3.4 ⌃1
1-c 4.4,3.4 ⇧1

1-c 4.5, †
co ⌃1

1-c 4.4, 3.4 ⇧1
1-c ⇤, 3.5 trivial ⌃1

1-c 4.4, 3.4 ⇧1
1-c 4.5,3.5

infad ⌃1
1-c 4.4,3.4 ⇧1

1-c 4.7,3.5 ⌃1
1-c 4.4, 3.4 ⌃1

1-c 4.4, 3.4 ⇧1
1-c 4.5,†

infstb ⌃1
1-c 4.4,3.4 ⇧1

1-c 4.6,3.5 ⌃1
1-c 4.4, 3.4 ⌃1

1-c 4.4, 3.4 ⇧1
1-c 4.5, †

infco ⌃1
1-c 4.4,3.4 ⇧1

1-c 4.6,3.5 ⌃1
1-c 4.4, 3.4 ⌃1

1-c 4.4, 3.4 ⇧1
1-c 4.5, †

Table 2
Computational problems for computable AFs. C-c denotes completeness for the class C. The numbers in
each cell of the table refer to the Theorem number providing the lower bound and upper bounds for the
result in that cell. The asterisk in the Skept1co cell reflects that this lower bound is not proved in this paper.
Rather, the ⇧1

1-hardness for Skept
1
co is deferred to future work focusing on the grounded semantics.

Note that he, ai 2 Skept1co if and only if a is in the unique grounded extension in Fe. Similarly, the
dagger in several Uni1� cells reflect that the upper bounds in these cases are not proved in this paper.
(See Remark 3.6).

Remark 3.12. As noted before, the ⌃1
1 sets are natural analogs in the in�nitary setting of the

NP sets, and the⇧1
1 sets are the natural analogs of the coNP sets. With the exception of Skept1co

Uri Andrews, Luca San Mauro

19 SAFA@COMMA 2024

and Uni1stb, Table 2 follows this translation from Table 1 for the �rst three rows. These two
results mark surprising di�erences in the in�nite setting.

The trivial entries are due to the fact that ; is always an admissible extension and the grounded
extension is always a complete extension.

3.3. Spectra of � extensions

We propose a way to more fully understand the complexity of the problem of �nding a �
extension in a given AF F .

De�nition 3.13. For each e 2 ! and semantics �, let Spec¬;
�
(Fe) be the set of Turing degrees of

non-empty sets X ✓ ! so that {an : n 2 X} is a � extension in Fe.

The notion Spec¬;
�
(Fe) exactly captures the di�culty of computing a non-empty � extension

in Fe. We will be relating the problem of computing a � extension in Fe to the problem of
�nding a path through a particular tree. So, we de�ne the analogous notion of the spectrum of
a tree.

De�nition 3.14. Given any computable tree T , we let Spec(T) be set of Turing degrees of paths
X 2 [T].

Our main result in this direction is the following:

Theorem 3.15. For � 2 {ad, stb, co, infad, infstb, infco} and for any computable tree T , there
exists a computable AF Fe so that Spec¬;� (Fe) = Spec(T).

When � 2 {ad, stb, infad, infstb}, future work will show the converse, namely that for every
e, there is a computable tree so that Spec¬;

�
(Fe) = Spec(T). Table 3 collects our results on

Spectra of extensions.

� Spec¬;
�

ad Exactly Spec(T)
stb Exactly Spec(T)
co Any Spec(T)
infad Exactly Spec(T)
infstb Exactly Spec(T)
infco Any Spec(T)

Table 3
In this paper, we show that for any computable tree T , there is a computable argumentation framework
Fe so that Spec(T) = Spec¬;

� (Fe). When � 2 {ad, stb, infad, infstb}, future work will show the
converse. Namely that for every e, there is a computable tree so that Spec¬;

� (Fe) = Spec(T). We do
not know how to attain a corresponding upper bound for the complete or infinite complete cases.

We now discuss some consequences of these characterizations on the problem of, given a
computable argumentation framework, computing some � extension. The hyperarithmetical
sets are, in a very general sense, considered the collection of constructible subsets of the

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 20

natural numbers. Formally, a set is hyperarithmetical if and only if it is both ⌃1
1 and ⇧1

1.
The hyperarithmetical degrees are particularly useful as a yardstick of complexity because a
set X is hyperarithmetical if and only if it is computed from a set Y which can be reached
by (trans�nitely) iterating the halting jump operator. Thus, the number of iterations of the
halting jump needed to compute X yields a useful yardstick for the complexity of X . For more
information about the hyperarithmetical hierarchy, see [19, Chapter 5].

Proposition 3.16. For each � 2 {ad, stb, co, infad, infstb, infco}, there is a computable argumen-
tation frameworkFe which has continuummany non-empty � extensions, yet no hyperarithmetical
non-empty � extension.
(We take this to mean that there is no uniform way to construct—even with arbitrary access to

the halting jump operator—a � extension).

Proof. There exists a computable tree with uncountably many paths yet no hyperarithmetical
path [18, Corollary XLI(b)]. Applying Theorem 3.15 to this tree yields a computable argumen-
tation framework with uncountably many non-empty � extensions, yet no hyperarithmetical
non-empty � extension.

In the case of Proposition 3.16, there are � extensions that are not particularly computationally
powerful. They are not hyperarithmetical, but they also compute no hyperarithmetical sets. We
can think of them as on the side of the hyperarithmetical hierarchy, thus simply not measured
by the yardstick. This is always the case if an in�nite AF has continuum many � extensions.
On the other hand, if a computable argumentation framework has a unique � extension, the
picture is quite di�erent. In forthcoming work, we will settle the following conjecture.

Conjecture 3.17. Let � be in {ad, stb, co, infad, infstb, infco} and suppose thatFe is a computable
argumentation framework with a unique non-empty � extension. Then, the non-empty � extension
of Fe is hyperarithmetical.

On the other hand, we can show that there is no bound in the hyperarithmetical hierarchy
on how complicated this extension might be.

Theorem 3.18. Let � be in {ad, stb, co, infad, infstb, infco} and let H be a hyperarithmetical set.
Then, there exists a computable AF Fe with a single non-empty � extensionX so thatX computes
H .

Proof. This follows fromTheorem 3.15 by encoding a tree with a single path ⇡ so that ⇡ computes
H . Such a tree is known to exist for any hyperarithmetical H [18, Corollary XLIV(d)].

4. Encoding a tree into an argumentation framework

This section is devoted to our hardness results: we provide lower bounds for the complexity of our
computational problems. In particular, given a tree T ✓ !<! , we will de�ne an argumentation
framework FT = (AT , RT). The set of arguments AT of FT is computable and consists of
{a� : � 2 T }[{b� : � 2 T }. The attack relationRT ofFT contains all and only the following
edges: For all � 2 T ,

Uri Andrews, Luca San Mauro

21 SAFA@COMMA 2024

�

0 1

10 11

a� b�

a0 b0 a1 b1

a10 b10 a11 b11

Figure 1: Example of our encoding of trees into AFs: the le�-side represents the tree {�, 0, 1, 10, 11},
the right-side is the resulting AF. When applied to trees T of infinite height, [T] will be encoded into
the stable, complete, and admissible extensions of FT . Let’s stress that, for the example shown in the
figure, the only admissible extension of FT is the empty one.

1. b� ⇢ b� ;

2. b� ⇢ a� ;

3. a� ⇢ b⌧ , if |�| = |⌧ |+ 1;

4. a� ⇢ a⌧ , if |�| = |⌧ |+ 1 and ⌧ 6� �.

Figure 1 gives an example of our encoding for a �nite tree. We next consider which extensions
in FT are admissible, stable, or complete.

Notation. For ⇡ 2 [T] and n 2 !, let Sn
⇡ be the set {a� : � � ⇡ and |�| � n}.

Lemma 4.1. A non-empty extension S of FT is admissible i� S is exactly Sn
⇡ for some ⇡ 2 [T]

and n 2 !.

Proof. ()): Suppose that S 6= ; belongs to ad(FT). First, observe that no b� can be in S, as all
such arguments are self-defeating and S must be con�ict-free. Next, observe that, if a⌧ 2 S,
then there must be some i so that a⌧_i 2 S: this is because some element of S must defend
a⌧ from b⌧ and such an element must be an a� with |�| = |⌧ |+ 1. But it must have ⌧ � � as
otherwise a� would attack a⌧ .
Finally, take ⇢ of minimal length so a⇢ 2 S. Then the previous paragraph shows that S

contains S|⇢|
⇡ for some ⇡ 2 [T] with ⇢ � ⇡. Since ⇢ was chosen of minimal length, no a⌧ with

⌧ shorter can be in S. Moreover, no a⌧ with |⌧ | � |⇢| and ⌧ 6� ⇡ can be in S, as otherwise S
would not be con�ict-free. Thus, S = S|⇢|

⇡ .
((): Any element which attacks a⇡�n is itself attacked by either a⇡�n+1 or a⇡�n+2 , so Sn

⇡ ✓
fFT (S).

Lemma 4.2. An extension S of FT is stable i� S is exactly S0
⇡ for some ⇡ 2 [T].

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 22

Proof. ()): Suppose that S 2 stb(FT). Then, since S is admissible, we know S = Sn
⇡ for some

⇡ 2 [T] and n 2 !. Since b� is the only the argument that attacks a� and b� /2 S, it must be
the case that a� 2 S. Thus, n = 0.
((): Observe that S0

⇡ is con�ict-free and any other argument of F T is contained in (S0
⇡)

+.
Thus, S0

⇡ is a stable extension of FT .

Lemma 4.3. A non-empty extension S of FT is complete i� S is S0
⇡ for some ⇡ 2 [T].

Proof. ()): Suppose that S 6= ; belongs to co(FT). Since complete extensions are admissible,
we see that S = Sn

⇡ , for some X 2 [T] and n 2 !. But observe that if n > 0, then S would not
be complete: indeed, a� with � = ⇡ �n�1 would be defended by S but not in S. Thus, n must
be equal to 0.
((): This follows since S0

⇡ is stable and all stable extensions are complete.

We are now in a position to obtain hardness results for the computational problems described
in De�nition 3.3.

Theorem 4.4. The following hold:

1. for � 2 {ad, stb, co, infad, infstb, infco}, NE1� is ⌃1
1-hard;

2. for � 2 {stb, infad, infstb, infco}, Exist1� is ⌃1
1-hard;

3. for � 2 {ad, stb, co, infad, infstb, infco}, Cred1� is ⌃1
1-hard.

Proof. 1. Let X 2 ⌃1
1 and let (T X

n)n2! be a tree-sequence for X , as given by Theorem 3.7. To
show ⌃1

1-hardness, we need to produce a computable function f so that n 2 X if and only if
f(n) 2 NE1� . We let f(n) be a computable index for FT X

n . Then Lemmas 4.1, 4.2, and 4.3 prove
that n 2 X if and only if T X

n is ill-founded if and only if FT X
n has a non-empty � extension for

each � 2 {ad, stb, co, infad, infstb, infco}.
2. For each of these �, the empty set is not a � extension, so Exist1� = NE1� , which we

showed above is ⌃1
1-hard.

3. In the proof of 1. above, we reduced a given ⌃1
1 set X to NE1� by sending n to FT X

n . Note
that FT X

n has a non-empty � extension if and only a� is in some � extension. Thus sending n
to the he, a�i where e is a computable index for FT X

n shows that Cred1� is ⌃1
1-hard.

Theorem 4.5. For � 2 {ad, stb, co, infad, infstb, infco}, Uni1� is ⇧1
1-hard.

Proof. We �rst consider � 2 {ad, co}. Let X 2 ⇧1
1 and let (T !rX

n)n2! be a tree-sequence for
its complement. For n 2 !, consider the sequence of AFs FT !rX

n . Note that ; is an admissible
extension in any AF and since every argument in FT !rX

n is attacked, ; is also a complete
extension. Thus, FT !rX

n has a unique � extension if and only if T !rX
n is well founded if and

only if n 2 X , which shows that Uni1ad and Uni1co are ⇧1
1-hard.

For the other �, ; is not a � extension. We use Theorem 3.10 to show ⇧1
1-hardness. Let X be

any ⇧1
1 set. Then we get from Remark 3.11 a sequence of trees T 0

n so that 01 2 [T 0
n] for each n,

and {n : T 0
n has only one path} is ⇧1

1-hard. It follows from Lemmas 4.1, 4.2, and 4.3 that this is
if and only if FT 0

n has a unique � extension, which shows that ⇧1
1-hardness of Uni

1
� .

Uri Andrews, Luca San Mauro

23 SAFA@COMMA 2024

Theorem 4.6. For any � 2 {stb, infstb, infco}, Skept1
�

is ⇧1
1-hard.

Proof. LetX be a⇧1
1 set. Then we get from Remark 3.11 a sequence of trees T 0

n so that 01 2 [T 0
n]

for each n, and {n : T 0
n has only one path} is ⇧1

1-hard. Then, note that he, a0i 2 Skept1
�

where
e is a computale index for T 0

n if and only if T 0
n only has paths ⇡ with ⇡(0) = 0 if and only if T 0

n

has only one path (see the de�nition of T 0
n in Remark 3.11) if and only if n 2 X . This shows the

⇧1
1-hardness of Skept

1
�
.

We note that the above argument does not work for infad since, even if ⇡ is the only path
through a tree T , each Sn

⇡ is an in�nite admissible extension in FT and
T

n
Sn
⇡ = ;, so in any

FT , Skept1infad = ;.

Theorem 4.7. Skept1infad is ⇧1
1-hard.

Proof. Let X be a ⇧1
1 set. We get from Remark 3.11 a sequence of trees T 0

n so that each has one
path 01 2 T 0

n and has another path extending 1 if and only if n /2 X .
For each n 2 !, we construct an AF Gn = (AGn , RGn) slightly larger than FT 0

n . In particular
AGn = AFT 0

n
[{x0, y0, x1, y1}. We let (w, z) 2 RGn if

• w, z 2 AFT 0
n
and (x, y) 2 RFT 0

n

• w = yi and z = yi
• w = xi and z = x1�i

• w = xi and z = yi
• w = yi and z = a� where �(0) = i

• w = a� with �(0) = i and z = y1�i

Lemma 4.8. An in�nite S ✓ AGn is an admissible extension if and only if it equals a set
Sk
⇡ [{x⇡(0)} for some ⇡ 2 [T 0

n] and k 2 !.

Proof. Let U be an in�nite admissible extension. Note �rst that arguments y0, y1 and b� cannot
be in U since they are self-defeating. Then, since U is in�nite, U must contain elements a� for
� 2 T 0

n. By the same argument as in Lemma 4.1, we get that U \AFT 0
n
= Sn

⇡ for some ⇡ 2 [T 0
n].

But then since each element of S⇡
n is attacked by y⇡(0), we must have x⇡(0) 2 U to defend them.

This excludes x1�⇡(0) from U since U is con�ict-free.
It is straightforward to check that each of these are in fact admissible extensions.

Finally, note that x0 is in every in�nite admissible extension of Gn if and only if there is no
⇡ 2 [T 0

n] which extends 1 if and only if n 2 X , showing that Skept1infad is ⇧
1
1-hard.

Theorem 4.9. For � 2 {ad, stb, co, infad, infstb, infco} and for any computable tree T , there
exists a computable AF Fe so that Spec¬;� (Fe) = Spec(T).

Proof. Observe that for the AF Fe = FT , it follows from Lemmas 4.1, 4.2, and 4.3 that the
non-empty � extensions are all in�nite and are in the same Turing degrees as the paths through
T .

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 24

5. Conclusion and future work

In this paper, we initiated a systematic exploration of the complexity issues inherent to in�nite
argumentation frameworks. To pursue this direction, we employed computability-theoretic
techniques which are ideally suited for assessing the complexity of in�nite mathematical
objects. Our focus was on the credulous and skeptical acceptance of arguments, as well as
the existence and uniqueness of extensions, for admissible, complete, and stable semantics.
The computational problems we examined were found to be maximally complex, properly
belonging to the complexity classes of ⌃1

1 and ⇧1
1 sets. We also introduced and explored new

semantics that are meaningful exclusively in the in�nite setting, concerning the existence of
in�nite extensions that satisfy a given semantics �.
It is natural to conceive of an argumentative scenario with arguments being added as time

proceeds, such as the ongoing accumulation of scienti�c studies. Then, in�nite frameworks
naturally emerge as the union of the frameworks observed at each �nite time. A key question,
then, is how the acceptance of arguments within the in�nite framework F can be related to
the acceptance within the �nite frameworks (Ft) which have appeared by time t. Our results
show that, for complexity reasons alone, credulous and skeptical acceptance of arguments in F
cannot be understood in terms of any kind of limiting procedure applied to the same problems
in Ft.
A plethora of intriguing questions regarding the complexity of in�nite AFs remains open.

In forthcoming extensions of this work, we shall �ll the gaps that we left behind (such as the
entries marked with a dagger in Table 2). Next, we will show that the techniques introduced
here enable the construction of a single argumentation framework witnessing our hardness
results, thereby proving that solving these problems is not only challenging for the entire class
of argumentation frameworks but also remains di�cult for an individual, speci�c framework.

Finally, future research will extend our analysis to analogous problems associated with other
key semantics for AFs, including grounded, preferred, and ideal semantics. Given that the
de�nitions of these semantics are more intricate than those we examined here, we anticipate
the need for additional techniques to thoroughly analyze them.

Acknowledgments

Andrews was partially supported by NSF grant DMS-2348792. San Mauro is a member of
INDAM-GNSAGA.

References

[1] P. Baroni, F. Cerutti, P. E. Dunne, M. Giacomin, Automata for in�nite argumentation
structures, Arti�cial Intelligence 203 (2013) 104–150.

[2] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Arti�cial intelligence 77 (1995) 321–
357.

Uri Andrews, Luca San Mauro

25 SAFA@COMMA 2024

[3] A. J. García, G. R. Simari, Defeasible logic programming: An argumentative approach,
Theory and practice of logic programming 4 (2004) 95–138.

[4] P. Baroni, M. Giacomin, G. Guida, Self-stabilizing defeat status computation: dealing with
con�ict management in multi-agent systems, Arti�cial Intelligence 165 (2005) 187–259.

[5] B. Verheij, De�og: on the logical interpretation of prima facie justi�ed assumptions,
Journal of Logic and Computation 13 (2003) 319–346.

[6] M. Caminada, N. Oren, Grounded semantics and in�nitary argumentation frameworks, in:
Proceedings of the 26th Benelux Conference on Arti�cial Intelligence, BNAIC, 2014, pp.
25–32.

[7] R. Baumann, C. Spanring, In�nite argumentation frameworks: On the existence and
uniqueness of extensions, in: Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation: Essays Dedicated to Gerhard Brewka on the Occasion of his
60th Birthday, Springer, 2015, pp. 281–295.

[8] P. Baroni, F. Cerutti, P. E. Dunne, M. Giacomin, Computing with in�nite argumentation
frameworks: The case of afras, in: Theorie and Applications of Formal Argumentation:
First International Workshop, TAFA 2011. Barcelona, Spain, July 16-17, 2011, Springer,
2012, pp. 197–214.

[9] S. Bistarelli, F. Santini, et al., Weighted argumentation., FLAP 8 (2021) 1589–1622.
[10] P. E. Dunne, Coherence in �nite argument systems, Arti�cial Intelligence 141 (2002)

187–203.
[11] P. E. Dunne, The computational complexity of ideal semantics, Arti�cial Intelligence 173

(2009) 1559–1591.
[12] W. Dvo�ák, S. Woltran, Complexity of semi-stable and stage semantics in argumentation

frameworks, Information Processing Letters 110 (2010) 425–430.
[13] V. Brattka, P. Hertling, Handbook of computability and complexity in analysis, Springer,

2021.
[14] K. V. Velupillai, Computable foundations for economics, Routledge, 2012.
[15] G. Jäger, J. Rogers, Formal language theory: re�ning the chomsky hierarchy, Philosophical

Transactions of the Royal Society B: Biological Sciences 367 (2012) 1956–1970.
[16] P. Baroni, M. Giacomin, Semantics of abstract argument systems, Argumentation in

arti�cial intelligence (2009) 25–44.
[17] P. E. Dunne, M. Wooldridge, Complexity of abstract argumentation, Argumentation in

arti�cial intelligence (2009) 85–104.
[18] H. Rogers Jr, Theory of recursive functions and e�ective computability, MIT press, 1987.
[19] C. J. Ash, J. Knight, Computable structures and the hyperarithmetical hierarchy, Elsevier,

2000.
[20] S. C. Kleene, Arithmetical predicates and function quanti�ers, Transactions of the

American Mathematical Society 79 (1955) 312–340.
[21] A. Kechris, Classical descriptive set theory, volume 156, Springer Science & Business Media,

2012.

On Computational Problems for Infinite Argumentation Frameworks: Classifying Complexity via
Computability

SAFA@COMMA 2024 26

