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Abstract
This paper investigates the effects of different graph neural network aggregation functions on the
generalizability of these models for solving abstract argumentation semantics. We systematically compare
the performance of Sum, Mean, Max, Attention, and Convolution aggregation functions on predicting
sceptical argument acceptance under the preferred semantics. Our experiments utilize a variety of
benchmark datasets to evaluate scalability and out-of-domain generalization. Results show that while
most aggregators perform well on scalability, Max and Attention aggregators significantly outperform
others on generalization to data not seen during training. This study provides valuable insights into the
design of accurate and robust GNN-based approximate solvers for abstract argumentation frameworks,
emphasizing the importance of the aggregation function.
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1. Introduction

Abstract argumentation has gained significant attention as a formal framework for representing
and reasoning about complex decision-making processes [1]. Advancements in various domains,
such as legal reasoning, multi-agent systems and human-computer interaction, highlight the
importance of developing efficient solvers for various computational reasoning problems within
this approach. Computational problems, such as enumerating extensions or deciding whether an
argument is accepted in one or all such extensions, are commonly solved with exact solvers [2, 3].
While exact solvers are effective for small-scale problems, these programs can struggle to handle
the computational demands of large and complex argumentation frameworks. Several recent
approaches have been proposed for defining approximate algorithms, which aim to provide
solutions that are close to the exact one but can be computed more efficiently [4, 5, 6, 7].

Graph neural networks (GNNs) are a promising architecture for approximate solvers due
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to their ability to learn from graph-structured data. Since an argumentation framework (AF)
can naturally be represented as graph, GNNs can effectively capture the interactions between
arguments and counterarguments, allowing them to approximate exact reasoning about argu-
mentation semantics. The allure of this approach is that GNNs can solve problems with linear
time complexity relative to the input size, while being learned from data and thus alleviating
the need for manual feature engineering and expert knowledge.

Several works have shown that GNNs are able to predict argument acceptance under various
argumentation semantics with high accuracy [4, 5, 6, 7]. These studies employ various GNN
architectures, mainly characterized by distinct aggregation and update functions, and different
training and evaluation regimes. The lack of a systematic and uniform evaluation protocol
has hindered direct comparisons between these approaches, thereby missing insights into the
most effective design choices. To address this gap, this work aims at uniformly comparing
different GNN architectures based on their performance on a number of benchmark datasets. We
specifically focus on the most effective aggregation function, contributing to the development
of accurate and robust models.

2. Preliminaries

2.1. Abstract argumentation

We recall Dung’s abstract argumentation frameworks [8].

Definition 1. An abstract argumentation framework (AF) is a pair 𝐹 = (𝐴, 𝑅) where A is a
(finite) set of arguments and 𝑅 ⊆ 𝐴 × 𝐴 is the attack relation. The pair (𝑎, 𝑏) ∈ 𝑅 means that 𝑎
attacks 𝑏. A set 𝑆 ⊆ 𝐴 attacks 𝑏 if there is an 𝑎 ∈ 𝑆, such that (𝑎, 𝑏) ∈ 𝑅. An argument 𝑎 ∈ 𝐴 is
defended by 𝑆 ⊆ 𝐴 iff, for each 𝑏 ∈ 𝐴 such that (𝑏, 𝑎) ∈ 𝑅, 𝑆 attacks 𝑏.

Dung-style semantics define the sets of arguments that can jointly be accepted (extensions). A𝜎-extension refers to an extension under semantics 𝜎. We consider admissible sets and preferred
and grounded semantics with the following functions respectively adm, prf, grd.

Definition 2. Let 𝐹 = (𝐴, 𝑅) be an AF. A set 𝑆 ⊆ 𝐴 is conflict-free (in F), if there are no 𝑎, 𝑏 ∈ 𝑆,
such that (𝑎, 𝑏) ∈ 𝑅. The collection of sets which are conflict-free is denoted by cf(𝐹 ). For 𝑆 ∈ cf(𝐹 ),
it holds that: 𝑆 ∈ adm(𝐹 ), if each 𝑎 ∈ 𝑆 is defended by 𝑆; 𝑆 ∈ prf(𝐹 ), if 𝑆 ∈ adm(𝐹 ) and for each𝑇 ∈ adm(𝐹 ), 𝑆 ⊄ 𝑇 and for each 𝑎 ∈ 𝐴 defended by 𝑆 it holds that 𝑎 ∈ 𝑆; 𝑆 ∈ grd(𝐹 ).

Furthermore, for some argument 𝑎 that is part of 𝐹, we can determine if it is credulously
accepted under semantics 𝜎 – 𝑎 is contained in at least one 𝜎-extension – or sceptically accepted
under 𝜎 – 𝑎 is contained in all 𝜎-extensions.
2.2. Graph neural networks

We recall graph neural networks as used for abstract argumentation [4]. Let 𝐺 = (𝑉 , 𝐸) be a
graph representation of an AF 𝐹, where at message passing step 𝑡 = 0 each node 𝑖 is assigned
a real-valued vector 𝑣 𝑡𝑖 ∈ 𝑉 and each edge between node 𝑖 and 𝑗 is assigned a vector 𝑒𝑖𝑗 ∈ 𝐸
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Figure 1: The aggregation functions in a graph neural network combines feature information from
neighboring nodes, expressing the local graph structure when updating node representations. To
generate the embedding for node A, the messages from A’s graph neighbors are aggregated. In turn, the
messages coming from these neighbors are based on the aggregated messages from their respective
neighbors, and so on. (source: Hamilton et al. [9])

indicating whether it represents a directed, reciprocal or self-loop edge. At subsequent message
passing steps 𝑡, each node 𝑖 aggregates messages 𝑚𝑡𝑖𝑗 from its neighbours 𝑗 and updates its vector
representation, such that

𝑚𝑡+1𝑖𝑗 =MSG(𝑣 𝑡𝑖 , 𝑣 𝑡𝑗 , 𝑒𝑖𝑗) (1)𝑣 𝑡+1𝑖 =UPDT(𝑣 𝑡𝑖 ,AGGR𝑗∈𝑁 (𝑖) (𝑚𝑡+1𝑖𝑗 )) (2)

where𝑁(𝑖) denotes all neighbours of node 𝑖. The message function MSG computes a messages
based on the vectors of two connected nodes along with the edge representations. The update
function UPDT updates the node representation based on the previous node representation
and the messages aggregated by AGGR. The message and update functions are parameterized
neural networks which, in conjunction with the aggregation function, yield a neural message
passing algorithm whose parameters can be optimised (i.e. learned) based on data. After each
step 𝑡, node representations can be read out with the readout function READ that maps a node
representation to a likelihood 𝑜𝑡𝑣𝑖 = READ(𝑣 𝑡𝑖 ) of the respective argument being accepted.

3. Aggregation function

A central component of GNNs is the aggregation function, which summarizes the information
from neighboring nodes (see Figure 1). Different aggregation functions can impact the model’s
performance and the type of information it captures from the graph. We discuss five common
aggregation functions: Sum, Max, Mean, Attention, and Convolution.

The Sum aggregation function adds up the feature vectors of neighboring nodes, allowing each
node to accumulate information from its neighbors equally. This approach is straightforward
and shown to be one of the most expressive aggregation functions [10]. However, it may lead to
unstable node embeddings when scaling up to AFs larger than those seen during training [11].
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Max aggregation selects the maximum value for each feature dimension across the neighbors,
making it useful for highlighting the most significant features. This method might lose some
nuanced information since it does not consider the entire neighborhood’s contribution. Mean
aggregation computes the average of the feature vectors of neighboring nodes, providing a
balanced representation. This approach can help mitigate the influence irrelevant neighbors but
may fail to capture the unique importance of individual nodes. Attention mechanisms compute
a weighted Mean of the neighbors’ features based on their relevance to the central node. By
assigning higher weights to more important neighbors, Attention aggregation enables the model
to focus on the most relevant information and improve its discriminative power [12]. Finally,
convolutional aggregation functions, inspired by Convolutional Neural Networks (CNNs), apply
learnable filters to the neighborhood features [13]. This approach allows the model to capture
spatial patterns and local structures within the graph, making it particularly suitable for tasks
that require understanding of geometric properties.

In the field of computational argumentation, different works have used different aggregation
functions in their GNN architectures. Where Kuhlmann and Thimm [5], Malmqvist et al. [6] use
the Convolution aggregation function, Craandijk and Bex [4] use the Sum aggregator and Cibier
and Mailly [7] use the Attention aggregator. Whereas Craandijk and Bex [14] use a combination
of aggregators, to the best of our knowledge no work has yet evaluated the performance of Max
and Mean aggregators on predicting argument acceptability. Additionally, all mentioned works
employ the various aggregators in combination with different update and message functions and
training and evaluation regimes, making them difficult to compare. In this work we compare all
mentioned aggregators uniformly in terms of architectural design and evaluation setup.

4. Data

Since GNNs learn to solve problems based on data, the characteristics of the data used to
train and evaluate the architecture are consequential to their performance. The different
works on using GNNs to learn argumentation semantics use different datasets, hindering direct
comparison between methods. Additionally most works train and validate on datasets with the
same characteristics. Kuhlmann and Thimm [5] show that, while different GNN architectures
generally yield high quality results when tested on in-distribution AFs, performance severely
degrades when generalizing to AF types not seen during training. This indicates that GNNs tend
to learn superficial features of the data, rather than a general applicable rule (a fundamental
problem found in various fields of deep learning).

In this work we aim at comparing GNN design choices with the goal of developing accurate
and robust approximate solvers. Therefore we adopt the evaluation datasets of Kuhlmann and
Thimm [5] (i.e. PBBG, KWT and ICCMA) with the aim of testing scalability and generalization
of different aggregation functions. Generalization and scalability ensure that a learned GNN
solver for abstract argumentation can be reliably deployed in various settings. A scalable solver
ensures that the system can handle increasingly larger argumentation frameworks without a
significant drop in performance. Generalizability refers to the model’s ability to perform well
AFs with graph properties not seen during training (i.e. out-of-domain AFs).

A PBBG dataset consists of AFs generated by generators from ICCMA 2020 [3] as used by
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Craandijk and Bex [4], namely AFBenchGen2, AFGen Benchmark Generator, GroundedGenerator,
SccGenerator, StableGenerator. This set of generators can generate AFs of various sizes, making
them suitable to evaluate in-domain scalability. The KWT dataset is tailored by Kuhlmann
et al. [15] towards generating abstract argumentation frameworks that are particularly hard for
tasks related to deciding preferred acceptance by avoiding as much as possible the easy cases
(where the accepted arguments are (almost) similar to the grounded extension). These AFs are
particularly suited to test out-of-domain generalization. The ICCMA dataset consists of AFs
that are part of the ICCMA 2017 benchmark competition.1 These are large AFs with on average
around 650 AFs. Notably, a part of this set is generated by generators not in PBBG, namely
ABA2AF, admbuster, Planning2AF, sembuster, and traffic. These AFs are suitable to evaluate
both scalability as generalization.

5. Experimental analysis

To assess the performance of different Graph Neural Network (GNN) aggregation functions
in predicting sceptical argument acceptance under preferred semantics, we conduct a series
of experiments. We focus on this particular problem due to its computational complexity
and the fact that the KWT dataset, specifically designed for this task, presents a challenging
scenario for GNNs to solve [15]. We create a training dataset, PBBG-train, comprising 100,000
argumentation frameworks (AFs) with argument counts ranging from 5 to 25. Utilizing the
same set of generators, we generate three additional datasets: PBBG-val and PBBG-test, each
containing 1,000 AFs with exactly 25 arguments, and PBBG-scale, which consists of 1,000 AFs
with 100 arguments. PBBG-val is used as a validation set, PBBG-test serves to test the model’s
learning efficacy, while PBBG-scale evaluates in-domain scalability. Lastly, we use the same
1,000 KWT instances as previously employed by Kuhlmann and Thimm [15] to test out-of-
domain generalization and the same 450 AFs from the ICCMA 2017 competition to assess both
scalability and out-of-domain generalization capabilities. We adopt the training procedure 2

as described by Craandijk and Bex [4]. We evaluate with the Matthews correlation coefficient
(MCC) as it is regarded as a balanced measure, even when classes are unequally distributed. [16].
The MCC is a correlation coefficient value between -1 and +1, where +1 represents a perfect
prediction, 0 an average random prediction and -1 an inverse prediction.

Aggregator PBBG-test PBBG-scale KWT ICCMA

Sum 0.99 0.81 0.57 0.25
Mean 0.98 0.94 0.61 0.23
Max 0.95 0.92 0.72 0.58
Attention 0.99 0.93 0.88 0.58
Convolution 0.98 0.96 0.62 0.30

Table 1
Matthews correlation coefficient scores for sceptical acceptance under the preferred semantics

1http://argumentationcompetition.org/2017/
2https://github.com/DennisCraandijk/DL-abstract-argumentation
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As Table 1 illustrates, all aggregation functions are able to capture the characteristics of the
PBBG-train data as demonstrated by the PBBG-test dataset. When scaling to larger graphs
within the same domain, as evidenced by the PBBG-scale dataset, all aggregation functions
generalize well. Only the performance of the Sum aggregator drops, which can be caused by
unstable node embedding as mentioned in Section 3. A disparity between aggregators emerges
on the KWT dataset. Here, the Sum, Mean, and Convolution aggregators struggle to generalize
beyond their training data, yielding MCCscores below 0.65. Conversely, the Max and Attention
aggregators excel, likely due to their ability to concentrate on specific features within a node’s
neighborhood rather than merging all features indiscriminately. Despite not being the main
goal of this work, both aggregators even surpass the previous state-of-the-art result, as reported
by Kuhlmann et al. [15], in this training regime by a large margin. This effect is also visible on
the ICCMA dataset, which however still proves to be challenging for all GNN variants as scores
top at 0.58 MCC.

The Max and Attention aggregators emerge as optimal choices for GNN applications in
abstract argumentation. Contrary to the Mean, Sum, and Convolution aggregators, which
aggregate neighbor features uniformly, the Max and Attention mechanisms empower GNNs to
selectively hone in on specific information. This selective focus allows GNNs to capitalize on
the most significant interactions between arguments and counterarguments, thereby enhancing
their performance in abstract argumentation tasks.

6. Conclusion

In this paper, we explored the effects of different aggregation functions on the generalizability of
GNN’s for solving abstract argumentation semantics. Through a comprehensive experimental
analysis, we demonstrated that the choice of aggregation function plays a central role in
determining the performance and robustness of GNNs in this context. Our findings highlight
that while most aggregation functions perform similarly in terms of in-domain scalability,
significant differences emerge when evaluating out-of-domain generalization. Specifically,
the Max and Attention aggregation functions show better performance in handling AFs with
graph properties not seen during training, indicating their potential to capture the dynamics
between arguments from the argumentation frameworks. Future research could investigate the
impact of other architectural design choices and training strategies on model performance and
generalizability, especially on the challenging ICCMA dataset.
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